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Abstract

In the past decade biometrics and Physical Unclonable Functions (PUF) have
become a popular alternative to standard authentication methods, such as
passwords. Protection of secrets generated by biometrics and PUFs is done
similar to password protection: a hash of the secret is stored. The hash is
resilient to different types of attacks (e.g. hacks and insider attack). Secret keys
generated by biometrics and PUFs are prone to noise, thus an error correction
step is required. However, error correction data has to be stored somewhere
and may leak sensitive information. A standard approach to reduce leakage is
to use a Helper Data System (HDS), and a two-stage HDS in particular. At
the first stage quantization of the measurement data is performed and a binary
string is obtained. The helper data reduces the discretization errors. However,
the binary string may still contain errors. An error-correction code (ECC) is
applied at the second stage. The HDS approach requires biometric data to have
a fixed-length representation after the first stage. This is not an easy task since
a biometric measurement does not always reliably produce the same number of
features (e.g. fingerprint minutiae).

The device that performs the biometric verification or the PUF key re-
construction is often resource-constrained, e.g. a smartcard. The bottleneck
of the HDS is the computationally expensive ECC decoding step. The error
correction can be outsourced to a more powerful second party. An eavesdropper
then learns the error pattern. The error pattern can be data dependent, which
leads to potential security issues. Additionally experiments have shown that
some PUFs are prone to drift. Thus, the PUFs become recognizable when the
outsourcing is used. This has a potential impact on privacy.

To improve state-of-the-art on HDSs and biometric template protection we
have introduced the following four improvements:

� We have optimized the quantization procedure in the first stage. At an
intermediate level of noise the improvement in terms of mutual information



is a few percent (up to 7%) and the bit error rate can be reduced by as
much as 50%. The result is generic and not limited to biometric data
only. (Chapter 2)

� We have introduced a new fixed-length representation for fingerprint
features. The representation is based on differences between pairs of
features. We achieved similar recognition performance as state-of-the-art
template protection schemes but with smaller template size, which makes
our approach faster and more practical. (Chapter 3)

� We have built a two-stage helper data system for fingerprints from the
above mentioned fixed-length representation combined with the optimized
quantization scheme. The scheme was implemented with Polar Codes as
the error correction code. The best results were obtained by combining
three enrollment images. The performance degradation due to added
privacy is minimal in the case of high-quality fingerprints. (Chapter 4)

� We have introduced two modifications to the ECC outsourcing scheme
which together eliminate both leakage problems: leakage about PUF
keys due to data-dependent noise and identifiability of PUFs due to drift.
(Chapter 5)
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Chapter 1

Introduction

1.1—Security with noisy data

1.1.1 –Digital security is not only digital. Two of the main concepts in
security are confidentiality and authenticity. Confidentiality means that data,
be it stored or transmitted, should be accessible only by authorized parties.
Authenticity of data means that someone who is viewing the data can verify
that the origin is as stated. Authenticity of a party means that others can verify
that this party is who it claims to be. Authenticity of a physical object means
that someone who inspects the object can ascertain that it possesses certain
special properties that are difficult to create or, even better, that it is exactly
the same object as one that has been enrolled at some previous time.

In the digital domain, confidentiality and authentication are typically taken
care of by cryptographic means. Data encryption is used for confidentiality;
message authentication codes and digital signatures for authentication. The
secure deployment of these cryptographic primitives crucially depends on the
secrecy of keys. In the case of symmetric cryptography, the sender (Alice) and
receiver (Bob) of a message have the same key. In asymmetric cryptography,
each party has its own private key and public key. A private key is used
for decryption of ciphertexts and for signing data. A public key is used for
encryption and for verification of signatures. Symmetric keys and private
keys need to be kept secret. This sounds simple, but actually it is a major
concern. Keeping digital keys out of the hands of adversaries is notoriously
difficult. For instance, commercially available devices (smartphones, computers
etc) are vulnerable to malware. This vulnerability is caused by a combination
of factors such as system complexity, legacy issues and user-hostile business
models. Governments are reluctant to force a solution. On the contrary, many
governments demand backdoors. It is widely known that certain governments
are stockpiling vulnerabilities to develop offensive cyber-weapons [69] and then
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sometimes lose control of them. To make the problem of key protection worse,
the theft of digital keys can easily go unnoticed, which prolongs the period during
which an adversary is able to do damage.

Digital devices are embedded in the physical world. To hardware and
software engineers the physical world is often a nuisance: it causes noise and
glitches, and it imposes constraints. However, the interaction between the digital
and the physical realm is more than a hindrance. In fact, it can be harnessed in
several ways to ameliorate some of the security problems mentioned above. For
instance, authentication does not have to depend on digital keys. As the saying
goes, authentication is based on what you know, what you have, or what you are.
The ‘what you have’ may be a physical object that is difficult to clone. Research
into Physical Unclonable Functions (PUFs) has yielded materials that are cheap
to manufacture but infeasible to clone even for the manufacturer. Authentication
of non-secret physical properties has the advantage that it does not require
any digital data to be kept secret. Furthermore, theft of a physical token is
far more conspicuous than theft of a digital key. The ‘what you are’ refers to
biometrics. Every person’s body has distinguishing features such as fingerprints,
ear prints, irises, vein patterns, DNA, and face structure. Some of these features
are completely unique, differing even between identical twins. Biometrics have
been used for criminal forensics since the 19th century. Automated fingerprint
recognition is gaining popularity, with millions of smartphones recognizing the
fingerprint or face of their owner.

Key storage is another application where interaction with the physical world
can be exploited to improve security. Several types of PUF are suitable for
use as a so-called Physically Obfuscated Key (POK). Here a physical structure
is subjected to a measurement, and a cryptographic key is derived from the
measurement outcome. Effectively, the cryptographic key is present in analog
form in the nano-scale physical structure of the object. POKs have a number
of advantages over digital storage. When a device is in its switched-off state, a
POK is less vulnerable to key extraction attacks than digital forms of storage
such as flash memory. Furthermore, a POK key can be wiped from digital
memory immediately after use, and re-generated on the fly when needed, so
that it exists in (vulnerable) digital form only for brief periods of time. A
third advantage is Public Key Infrastructure logistics. In e.g. military scenarios,
the authority that handles key management must program keys into many
devices. This involves people physically transporting private keys to many
destinations, which introduces a vulnerability. When the private keys are
implemented as POKs, on the other hand, the vulnerability can be avoided.
The (random) private key is already inside the device; the corresponding public
key is computed by the device and communicated to the authority. The private
key never leaves the device.

This thesis is about privacy-preserving biometric authentication and about
Physically Obfuscated Keys. As will be explained below, these topics have a lot
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in common regarding security requirements, technical difficulties, and solution
methods.

1.1.2 –Privacy-preserving biometric authentication. In the past decade bio-
metrics has become a popular alternative to standard authentication methods,
such as passwords and tokens. Passwords are possible to forget, tokens can
be left behind. Biometrics is now widely used. Fingerprint-based authentica-
tion systems are deployed on numerous smartphones and smartcards. Many
countries apply biometrics for voter registration. More then 150 countries issue
a passport containing biometric information; more then one billion biometric
passports have been issued worldwide.

It is infeasible to keep biometric information completely secret. We leave
latent fingerprints behind on smooth surfaces. Our faces and irises can be
photographed. Fortunately, biometric authentication does not require secrecy.
The only requirement is that the verifier does a measurement on an actual
living human. This is called ‘liveness detection’.

Even though biometric information cannot be kept secret, there are good
reasons to minimize access to biometrics. Unrestricted access to biometric
data would lead to serious privacy and security problems. (i) Biometric data
can reveal medical conditions. (ii) Storing biometric data in unprotected form
in multiple databases makes it possible to cross-match an individual across
databases. (iii) Easy access to biometric information makes it possible for
attackers to target an individual, and to create high-quality fake biometrics
matching that person. Even though liveness detection should catch such
spoofing, it is best not to make the attackers’ life easy. (iv) It becomes possible
to leave fake forensic evidence at a crime scene, e.g. in the form of latent
fingerprints or synthesized DNA.

Authentication consists of two steps: enrollment, and verification. During
the enrollment the characteristic is provided and stored1. The characteristic
is checked with the stored one during the verification, which leads to yes/no
decision. It depends on the circumstances how well the enrollment data can be
protected. We distinguish between two attacker models. In the first case, special
hardware is available for storing secrets. This trivially solves the problems. In
the second attacker model there is no such hardware. The system is vulnerable to
‘insider attacks’, where the adversary knows shared secrets, such as encryption
keys, has access to all stored data but does not know the enrollment and
verification value. This means that simply encrypting biometric data is not a
solution, since the attacker is able to decrypt it. Additionally, if a third party is
involved, this party should learn nothing about the enrollment and verification
values.

1Here we are concerned about confidentiality. It is straightforward to ensure integrity
and authenticity of the enrollment data by signing it. If the integrity in not protected, an
adversary may do a denial of service attack by modifying the stored data.
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We are interested in the second attacker model, which is more or less
‘standard’ in the biometric privacy community. In the scientific literature there
are the following methods for protecting biometric enrollment data:

� Helper Data System with one-way hash function.
A cryptographic hash function maps data of arbitrary size to a bit string
of a fixed size (a hash) and is designed to be a one-way function, that
is, a function that is infeasible to invert. Comparison of hashed data is
a well-known technique for password protection against insider attacks.
In this setting it is very hard for an adversary to find a pre-image of
secured template. One would like to do the same with biometrics. A
one-way hash function assures that similar inputs result in completely
different outputs. Thus error correction is required when we want to hash
biometric data. We need special error correction with little leakage, since
in the standard attacker model the adversary sees the redundancy data.
A so-called Helper Data System (HDS) performs error correction, while
making sure that the redundancy data does not leak anything important.
Roughly speaking this is achieved by revealing only the noisy part of the
enrollment measurement.
The following methods are alternatives to the HDS approach and are
designed to tolerate noise without correcting it.

� Homomorphic encryption.
Homomorphic encryption [73], [107] is a form of cryptography that allows
computation on encrypted data (ciphertexts). The enrollment data is
encrypted with a public key. During the verification a computation is
performed on the encrypted enrollment data and the fresh measurement,
yielding the encryption of the similarity between the two measurements.
The holder of the private key performs the decryption. The scheme
provides confidentiality even when the biometrics is compromised or
has low entropy. However, the computation on encrypted data is time
consuming, and the involvement of the third party causes communication
overhead.

� Locality sensitive hashing.
Locality sensitive hashing [42] (LSH) reduces the dimensionality of the
data, while making sure that similar inputs result in similar outputs. A
subcategory of LSH is the random projection method. The core idea of
the method is given by Johnson-Lindenstrauss lemma [46]. A set of points
in a high-dimensional space can be embedded into a space of much lower
dimension in such a way that (Euclidean) distances between the points
are nearly preserved. A disadvantage of the random projection method is
that the output leaks information about specific components of the input,
which can lead to privacy problems.

� Sparse coding with ambiguization.
This approach also applies random projections, but without the dimen-
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sional reduction. The result of the projections is quantized in such a way
that a vector is obtained that contains mostly zeroes. Finally artificial
noise is added [72] to obfuscate the input values. This approach has been
proposed very recently. It is not yet known how well specific components
of the input are protected.

� Cancellable biometrics.
Cancellable biometrics [70] refers to an irreversible transform that alters
the input. If a template is compromised, a new template can be re-
generated from the same biometrics. A disadvantage is that during the
transform a significant amount of information is lost. Some types [67], [68]
of cancellable biometrics use the random projections method with a secret
projection matrix; this requires a shared secret, which falls outside the
standard attacker model.

The above mentioned privacy-preserving techniques are summarized in
Table 1.1.

Table 1.1: Comparison of privacy-preserving techniques
Approach Advantages Disadvantages
Cancellable
biometrics New template can be re-generated Information is discarded;

Requires token/shared secret

Homomorphic
encryption

Provides privacy even for
compromised biometrics;
Secure even for low-entropy key

High computational complexity;
Communication overhead

Locality-sensitive
hashing Low computational complexity Unknown security of the system

Sparse coding
with ambiguation Low computational complexity Unknown privacy

Helper Data
System +OWF

Only noise pattern is leaked;
Precisely known security level Requires error-correction codes

A biometric authentication system should tolerate noise, have a low compu-
tational complexity, and store the enrollment data in a secure way. If emphasis
is put on discarding as little information as possible (because fingerprints
does not have much entropy), low computational complexity, and well un-
derstood security level, then the Helper Data System approach scores highly.
This thesis focuses on the HDS approach.

Helper Data Systems.

Functionality. The Helper Data approach was introduced in [22,24,47,54].
A HDS in its most general form is shown in Fig. 1.1. The Gen procedure takes
as input a measurement X. Gen outputs a secret S and (public) Helper Data W.
The helper data is stored in insecure memory. In the reproduction phase, a
fresh measurement Y is obtained. Typically Y is a noisy version of X, close to X
(in terms of e.g. Euclidean distance or Hamming distance) but not necessarily
identical. The Rep procedure takes Y andW as input. It outputs Ŝ, an estimate
of S. The scheme has two requirements: it is infeasible for an attacker to learn
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S (concealing), and Ŝ should equal S with high probability (binding). If W
leaks nothing about S then the HDS is called a Zero Leakage HDS (ZLHDS).

Two special cases of the general HDS are the Fuzzy Extractor (FE) and the
Secure Sketch (SS) introduced in [24]. A FE extracts nearly uniform randomness
S from its input X. Thus, S can be used as a key in any cryptographic application.
The Secure Sketch has S = X. If X is not uniformly distributed, then S is not
uniform. The SS is suitable for privacy-preserving biometrics; high entropy of
S (given W) is required, but not uniformity.

X

Y

Gen

Rep

S
(not necessarily
uniform)

Ŝ

W

Figure 1.1: Data flow in a generic Helper Data System.

z
Gen 1 Gen 2 G

X X(1) S

Rep 1Y Rep 2 G ?
=

Y(1) Ŝ

Enrollment
Verification

Accept/
Reject

Stage 1 HDS Stage 2 HDS

fW W

G(Sjjz)

G(Ŝjjz)

Figure 1.2: Two-stage Helper Data System with one-way function G.

Two-stage architecture. A HDS for a continuous source consists of two stages
(see Fig. 1.2).

At the first stage quantization is performed. For this step discrete helper
data [96] and continuous helper data [19] were proposed. An example of
quantization in [19] is depicted in Fig. 1.3.

The range of X is divided in N intervals corresponding to S (the division
does not have to equiprobable). Each interval is divided in M equiprobable
regions which determine the helper data (In the figure N = 4, M = 3). The
value of S and W follow from X by determining in which interval X lies. Given
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Figure 1.3: Quantization intervals and helper data regions.

X, we obtain a secret and a helper data. The helper data W, leaks nothing
about the secret. During the reconstruction one looks for the interval closest to
Y that has correct W. It is intuitively clear why such a HDS has good security.
The secret S can be thought of as the most significant digits of X and the helper
data W as the least significant, noisy digits. On one hand, the equiprobable
intervals ensure the W leaks nothing about S. On the other hand, by revealing
W one reveals information that mostly consists of measurement noise and thus
does not pose a privacy risk.

The helper data reduces the discretization errors. However, some noise still
may be present. An error-correction code (ECC) is applied at the second stage.
The commonest approach is a Code-Offset Method (COM) [47] which utilizes a
linear binary error-correction code. The COM in its simplest form functions
as a Secure Sketch. The syndrome-only COM works as follows. Let X(1) be a
binary string. Let Syn and SynDec be the syndrome encoding and decoding
functions of the code. The helper data is simply the syndrome of the noisy
string.

W = Syn(X(1)); Ŝ = Y(1) � SynDec(W� Syn(Y(1))). (1.1)

Intuitively the syndrome of X(1) can be thought of as the least significant digits
of X(1). The syndrome of X(1) inevitably leaks some information about X(1).
If the COM needs to be deployed as a Fuzzy Extractor, a secure key can be
derived from X(1) by using privacy amplification [8].

Fixed-length representations. The usage of an error correcting code requires
a fixed-length representation of biometrics. This is not an easy task since
fingerprint minutiae (see Chapter 3), a widely used local feature for verification
and identification, tend to appear/disappear. Several attempts have been made
to come up with a fixed-length representation, for example [27], [45], [102], [64].
Most of the representations produce binary data, which is sub-optimal for the
HDS approach, since it does not allow us to utilize a first stage HDS. A very
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useful fixed-length representation called spectral minutiae was developed by Xu
et al. [102]: a Fourier-like spectral function is built up on a fixed grid, in such a
way that each detected fingerprint minutia contributes to the function. Their
approach obtains translation invariance by taking the absolute value of the
Fourier transform, discarding significant amount of information. Additionally
the approach requires multiple rotations of the verification image to optimize the
matching procedure. This increases the complexity of the template protection
scheme.

1.1.3 –Physically Obfuscated Keys. As mentioned before this thesis is fo-
cused on key storage application by using PUFs. Similarly to humans some
(electronic) devices have their own ’fingerprints’, which are the unique noisy
properties from steps in the manufacturing process that are uncontrollable.
These unique properties are called Physical Unclonable Functions (PUF). The
notion of PUF was introduced in [66]. A PUF is a physical structure that con-
sists of many random, uncontrollable components. One is looking for physical
structures with the following useful properties: 1) It is easy to measure the
response of PUF given the stimulus (usually called challenge) 2) Given the
challenge, the response is unpredictable. An attacker, not having the PUF at
hand, should have a significant amount of uncertainty about the response of
a PUF to a given challenge. 3) Physical unclonability. The PUF is very hard
to reproduce even by the manufacturer. 4) Read-proof. Measurements (both
destructive and non-destructive) must not reveal accurate information about
the composition of the physical structure. 5) Tamper evidence. When the PUF
is attacked in an invasive way, the PUF will be damaged to such an extent that
its challenge-response behavior drastically changes. 6) Integration. Preferably
the PUF is inseparably bound to the device it is meant to protect.

Numerous PUF-like constructions have been developed [12, 30, 37, 66, 92],
[20], [41], [98], [55], [38], [36], [53], [34], [52], [85], [57]. Only optical PUFs
have most of the desirable properties. However, the name PUF is used for any
construction that has a subset of these properties. There are also practicality
requirements for a PUF in order to be really useful. The PUF should be cheap
and easy to integrate into the production process of a device. Finally, the PUF
needs to be very robust to various environmental changes such as temperature
and humidity.

Various applications have been proposed for PUFs: anti-counterfeiting,
device authentication, tamper protection, and key storage. We will concentrate
on the key storage, i.e. Physically Obfuscated Keys. Of the above list of
desirable PUF properties, POKs require only ease of readout, unpredictability,
read-proofness and integration. Several PUF types are suitable for building
POKs that are integrated with electronics.

� Coating PUF [92] is an IC covered with an opaque layer that contains a
random mixture of particles with different dielectric properties. The PUF
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readout is a capacitance measurement of the bottom side of the coating.
The coating is chemically inert offering strong protection against physical
attacks. Damage to the coating results in a noticeable change of the PUF
properties.

� Delay-based PUFs [30] such as Arbiter PUFs and Ring Oscillator PUFs [4].
The unique property is the delay time which occurs when a signal is
sent through a series of components. In the Arbiter PUF a signal is sent
through two different configurable paths. There is one output bit, which
signals which path is fastest. In the RO PUF the signal is looped back
from the output to the input, and the oscillation time constitutes the
PUF output.

� Memory-based PUFs such as SRAM (Static RAM) PUFs [35] and DRAM
(Dynamic) PUFs [50]. The unique property in SRAM PUFs is the startup
value of memory cells; in DRAM PUFs it is the speed at which memory
cells lose their electric charge.

There are strong similarities between the data processing of biometrics and
POKs. As with biometrics, there is an enrollment phase and a verification
(reconstruction) phase. Biometrics and POKs both need a HDS. In the case of
POKs this is not for privacy but for security reasons: the cryptographic key
has to be secure even when the adversary has access to the helper data. Some
POKs (e.g. Coating, Ring Oscillator, Optical, DRAM) have an analog response,
thus a two-stage helper data system is required. Other POKs (e.g. SRAM)
have a binary response, and there is only need for a 1st-stage HDS.

There are also notable differences between POKs and biometrics. Perhaps
the most important difference, from a security point of view, is that it is much
easier to keep POK keys secret than biometric data. A POK can be embedded
in an electronic device that controls access to the POK, but a biometric feature
of the body is always vulnerable to surreptitious measurements by attackers. It
makes perfect sense to derive secret keys from PUF responses, whereas doing
such a thing with biometric data is perilous. Furthermore, if biometric data
is stolen, one cannot re-issue a new body part; re-issuing a new POK, on the
other hand, is feasible. Another important difference is that, obviously, a person
always has direct access to his biometric, whereas a POK can be left behind.
For these reasons, POKs can be used in many more (cryptographic) applications
than biometrics.

1.1.4 –Outsourcing of the error correction. The device that performs the
biometric verification or the POK key reconstruction is often considered to
be resource-constrained, e.g. a smartcard. The bottleneck of the HDS is
the computationally expensive ECC decoding step (Syndrome decoding in
Eq. 1.1). An elegant solution was proposed in [39], where it was shown how
the decoding can be securely outsourced to a more powerful second party. The
string W � Syn(Y(1)) can be communicated to the other party, which then
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performs the decoding and sends back the error pattern. An eavesdropper learns
only the error pattern. This trick is known as ‘Reverse Fuzzy Extractor’. The
most difficult HDS task for the constrained device is now merely to compute a
syndrome, which can be done very efficiently.

1.2—Challenges
My PhD research was done in the ESPRESSO project (Efficient and Strong

template PRotection by enabling Secure Sketch On-card). The aim of this
project was to develop good HDS algorithms for fingerprint matching. Because
of the similarity between biometrics and POKs this meant in practice that I
was working on HDS algorithms in general. In fingerprint template protection
and POKs there are numerous technical challenges that have to be addressed.
Low entropy of fingerprints.
In the HDS approach, a one-way hash function is computed of the error-corrected
biometric. The input of the hash function should have high entropy, otherwise
the brute force attack is possible to guess the ’secret’. In principle biometrics
contain a lot of information. However, this information can be reproducibly ac-
quired only if the measurements take place in a precisely controlled environment.
When the capture of biometric data is automated or unsupervised, the reliably
extractable information (mutual information) is much less, e.g. less than 40 bits
for fingerprints [91] or even less than 20 bits [95]. Since this is not secure we
need to (1) combine multiple fingers (2) extract as much information as possible
per finger. This problem has to be addressed already at the preprocessing step,
i.e. before applying the first-stage HDS. Furthermore the HDS itself must also
not waste entropy.
High bit error rate.
Fingerprint images are inherently noisy. This is caused by poorly controlled
finger alignment and pressure, differences in sensors, dirt etc. The noise generates
challenges at every stage of template protection scheme. In particular the 1st
stage HDS outputs a string that is short and has a high Bit Error Rate (BER).
Thus the 2nd stage HDS needs a good ECC which is capable of handling the
high BER while still having a good code rate, even for short codewords.
Appearance/disappearance of minutiae.
A minutia is a special point in a fingerprint, such as an ending or bifurcation of
a ridge, or a small isolated ridge. The measurement noise can cause the number
of detected minutiae to be different on every image capture. At the same
time, an error-correction code requires input to have a fixed length. It is not
straightforward to transform a list of minutiae into a fixed-length representation
in such a way that the appearance/disappearance of minutiae has only a minor
effect on the fixed-length output.
Data dependent noise.
The idea of the Reverse Fuzzy Extractor (outsourcing the error correction)
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works perfectly if the noise leaks nothing about the original data. However in
the real life problems the noise can be data dependent. This leads to potential
security issues. For example for RO PUFs after observing one error pattern an
attacker learns 2% of all information about the source and 21% after observing
ten error patterns (Chapter 5). There is no way to upper bound the leakage
if there is no a priori upper bound on the number of observations that the
adversary can do.
PUF drift.
Experiments have shown that some PUFs are prone to drift. Thus, the PUFs
become recognizable when the Reverse Fuzzy Extractor is used. This has an
impact on privacy. Additionally the POK reconstruction will fail after certain
amount of drift.

1.3—Research questions
My research was focused on the following questions.

Research Question 1. Can we maximize the entropy extracted by a Zero Leakage
Helper Data System quantizer for a given source distribution and noise
level?

Research Question 2. Can we construct a high-performance HDS based on
fingerprint minutiae? Here high performance means high accuracy of the
matching decision as well as fast processing.

Research Question 3. Is it feasible to use the Reverse Fuzzy Extractor trick
when the noise is data dependent and the POK has drift?

These questions were motivated by the objectives of the project in combination
with the technical challenges discussed in Section 1.2.

1.4—Contributions
To address Research question 1 we have optimized the zero leakage schemes
developed in [97], [19]. In [97] zero leakage property was introduced and discrete
helper data was introduced having the zero leakage property. This scheme has
equiprobable secret S and equiprobable helper dataW (see Fig. 1.3). In [19] the
number of quantization intervals of W is sent to infinity, providing continuous
W. Here the subdivision of S-regions needs to remain equiprobable, but the
scheme also works for non-uniform S. In [19] S-regions have not been optimized.
We have performed the optimization of the quantization, i.e. the choice of
S-intervals. We characterized the performance of a HDS as the number of secret
bits that can be consistently reconstructed from the source (mutual information).
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We worked under the following conditions: i) W is continuous and satisfies
zero leakage property. ii) Not necessarily uniform S. Our results show that
optimization of the quantization intervals brings marginal improvement when
the signal to noise ratio is either very low or very high. At an intermediate
level of noise the improvement in terms of mutual information is a few percent
(up to 7%) but the bit error rate can be reduced by as much as 50%. This has
practical impact on performance of real-life error-correcting codes. The result is
generic and not limited to biometrics only. This work led to the publication [81]
(Chapter 2).

To address Research question 2 we have (a) introduced new fixed-length
representations for fingerprint minutia sets; (b) built and tested a two-stage
HDS with highly efficient error correction in the 2nd stage.
Inspired by Xu et al’s spectral function approach [105], [106], we introduced
a new fixed-length representation of fingerprint minutiae. The representation
is based on coordinate differences between pairs of minutiae. By working
with coordinate differences we immediately obtained a translation-invariant
representation. In comparison to Xu et al., we achieved similar recognition
performance before discretization, but with smaller template size, which makes
our approach faster and more practical. Also we noticed that, in contrast to
Xu et al., trying multiple rotations of the verification image does not have
much impact on the recognition performance. Thus the rotation step can be
skipped, which leads to a further speed-up. This work led to the publication [82]
(Chapter 3).
We have built a two-stage helper data system from the above mentioned spectral
function representations, combined with a zero leakage quantization scheme
and the Code Offset Method. We have introduced an enrollment method
that we call ’superfinger’, in which we average the spectral functions from
multiple enrollment images. We have used the results of [81] to choose the
best number of quantization intervals. Due to the low signal-to-noise ratio,
two quantization regions (binarization) is the optimum. We have tested the
recognition performance for various choices of system parameters at every
step of the data processing. We evaluated the recognition performance of the
system by making ROC curves and extracting from them Equal Error Rates.2
For our purposes the best choice of an ECC turned out to be Polar Codes,
because of short codeword length and high bit error rate that can be corrected.
Polar codes are low-complexity capacity-achieving codes with flexible rate. By
combining three enrollment images and constructing a polar code specifically
tuned to the individual bit error rate of each bit position, we achieve an EER

2A Receiver Operator Characteristic (ROC) curve plots the False Accept Rate (FAR)
versus the False Reject Rate (FRR). Each value of the decision threshold gives a point on the
curve. The Equal Error Rate (EER) is the point where FAR=FRR.



1.4. CONTRIBUTIONS 13

of around 1% for a high-quality fingerprint database, and around 6% for a low-
quality database. This is not as good as the EER of state-of-the-art matching
without privacy protection, but similar to other work on protected templates.
We see that at the optimal configuration the performance degradation with
respect to unprotected minutiae sets is caused mainly by the step that maps the
minutiae set to spectral function. The step from unprotected spectral function
to HDS-protected spectral function is almost ‘for free’ in the case of high quality
fingerprints. This work led to the publication [83] (Chapter 4).
Our work has shown that it is feasible to construct a fast two-stage HDS
for fingerprint matching. The matching performance is not as good as for
unprotected templates. Multiple fingers are needed for security as well as for
obtaining EERs well below 1%.

To address Research question 3 we introduced two modifications to the Reverse
Fuzzy Extractor scheme which together eliminate both leakage problems, leakage
about POK keys due to data-dependent noise and identifiability of POKs due
to drift.

� Adding asymmetric artificial noise that turns the asymmetric noise channel
into a symmetric channel. Due to the resulting symmetry the leakage is
entirely eliminated: the error pattern no longer reveals anything about
the POK value. Of course, the introduction of artificial noise leads to a
loss of channel capacity. This loss is around 30% in the worst case that
we encountered. It is entirely feasible to cope with such losses.

� A separate buffer that stores recent error patterns and the estimated drift
in the prover device. The POK device keeps track of the computed error
pattern over time. If the error pattern exhibits behavior constant in time
(drift), the device modifies the stored helper data to compensate the drift.
Thus the future error pattern will not reveal the drift. This solves the
privacy problem.

This work led to the publication [77] (Chapter 5).
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Figure 1.4: Relationship between the topics discussed in this thesis. The shading
indicates what is covered in each chapter.



List of abbreviations and symbols

Notation Meaning
A� quantization intervals at enrollment
f probability density function
F cumulative density function
G hash function

I(X; Y) mutual information between random variables X and Y
Lx(q,!) spectral function
Lx�(q,!) spectral function
Mx(q,R) spectral function
Mx�(q,R) spectral function

N number of quantization intervals
p� Pr[S = �]
Rab Euclidean distance between a-th and b-th minutia
S secret
Ŝ reconstructed secret
V zero-mean additive noise
W one-dimensional discrete helper data
fW quantile helper data, fW 2 [0, 1)
W helper data vector, W 2 f0, 1g�

xa = (xa, ya) minutia location
X enrollment measurement
Y reconstruction measurement
Z number of minutiae found in a fingerprint

�a, �b invariant angles for a minutiae pair
� angle of image rotation
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�a minutia orientation
� attenuation parameter in the noise model
�s, ew mapping of (s, ew) to x-axis
�(A,B) Pearson correlation between random variables A and B
�A standard deviation of a random variable A
��, ew reconstruction boundary for �-th interval given helper data ew
�ab angle between a-th and b-th minutiae

� the left boundary of the quantization interval A�
BAC Binary asymmetric channel
BSC Binary symmetric channel
BER Bit error rate
COM Code-offset method
ECC Error correction code
EER Equal error rate
FAR False acceptance rate
FE Fuzzy extractor
FRR False rejection rate
HDS Helper data system
POK Physically Obfuscated Key
PUF Physical unclonable function
ROC Receiver operating characteristic
SS Secure sketch

ZLFE Zero leakage fuzzy extractor
ZLHDS Zero leakage helper data system
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Chapter 2

Optimized quantization in Zero
Leakage Helper Data Systems

In this chapter we ask how to maximize the entropy extracted by a ZLHDS
quantizer for a given source distribution and noise level (Research question 1).
We optimize the scheme by deviating from equiprobable quantization bound-
aries. We derive analytical expressions for the mutual information between the
original and the reconstructed secret given the helper data. The expressions
depend on the number of quantization intervals, the signal-to-noise ratio, source
and the noise distribution. It turns out to be a nontrivial optimization problem
which does not have an analytical solution, due to the large amount of cross
dependencies between variables that we are dealing with and intractable expres-
sions. Every parameter choice needs a separate numerical optimization, which
means large amount of numerics has to be done to perform a complete analysis
of the approach. The results show that the optimized quantization is able to
extract more ’useful’ information than the equiprobable ZLHDS and lowers the
bit error rate at reconstruction.

2.1—Introduction

2.1.1 –Helper Data Systems. Security with noisy data is the art of reproducible
extracting secret data from noisy measurements on a physical system. The two
main applications are read-proof storage of cryptographic keys using Physical
Unclonable Functions (PUFs) [9,33,56,75,89,90] and privacy-preserving storage
of biometric data. Power-off storage of keys in digital memory can often be
considered insecure. (For instance, fuses can be optically inspected with a
microscope; flash memory may be removed and then read digitally.) PUFs
provide an alternative way to store keys, namely in analog form, which allows
the designer to exploit the inscrutability of analog physical behavior. Keys
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stored in this way are referred to as Physically Obfuscated Keys (POKs) [29].
In both the biometrics and the PUF/POK case, one faces the problem that
some form of error correction has to be performed, but under the constraint
that the redundancy data (which is visible to attackers) does not endanger
the secret. This problem has been addressed by the introduction of a special
security primitive, the Helper Data System (HDS). A HDS in its most general
form is shown in Fig. 1.1. The Gen procedure takes as input a measurement X.
Gen outputs a secret S and (public) Helper Data W. The helper data is stored.
In the reproduction phase, a fresh measurement Y is obtained. Typically Y is a
noisy version of X, close to X (in terms of e.g. Euclidean distance or Hamming
distance) but not necessarily identical. The Rep procedure takes Y and W as
input. It outputs Ŝ, an estimate of S. If Y is not too noisy then Ŝ = S.
Two special cases of the general HDS are the Secure Sketch (SS) and the Fuzzy
Extractor (FE) [24]. The Secure Sketch has S = X (and Ŝ = X̂, an estimator
for X). If X is not uniformly distributed, then S is not uniform. The SS is
suitable for privacy-preserving biometrics, where the stored biometric enrollment
data is a cryptographic hash of X, just like hashed storage of passwords; high
entropy of S (given W) is required, but not uniformity. The Fuzzy Extractor is
required to have a (nearly) uniform S given W. The FE is typically used for
extracting keys from PUFs and POKs. Note that there is a generic construction
to obtain a FE from a SS: privacy amplification on X by applying a suitable
information-theoretic hash function. This can be either a Universal Hash
Function (UHF) [15,48,84] or, more sophisticatedly, a q-wise independent hash
function. UHFs have the advantage of being simple to implement and providing
information-theoretic security guarantees for all applications of the extracted
key; however, they waste a lot of source entropy. Key derivation with q-wise
independent hash functions can be done almost without any entropy loss [23] but
gives information-theoretic guarantees only for ‘unpredictability applications’,
which include signatures, Message Authentication Codes and keyed hashing.
In this paper we consider the general HDS case: S 6= X and S is not necessarily
uniform. The general HDS is of particular interest when X is a continuum
variable: (i) The least significant digits of X are not interesting for key extraction
and (ii) In view of the excellent performance of q-wise independent hashes [23]
it is best to first extract from X a non-uniform high-entropy discrete secret and
then compress it to make it more uniform.

2.1.2 – Zero Leakage quantization. In the biometrics case and in several PUF/POK
scenarios the raw measurement data X is analog or nearly analog. A typical HDS
then consists of two stages. The first stage is a HDS that maps the continuous
X to a discrete space, i.e. it discretizes (quantizes) X. The second stage is a
HDS acting on a discrete source, e.g. the Code Offset Method [7, 22, 24, 47, 99].
Both stages make use of helper data, and in both stages one has to worry about
leakage.
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In the fist stage it is possible to make a construction such that W leaks nothing
about S. Intuitively speaking, W contains the ‘least significant bits’ of X, which
are noisy, while S contains the ‘most significant bits’. A HDS that achieves
independence of S and W is called a Zero Leakage HDS (ZLHDS).
Verbitskiy et al. [96] introduced a Zero Leakage Fuzzy Extractor (ZLFE) for
X 2 R.1 They divided the space R into N intervals A0, . . . ,AN-1 that are
equiprobable in the sense that Pr[X 2 Aj] = 1=N for all j. At enrollment, if
X lies in interval Aj then S is set to j. For the helper data they introduced a
further division of each interval Aj into m equiprobable subintervals (Ajk)m-1

k=0 .
If the enrollment measurement X lies in interval Ajk then the index k is stored
as helper data. The fact that all these subintervals are equiprobable leads to
independence between the helper data and the secret.
De Groot et al. [19] took the limitm!1 and showed that the resulting scheme
is not just a ZLFE but the generic best performing ZLFE for X 2 R; other ZLFEs
for X 2 R can be derived from the generic scheme. Furthermore, de Groot et
al. generalized the scheme of [96] from ZLFEs to general ZLHDSs by allowing
intervals A0, . . . ,AN-1 that are not equiprobable. Several questions were left
open regarding the Rep procedure in general ZLHDSs and the performance of
ZLHDSs compared to ZLFEs.
2.1.3 –Contributions and outline. We investigate ZLHDSs for X 2 R.

� First we derive an optimal Rep procedure that minimizes the probability
of reconstruction errors. We obtain analytic formulas for Gaussian noise
and Lorentz-distributed noise.

� Using this Rep procedure we study the performance of ZLHDSs compared
to ZLFEs. We define performance as the mutual information between
S and Ŝ conditioned on the fact that the adversary knows W. This
mutual information I(S; ŜjW) represents the maximum amount of secret
key material that can be extracted from X using a ZLHDS. It turns out
that the intricacies of the Rep procedure cause the mutual information to
become a very complicated function of the choice of quantization intervals
A0, . . . ,AN-1. We have to resort to numerics. Our numerical results
for Gaussian source and Gaussian noise show that optimization of the
quantization intervals yields an improvement with respect to the ZLFE
in terms of mutual information as well as reconstruction error probability.
In most cases the gain in I(S; ŜjW) is modest (a few percent), but the
reduction of the error rate can be substantial. We conclude that in practice
it is better to use a ZLHDS than a ZLFE.

In Section 4.3 we introduce the notation used in this paper and give a rather
long summary of the results of de Groot et al. [19]. In Section 2.3 we derive the

1A high-dimensional measurement is usually split into one-dimensional components, e.g.
using Principal Component Analysis or similar methods. A HDS is then applied to each
component individually. The results are combined and then serve as input for the 2nd stage.
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optimal Rep procedure and provide analytic expressions (as far as possible) for
the mutual information and the error rate. Section 2.4 presents the numerical
results for Gaussian X and Gaussian noise.

2.2—Preliminaries

2.2.1 –Notation and terminology. We use capital letters to represent random
variables, and lowercase letters for their realizations. The input and output
variables of the HDS are as depicted in Fig. 1.1. Sets are denoted by calligraphic
font. The set S is defined as S = f0, . . . ,N - 1g. For � 2 S we define p� =
Pr[X 2 A�]. The expected value with respect to a random variable Z is denoted
as Ez. The mutual information (see e.g. [18]) between X and Y is denoted
as I(X; Y), and the mutual information conditioned on the third variable Z as
I(X; YjZ). The probability density function (pdf) of the random variable X 2 R
in written as f(x) and its cumulative distribution function (cdf) as F(x).
2.2.2 – Zero Leakage definition. For technical reasons, de Groot et al. used the
following definition of the Zero Leakage property.

Definition 2.1 (Zero Leakage). Let W 2 W. We call a HDS a Zero Leakage
HDS if and only if

8V�W Pr[S = sjW 2 V] = Pr[S = s]. (2.1)

The property (2.1) implies I(W;S) = 0.
2.2.3 –Noise model. We adopt the noise model from [19]. The X and Y are
considered to be noisy versions of an underlying ’true’ value. Without loss of
generality X is taken to have zero mean. The standard deviations of X, Y 2 R
are denoted as �X and �Y respectively. The verification sample Y is related to
the enrollment measurement as Y = �X+ V , where � 2 [0, 1] is the attenuation
parameter and V is zero-mean additive noise, independent of X. We have
�2Y = �2�2X + �2V . The correlation between X and Y is

� def=
E[XY] - E[X]E[Y]

�X�Y
= �

�X
�Y

, (2.2)

with � 2 [-1, 1]. The relation between �, �,�X, and �V is given by �2 = �2
1-�2

�2V
�2X

.
Two special cases are often considered:
Perfect enrollment. During enrollment there is no noise. The X equals the
‘true’ value. In this situation it holds that �2Y = �2X + �2V and � = 1.
Identical conditions. The amount of noise is the same during enrollment and
reconstruction. In this situation it holds that �2Y = �2X and �2 = �2 = 1-�2V=�

2
X.

The pdf of Y given X = x is denoted as  (yjx) = v(y - �x). The noise is
considered to be symmetric and fading, i.e. v(-z) = v(z) and v(z) is a decreasing
function of jzj. The cdf corresponding to v is denoted as V.
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2.2.4 –The ZL scheme of [19]. The helper data is considered to be continuous,
W 2W � R, and without loss of generality de Groot et al. set W = [0, 1). The
left boundary of the quantization region A� is denoted as 
�, � 2 S. (See
Fig. 2.1.) It holds that


� = Finv

 
�-1X

i=0

pi

!

, (2.3)

where Finv stands for the inverse function of F. Note that 
0 = -1. The Gen
procedure is written as s = Q(x), w = g(x), where the Q and g functions are
given by

Q(x) = maxf� 2 S : x > 
�g; g(x) = F(x)-F(
Q(x))
pQ(x)

= F(x)-
PQ(x)-1
i=0 pi

pQ(x)
.(2.4)

The relation between x, s and w can be written in a more friendly form as

F(x) = F(
s) +wps =
s-1X

i=0

pi +wps. (2.5)

The thus defined ew 2 [0, 1) is called quantile helper data since it measures which
quantile of the probability mass ps is located between F(
s) and x. It was
shown that the random variable W, given S, has a uniform pdf. Consequently
the scheme is a ZLHDS.
The mapping of x to (s, ew) is a bijection. For the mapping of (s, ew) to x the
following notation is used,2

�s, ew
def= Finv(

s-1X

i=0

pi + ewps). (2.6)

In the case of the Fuzzy Extractor (p� = 1=N for all � 2 S) the optimal
reconstruction procedure was found to be the following maximum-likelihood
’decoder’,

ŝ = RepFE(y, ew) = arg max
�2S

 (yj�� ew). (2.7)

Eq. (2.7) can be conveniently implemented by defining decision boundaries
(�� ew)N�=0. If y 2 [�� ew, ��+1, ew), then ŝ = �. In the case of symmetric fading
noise the location of the decision boundaries dictated by (2.7) was found to be

�FE
� ew = �

��-1, ew + �� ew
2 . (2.8)

Here one has to read �-1, ew = -1 and �N ew = 1, resulting in �0 ew = -1,
�N ew = 1. Fig. 2.2 shows how to intuitively understand (2.8). Each pdf

2We often omit the comma and write �s ew.
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Figure 2.1: Illustration of the quantization boundaries 
� and regions A�.

 (yj�� ew) in (2.7) is centered around y = ��� ew and drops off symmetrically.
The crossing point where one �-value becomes more likely than another lies
exactly halfway between the centers of two neighboring pdfs; such a crossing
point is a decision boundary.

y
���-1, ew ��� ew ���+1, ew

�� ew ��+1, ew

 (yj��-1, ew)
 (yj�� ew)

 (yj��+1, ew)

Figure 2.2: Visual representation of the decision boundaries for the reconstruc-
tion phase.

2.3—Optimization of the general ZLHDS
In this section we extend the results of de Groot et al. [19]. We generalize
equations (2.7) and (2.8). Then we derive analytic expressions for I(S; ŜjfW) and
the reconstruction error probability Perr in terms of the scheme’s parameters.
We also discuss the relation between Perr and the bit error rate.
2.3.1 – ZLHDS reconstruction. For the sake of completeness we explicitly show
that fW given S = s is uniform. (This fact was implicit in [19] and was not
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separately stated.)

Lemma 2.2. The probability density function of the helper data fW given the
secret S is uniform.

Proof. For the pdf of fW given S = � we write �(ewj�). We start from
p��(ewj�)dew = f(�� ew)d�� ew. The validity of this equation is readily ver-
ified. Applying

R1
0 to the left hand side yields p� by definition; on the

right hand side the equivalent operation is integration over �� ew on the in-
terval A�, which also yields p�. Now we can write �(ewj�) = f(��fw)

p�d ew=d��fw

= f(��fw)
dF(��fw)=d��fw

= f(��fw)
f(��fw) = 1. In the second equality we used (2.5) with s = �

kept constant while ew varies.

Lemma 2.3. For the general HDS the optimal reconstruction procedure is given
by

ŝ = Rep(y, ew) = arg max
�2S

p� (yj�� ew). (2.9)

Proof. This is a slight modification of Lemma 4.1 in [19], with the same starting
point.

Rep(y, ew) = arg max
�2S

Pr[S = �jY = y,fW = ew]

= arg max
�2S

Pr[S = �, Y = y,fW = ew]
Pr[Y = y,fW = ew]

. (2.10)

Since the denominator does not depend on �, it can be eliminated.

Rep(y, ew) = arg max
�2S

Pr[S = �, Y = y,fW = ew]

= arg max
�2S

Pr[Y = yjS = �,fW = ew]�(wj�)p�.

Using Lemma 2.2 we get

ŝ = Rep(y, ew) = arg max
�2S

p�Pr[Y = yjS = �,fW = ew]. (2.11)

Since (�,w) uniquely defines �� ew, the probability Pr[Y = yjS = �,fW = ew]
equals Pr[Y = yjX = �� ew], for which the notation  (yj�� ew) is used.

From (2.9) we can derive an optimal placement of the boundaries �� ew for
general noise and general HDS.



2

24 CHAPTER 2. OPTIMIZED QUANTIZATION IN ZERO
LEAKAGE HELPER DATA SYSTEMS

Lemma 2.4. For a ZLHDS the reconstruction boundary �� ew obtained using
pdf intersections satisfies the following equation:

p�-1 (�� ewj��-1, ew) = p� (�� ewj�� ew). (2.12)

Proof. From Lemma 2.3 we see that the decision boundary is the point y where
the function p� (yj�� ew) intersects the function p�-1 (yj��-1, ew).

In the FE case, p�-1 = p� and (2.12) reduces to  (�� ewj��-1, ew) =  (�� ewj�� ew),
which directly yields (2.8). In the general HDS case, however, the difference
between the p� parameters changes the heights of the pdfs  (yj � � � ) in Fig. 2.2,
which leads to a more complicated solution for the decision boundaries.

Theorem 2.5. Let the noise be Gaussian with zero mean and variance �2V . Then
the intersection points as specified in (2.12) are given by

�� ew = �
��-1, ew + �� ew

2 +
�2V ln p�-1

p�
�(�� ew - ��-1, ew)

. (2.13)

Proof. The Gaussian noise is given by  (yjx) = 1p
2��V

e
- (y-�x)2

2�2V . Eq. (2.12)
then becomes

p�-1p
2��V

e
-

(��w-���-1,w)2

2�2V =
p�p
2��V

e
- (��w-���w)2

2�2V . (2.14)

Taking the logarithm on both sides of the equation yields a linear equation in
�� ew, with solution (2.13).

Theorem 2.6. Let the noise be Lorentz-distributed,  (yjx) = 1=�V
1+�2(y-�x)2=�2V

.
Let p� 6= p�-1. If the following condition holds

p�p�-1(���, ew - ���-1, ew)2 > �2V
(p� - p�-1)2

�2
, (2.15)

then the reconstruction boundary �� ew is given by

�� ew =
p�-1��� ew - p����-1, ew

p�-1 - p�

-

q
p�p�-1(��� ew - ���-1, ew)2 - �2V

�2 (p�-1 - p�)2

p�-1 - p�
. (2.16)

Proof. Substitution of the Lorentz distribution into (2.12) yields
p�

1 + �2�-2
V (�� ew - ��� ew)2

=
p�-1

1 + �2�-2
V (�� ew - ���-1, ew)2

. (2.17)
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Inversion of both sides of the equation gives a quadratic equation in �� ew. (If
p� = p�-1 then it reduces to a linear equation with (2.8) as the solution.) The
quadratic equation has solutions only if the discriminant is non-negative, which
is equivalent to the condition (2.15). Finally we have to choose the correct sign
preceding the square root of the determinant. We choose the sign in such a way
that ���-1, ew < �� ew < ��� ew. We verify as follows that (2.16) indeed satisfies
these inequalities. On the one hand, (2.16) can be written as

�� ew = ��� ew +
p��(�� ew - ��-1, ew) -

p
� � �

p�-1 - p�
. (2.18)

Note that �� ew - ��-1, ew > 0. If p�-1 > p� then the
p
� � � ‘wins’ and the

numerator of the fraction is negative, as it should be. If p�-1 < p� then the
denominator is negative and the

p
� � � ‘loses’, making the numerator positive.

On the other hand, (2.16) can also be written as

�� ew = ���-1, ew +
p�-1�(�� ew - ��-1, ew) -

p
� � �

p�-1 - p�
. (2.19)

If p�-1 > p� then the
p
� � � ‘loses’ and the fraction is positive. If p�-1 < p�

then the
p
� � � ‘wins’ and the fraction is again positive.

Remark. If one adopts (2.13) as decision boundaries, an incorrect reconstruction
procedure may result under some pathological circumstances. This can happen,
for example, if for some � it happens that p� � p�-1 and p� � p�+1; then in
Fig. 2.2 the middle curve is located beneath the intersection of its neighbors, and
ŝ cannot equal � even if s = �. In practice we will never see this pathological
case.

2.3.2 –Optimization of the quantization intervals. As announced in Section 2.1.3,
we want to maximize the amount of key material extracted from X by the ZL-
HDS. We have to take into account two effects: the noise, which limits how
much of the entropy of X can be recovered in the reconstruction phase, and
the fact that the adversary knows fW. The quantity of interest is the mutual
information between S and Ŝ given fW: I(S; ŜjfW). This represents the ‘secrecy
capacity’ or quality of the channel from S to Ŝ created by the ZLHDS. If a
perfect error correction mechanism is used as the second-stage HDS, i.e. one
that achieves the Shannon bound, then I(S; ŜjfW) is the achievable key length.
We note that even though H(SjfW) = H(S), we have I(S; ŜjfW) 6= I(S; Ŝ) because
Ŝ is not independent of fW.

Lemma 2.7. For a zero leakage helper data system the mutual information can
be expressed as

I(S; ŜjfW) = H(S) - H(SjŜ,fW) = I(S; Ŝ,fW). (2.20)
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Proof. We write I(S; ŜjfW) = H(SjfW) - H(SjŜ,fW). Due to the ZL property it
holds that H(SjfW) = H(S).

The mutual information I(S; ŜjfW) can be seen as a function of the system
parameters p0, . . . ,pN-1. These parameters completely fix the Gen and Rep
procedures. (The �, �X and �V are given by nature and cannot be chosen).
Hence we want to determine how to set vector (p�)�2S as a function of �, �X,
�V so as to maximize our target function. Unfortunately, I(S; ŜjW) depends
on the p� parameters in a very complicated way. The Gen is simple enough,
but the Rep procedure has decision boundaries �� ew (2.12) that depend on
p0, . . . ,pN-1 not only directly but also via the �� ew points as specified in (2.6);
this dependence is quite convoluted as the �� ew invoke the non-smooth step-wise
function Q as well as the nonlinear Finv. Analytic maximization of I(S; ŜjfW)
is intractable. It is clear, however, that a maximum must exist. Consider the
ZLFE at fixed N > 3. Not all intervals A� have equal width, which leads to
unequal probabilities for jumping from one interval to another due to noise.
Making the narrowest intervals slightly broader reduces the reconstruction error
probability (with a positive effect on our target function) and the entropy of S
(with a negative effect). It is intuitively clear that at large �V the effect of
reconstruction errors weighs more heavily than the H(S) effect; then we expect
a nontrivial maximum at a p� setting different from the FE’s p� = 1=N. The
numerics in Section 2.4 show that this is indeed the case.
For the efficiency of the numerical optimization we now look for a simple form
in which to represent I(S; ŜjfW). We introduce the following notation,

�ŝjs ew
def= Pr[Ŝ = ŝjS = s,fW = ew] =

Z�ŝ+1,fw

�ŝfw
 (yj�s ew)dy

= V(�ŝ+1, ew - ��s ew) - V(�ŝ ew - ��s ew). (2.21)

We can express the mutual information entirely in terms of the p� and �ŝjs ew
parameters.

Lemma 2.8. For the ZLHDS the mutual information can be written as

I(S; ŜjfW) =
N-1X

s=0

N-1X

ŝ=0

Z1

0
dew ps�ŝjs ew log

�ŝjs ew
PN-1
�=0 p��ŝj� ew

. (2.22)
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Proof.

I(S; ŜjfW) = Esŝ ew log Pr[S = s, Ŝ = ŝjfW = ew]
Pr[S = sjfW = ew]Pr[Ŝ = ŝjfW = ew]

= E ew

N-1X

s,ŝ=0

Pr[S = sjfW = ew]

�ŝjs ew log Pr[S = s, Ŝ = ŝjfW = ew]
Pr[S = sjfW = ew]Pr[Ŝ = ŝjfW = ew]

. (2.23)

In the last line we used the chain rule Pr[S = s, Ŝ = ŝ,fW = ew] = EwPr[S =
sjfW = ew]�ŝjs ew. Next we use E ew(� � � ) =

R1
0dew(� � � ) as implied by Lemma 2.2,

and Pr[S = sjfW = ew] = ps by the ZL property. Finally we apply these rules,
and Pr[Ŝ = ŝjfW = ew] =

P
s ps�ŝjs ew, inside the logarithm.

2.3.3 –Reconstruction errors. While we are mainly interested in the mutual
information, we also care about the practical implementation aspects of the
second-stage HDS. The second-stage HDS typically employs an Error-Correcting
Code (ECC). If the output of the first-stage HDS has a high bit error rate, this
causes problems for the ECC. In our numerics we keep track of the error rate.
We write Perr = Pr[Ŝ 6= Q(X)] for the overall probability that Ŝ is not equal to S.
This is an averaged quantity, i.e. averaged over X. For fixed x we have

Pr[Ŝ = Q(X)jX = x] = �Q(x)jQ(x),g(x). (2.24)

Averaging over x gives

1 - Perr = ExPr[Ŝ = Q(X)jX = x] = Ex�Q(x)jQ(x),g(x) =
X

s2S

ps
Z1

0
dew �sjs ew.

(2.25)
In the last step we used that x uniquely maps to (s, ew) = (Q(x),g(x)). Eq. (2.25)
together with (2.21) is the most convenient way to analytically express the
reconstruction error probability.
We consider the case where s is encoded as a Gray code. This is a well known
technique to reduce the number of bit flips when a reconstruction error occurs.
Table 2.1 lists the Gray code that we use. (Other, equivalent, encodings are
possible.) We will look at N 2 f3, 4, 5, 6g. The length of the Gray code is dlogNe
bits.
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Table 2.1: Three-bit Gray code used for N = 5 and N = 6. The highlighted cell
shows the two-bit Gray code that we use for N = 3 and N = 4.

The Bit Error Rate (BER) is given by

BER =
E[# bit errors]
dlogNe =

1
dlogNe

dlogNeX

t=0

t Pr[# bit errors = t]. (2.26)

We introduce the following notation,

�ŝjs
def= Pr[Ŝ = ŝjS = s] = E ew�ŝjs ew. (2.27)

All the probabilities in (2.26) can be calculated in terms of the �ŝjs probabilities.
The details are given in the Appendix.

2.4—Numerical results
We present numerical results for the optimization described in Section 2.3, for
N 2 f3, 4, 5, 6g. We consider a Gaussian source X and Gaussian noise. (This
is already a rather accurate model for Coating PUFs [89]). Without loss of
generality we set �X = 1. Only the ratio �V=�X matters. We consider the
two cases defined in Section 2.2.3: perfect enrollment and identical conditions.
We implemented (2.22) in Wolfram Mathematica 10.2 as a symbolic function.
We used the built-in function FindMaximum to obtain optimum values for
p0, . . . ,pN-1. In order to reduce the dimension of the search space we imposed
the symmetry pN-1-� = p� by hand.
Fig. 2.3 shows I(S; ŜjW) versus Perr for various �V .

� When �V is small, the optimum setting of the HDS is close to the FE
setting p� = 1=N, and it is clearly visible that increasing N has a very
large benefit for the mutual information.

� For somewhat larger �V , there is a clear difference between the optimized
HDS and the FE. For example, in the � = 1 graph at �V = 0.25 we see that
at N = 6 the transition from FE to HDS brings a modest improvement
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of the mutual information and a reduction of Perr from � 23% to � 10%.
The reduced Perr means that the ECC in the second stage is much easier
to implement for the HDS than for the FE.

� At �V > 0.5 the noise is so bad that the HDS and the FE perform almost
equally badly (though the HDS is always slightly better). Increasing N
improves the mutual information only slightly, and at the cost of a large
increase in Perr.

Fig. 2.4 shows the same data, but with the BER on the horizontal axis. The
‘zigzag’ at the transition from N = 4 to N = 5 occurs because the Gray code
jumps from a 2-bit representation of s to a 3-bit representation, with little noise
in the first of the three bits.

Fig. 2.5 shows the BER as a function of �V=�X. The curves for N = 4 and
N = 5 cross each other; this causes the ‘zigzag’ in Fig. 2.4. The graphs of Perr
as a function of �V=�X (Fig. 2.6) are much smoother. For completeness Fig. 2.7
plots the BER versus Perr. The relation is clearly nonlinear.

Fig. 2.8 shows the optimal values of p0, . . . ,pN-1 for the perfect enrollment
case (� = 1). At �V = 0 it holds that p� = 1=N for all �, which is the FE
configuration. When �V increases, the outer regions A0,AN-1 shrink while the
central region(s) become broader. Then at some point this trend reverses. At
very large �V the p� values stabilize, but not in the FE configuration.
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Figure 2.3: Mutual information versus Perr for perfect enrollment (upper figure)
and identical conditions (lower figure). At fixed �V , data points for the general
HDS are connected with a solid line, while a dashed line corresponds to the FE.
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Figure 2.4: Mutual information versus BER for perfect enrollment (upper figure)
and identical conditions (lower figure). At fixed �V , data points for the general
HDS are connected with a solid line, while a dashed line corresponds to the FE.
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Figure 2.5: Bit Error Rate as a function of the noise parameter �V=�X. Perfect
enrollment

Figure 2.6: Perr as a function of the noise parameter �V=�x. Perfect enrollment.
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Figure 2.7: BER versus reconstruction error probability Perr. Perfect enrollment.
At given �V , data points for the HDS are connected with a solid line, while a
dashed line corresponds to the FE.
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Figure 2.8: The p� values as a function of the noise parameter �V=�X, for
� = 1, N = 3, 4, 5, 6.
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2.5—Summary
We have extended the results of de Groot et al. [19] in the case of non-
equiprobable quantization intervals. Lemma 2.4 gives the recipe for finding
the optimal decision boundaries used in Rep. The result for Gaussian and
Lorentzian noise is given in Theorems 2.5 and 2.6.
We have studied the mutual information I(S; ŜjfW), which is an upper bound
on the amount of secret key material that can be robustly extracted from X.
The mutual information is most conveniently expressed in terms of the ps
and �ŝjs ew parameters (2.22). The dependence of the �ŝjs ew on p0, . . . ,pN-1

is so complicated that optimization of I(S; ŜjfW) cannot be done analytically.
The figures in Section 2.4 show the results of numerical optimization in a
simple model where the source and the noise are Gaussian. Such a model is
reasonably accurate for Coating PUFs. For every combination (N,�V=�X) the
optimized ZLHDS clearly performs better than the ZLFE in terms of both
mutual information and reconstruction error rate. The reduction in Perr is
substantial. This makes the design of a second-stage HDS much more practical,
since it makes is easier to implement an ECC that can cope with the bit errors
introduced by reconstruction errors.
As future work we will apply the numerical optimization to different source
distributions, matching e.g. biometric data.

Appendix: Bit error rates
We list expressions for the BER (2.26) in terms of the �ŝjs probabilities (2.27),
when the Gray code of Table 2.1 is used. We assume a symmetric source pdf
f and symmetric noise. As a result the optimal p� values have the symmetry
pN-1-� = p�, and there is a large number of symmetries between the ����
values, �N-1-ŝjN-1-s = �ŝjs.

N N�BER
3 2p0(�1j0 + 2�2j0) + 2p1�2j1
4 2p0(�1j0 + �3j0 + 2�2j0) + 2p1(�0j1 + �2j1 + 2�3j1)
5 2p0(�1j0 + �3j0 + 2�2j0 + 2�4j0) + 2p1(�0j1 + �2j1 + 2�3j1 + 3�4j1)

+2p2(�1j2 + 2�0j2)
6 2p0(�1j0 + �3j0 + 2�2j0 + 2�4j0 + 3�5j0)

+2p1(�0j1 + �2j1 + 2�3j1 + 2�5j1 + 3�4j1)
+2p2(�1j2 + �3j2 + 2�0j2 + 2�4j2)

The p-index in this table runs only to dN=2e- 1 because of the �$ N- 1 -�
symmetry; this also gives rise to the factor 2 in front of each p�. Inside the
parentheses, the numerical factor in front of each � indicates the number of bit
flips that occur due to that specific transition.
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Chapter 3

Minutia-pair spectral
representations for fingerprint

template protection

In this chapter we want to address the challenge of appearance/disappearance
of minutiae. As mentioned in Chapter 1 the number of detectable minutiae
is often different on every image. This is an important issue since we want to
provide template protection of fingerprints by using one-way hash functions.
This demands the use of an error-correction code, which consequently requires
a fixed-length representation. Generally speaking if one compares two images
of a finger, not only the number of minutiae is different, the images are usually
misaligned in terms of different rotation angle, scaling ratio, translation, etc.
This should be addressed already at the stage of fixed-length representation
(before quantization), since it is very hard to address the misalignment at the
later stages.

We introduce a spectral function based on minutiae pairs. By using minutiae-
pair approach translation invariance comes automatically. We do not have to
discard the phase information of the spectral function as Xu et al. to obtain
translation invariance. The initial idea was to take the absolute value of the
pair-wise spectral function in order to obtain complete translation, rotation
and scaling invariance. However this approach turned out to work badly in
practice even for good quality fingerprints. Since for most fingerprint databases
the scaling factor is close to one, we decided to neglect scaling and substitute
the radial function by a Gaussian kernel. The final representation is not
invariant under rotation and scaling; however, in practice modest rotation of
the verification image hardly affects the performance.
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3.1—Introduction

3.1.1 –Privacy-preserving storage of biometric data. Biometrics-based authen-
tication has become popular because of its great convenience. Biometrics cannot
be forgotten or accidentally left at home. While biometric data is not strictly
speaking secret (we are after all leaving a trail of fingerprints, DNA etc. behind
us), it is important to protect biometric data for various reasons, the most
important of which is privacy. Unprotected storage of biometric data would
reveal medical conditions and would allow for cross-matching entries in different
databases. Furthermore, large-scale availability of biometric data would make it
easier for malevolent parties to leave misleading traces at at crime scene. (E.g.
artificial fingerprints [61], synthesized DNA [28].)
One of the easiest ways to properly protect a biometric database against breaches
and insider attacks is to store biometrics in hashed form, just like passwords,
but with the addition of an error-correction step to get rid of the measurement
noise. To prevent critical leakage from the error correction redundancy data,
one uses a Helper Data System (HDS) [19,54,81], for instance a Fuzzy Extractor
or a Secure Sketch [14, 22,47].
A HDS typically makes use of an error-correcting code and hence needs a fixed-
length representation of the biometric. Such a representation is not straight-
forward when the measurement noise can cause features of the biometric to
appear or disappear, due to e.g. occlusion of iris areas or fuzziness of fingerprint
minutiae. A very useful fixed-length representation called spectral minutiae was
introduced by Xu et al. [102–105]. A Fourier-like spectral function is built up
on a fixed discrete grid, in such a way that each detected fingerprint minutia
adds a contribution to the function. Comparison of spectral functions is robust
against changes in the number of available biometric features.
3.1.2 –Contributions and outline. We have the following results regarding spec-
tral representations of fingerprint minutiae.

� We introduce spectral functions based on pairs of minutiae. By working
with coordinate differences we immediately obtain a translation-invariant
representation. Whereas Xu et al.’s spectral functions have to discard
phase information in order to achieve translation invariance, our method
retains phase information.

� We test our pair-based spectral minutiae matching technique on two
fingerprint databases. The achieved Equal Error Rate is comparable to
Xu et al.

� Our fingerprint matching is faster even though we have to sum over
minutia pairs instead of individual minutiae. The speedup is due to the
fact that we need fewer grid points on which to compute the spectral
function.

� A further speedup can be obtained by skipping one laborious step in the
verification procedure: rotating the fingerprint so as to obtain optimal
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alignment with the enrolled fingerprint. Skipping this step leads only to a
minimal penalty in terms of False Acceptance Rate and False Rejection
Rate.

In Section 4.3 we briefly review Helper Data Systems and spectral minutiae
functions. In Section 3.3 we discuss the drawbacks of Xu et al.’s spectral
minutiae technique. We introduce our minutia pair approach in Section 3.4,
and we study its fingerprint matching performance in Section 4.6. Section 3.6
discusses the computational efficiency of the verification procedure.

3.2—Preliminaries

3.2.1 –Notation and terminology. We denote the number of minutiae found in a
fingerprint by Z. The coordinates of the j’th minutia are xj,yj and its orientation
is �j. Let f be a function of two real-valued arguments. The two-dimensional
Fourier transform f̃ = Ff is defined as f̃(kx,ky) =

R1
-1f(x,y)e-ikxx-ikyydxdy.

The inverse relation f = F-1f̃ is given by
f(x,y) = ( 1

2� )2
R1

-1f̃(kx,ky)eikxx+ikyydkxdky.
The complex conjugate of z 2 C is written as z�. The hermitian conjugate My
of a matrix M is given by (My)ij = M�ji. The inner product of two complex
vectors u, v is hu, vi = uyv. The Pearson correlation coefficient of two length-
n vectors is defined as �(u, v) = 1

n h
u-uav
�u

, v-vav
�v
i, where uav = 1

n
P
i ui and

�2u = 1
n

P
i jui - uavj2.

We will use the abbreviations FR = False Reject, FRR = False Reject Rate,
FA = False Accept, FAR = False Accept Rate, EER = Equal Error Rate, ROC
= Receiver Operating Characteristic.
3.2.2 –Helper Data Systems. A Helper Data System (HDS) for a (possibly non-
discrete) source consists of two functions, Gen and Rep. Given an enrollment
measurement X of the source, Gen produces redundancy data W 2 f0, 1g� called
helper data and a secret string S. The helper data is stored. The storage is
considered insecure, i.e. attackers learn W. At some later time, a verification
measurement is performed, yielding outcome X 0 � X which is a noisy version
of X. The Rep function takes as input X 0 and W. It outputs an estimator Ŝ
which should equal S if the noise was not excessive. In a general HDS, there is
no constraint on the distribution of S. A desirable property is that S has high
entropy given W.
A HDS is the perfect primitive for privacy protection of biometric databases
against inside attackers and intruders, who typically obtain access not only to
stored data but also to decryption keys. The HDS creates a noiseless secret and
thus makes it possible to protect biometric secrets in the same way as passwords:
by hashing. For every enrolled user, the database contains W and a hash �(S).
In the verification phase, the hash of the reconstructed Ŝ is compared against
the stored �(S). Ideally, W contains just enough information to allow for the
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error correction, and does not leak any privacy-sensitive information about the
raw biometric X. Furthermore, if � is a properly chosen one-way function and
S has enough entropy given W, the hash value �(S) does not reveal S.
HDSs for discrete sources [7, 10, 14, 22, 47] and continuum sources [19, 54, 81, 96]
are a well studied topic. Typically a HDS uses an error correcting code, which
requires that the biometric measurement is turned into a discrete fixed-length
representation.
3.2.3 – Spectral representation of minutiae. Subsequent measurements of the
same finger may not always result in the same set of observed minutiae. This is
problematic if one needs a fixed-length representation of a fingerprint, e.g. when
a HDS is used. The technique of spectral minutiae was introduced by Xu et
al. [102,103,105] as a way to obtain a fixed-length representation. The set of
enrolled minutiae is turned into a function f�(x,y) on the xy-plane by summing
narrow Gaussian peaks (with width �) centered on the minutia locations; then
a translation-invariant expression g� is obtained by taking the absolute value
of the Fourier transform,

g�(kx,ky) = jf̃�(kx,ky)j = e-�
2

2 (k2x+k2y)

������

ZX

j=1

e-ikxxj-ikyyj

������
. (3.1)

In order to get an expression with simple behavior under rotation and scal-
ing, they sampled g� on a log-polar grid. Let kx(�,�) = e� cos� and
ky(�,�) = e� sin� where �,� are sampled with equal spacing. A matrix
G� is constructed as G��� = g�(kx(�,�),ky(�,�)). Under the combination

of scaling and rotation,
�xj
yj

�
7!
�

cos’ sin’
- sin’ cos’

���xj
�yj

�
for all j, the G� trans-

forms as G��� 7! G�=��+ln�,�+’. For small � it holds that �=� � � and hence the
transform is almost equal to a shift on the ��-grid.1 Xu et al. investigated
fingerprint matching in the spectral minutiae domain by looking at the Pearson
correlation between a freshly obtained G� and the enrolled G�. Their procedure
included a search to find values �,’ that maximize the correlation. It turned
out that in practice one can fix � = 1 and that the ’-search can be restricted
to the interval from -10� to +10�, in steps of 2�.
In order to extract more information from a fingerprint Xu et al introduced
a variant of the g� function which contains information about the minutia
orientations �j. They inserted a factor (kx cos �j + ky sin �j) or ei�j into the
summation in g� (3.1). Unsurprisingly, using information from both the ordinary
G� representation and the orientation-containing variant yielded better results
(in terms of e.g. ROC curves and EER) than using only a single representation.

1The effect on � was not explicitly mentioned in the work of Xu et al.
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Xu et al also investigated a minutiae representation that is fully invariant
under translation, rotation and scaling. Let H� = FG� be the discrete Fourier
transform of G��� with respect to � and �; then scalings and rotations have the
effect of merely producing a phase factor multiplying H�; the absolute value
jH�j is fully invariant. However, it turned out that fingerprint matching in the
jH�j-domain does not perform well.

3.3—Motivation

The spectral minutiae technique as developed by Xu et al [102,103,105] has a
number of unsatisfactory aspects.

1. Translation invariance is obtained by taking the absolute value of a Fourier
transform. This step discards a lot of information.

2. Xu et al conclude that the scaling factor � does not have to be taken
into account, since it is always close to 1. But in their best fingerprint
matching implementation they still apply logarithmic sampling in the
radial k-direction,

p
k2x + k2y = e�. Such sampling does not match the

radial information density in the fingerprint and hence makes it necessary
to take many many samples than in the case of linear sampling.

3. In combination with a HDS, the ’-search is time consuming. This is
caused not by the repeated re-computation of the score, but by the fact
that in a full HDS every ’-attempt needs an evaluation of the Rep function
and the computation of a hash.

We address the first issue by introducing a spectral representation that is
based on coordinate differences xa - xb only. The advantage is immediate
translation invariance without information loss, enabling us to work with fewer
samples. The drawback is that each summation over Z minutiae is replaced by
a summation over

�Z
2

�
pairs. The overall effect on the computation time during

reconstruction is a trade-off between these two. In Section 3.6 we show that
the trade-off works in our advantage.
We address the second issue by performing a Fourier transform only in the
angular direction. In the radial direction our sampling occurs in the spatial
domain and is linear.
The third issue could be addressed by developing a method to quickly determine
the global orientation of a captured fingerprint image. (Knowledge of the
global orientation, even if inaccurate, reduces the search space. Furthermore,
storing the global orientation during enrollment as helper data does not leak
sensitive information.) However, with our pair-based spectral representation it
turns out that executing the ’-search yields only a very modest performance
improvement; the search may as well be omitted. In Section 3.5.3 we show the
difference in performance.
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Figure 3.1: Distance Rab and angle ’ab for a minutia pair.

3.4—The minutia-pair approach

3.4.1 –Definitions and properties. Let Rab = jxa - xbj and let tan’ab =
(ya - yb)=(xa - xb) for minutiae a,b 2 f1, . . . ,Zg. See Fig. 3.1. We define two
translation-invariant spectral functions as follows

Lx(q,!) def=
X

a,b2 f 1,...,Zg
a6=b

eiq’abei! lnRab (3.2)

Lx�(q,!) def=
X

a,b2 f 1,...,Zg
a6=b

eiq’abei! lnRabei(�a-�b). (3.3)

Here the subscript x denotes the set of minutia locations, and likewise � stands
for the set of minutia orientations. We call the functions Lx,Lx� ’spectral’
because (3.2) is the Fourier transform (with respect to the radial coordinate
lnR and the angle ’) of a sum of delta functions centered on the values xa- xb
in the plane.
Let � =

�
cos’ - sin’
sin’ cos’

�
be a rotation matrix. Our spectral functions

(3.2),(3.3) have simple behaviour under the combined scaling and rotation
xj 7! ��xj, �j 7! �j +’,

L��x(q,!) = eiq’ei! ln�Lx(q,!) (3.4)
L��x,�+’(q,!) = eiq’ei! ln�Lx�(q,!). (3.5)

Note that the absolute values jLx(q,!)j, jLx�(q,!)j are invariant under trans-
lation, scaling and rotation. Without giving details we mention that, unfortu-
nately, fingerprint matching based on jLxj, jLx�j without the phase information
performs badly.
Similar to Xu et al we need to sample ! at equally spaced steps in order to
exploit the phase behaviour (3.4),(3.5) under scaling. However, if we choose to
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ignore scaling entirely (see point 2 in Section 3.3), then there is no reason to
Fourier transform the radial direction, and we introduce an alternative spectral
function,

Mx(q,R) def=
X

a,b2 f 1,...,Zg
a6=b

eiq’ab exp
�
-

(R- Rab)2

2�2

�
(3.6)

Mx�(q,R) def=
X

a,b2 f 1,...,Zg
a6=b

eiq’ab exp
�
-

(R- Rab)2

2�2

�
ei(�a-�b). (3.7)

In the radial direction, the functions Mx and Mx� consist of a sum of
�Z
2

�

Gaussian peaks centered on the values Rab. The width � > 0 reduces the
scheme’s sensitivity to small perturbations in the minutia properties.
Under a rotation (xj 7! �xj, �j 7! �j +’) we have Mx(q,R) 7! eiq’Mx(q,R)
and Mx�(q,R) 7! eiq’Mx�(q,R). We want all our spectral functions to be
single-valued.2 Hence q always has to be integer.

Lemma 3.1. For odd q it holds that Lx(q,!) = 0 for all !, and Mx(q,R) = 0
for all R.

Proof. In (3.2) every pair of indices a,b gives two terms in the summation. Using
Rba = Rab and ’ba � ’ab+� mod 2� (see Fig. 3.1), we write eiq’abei! lnRab

+eiq’baei! lnRba = eiq’abei! lnRab [1 + eiq�] = eiq’abei! lnRab [1 + (-1)q].
This vanishes when q is odd. The proof for Mx is analogous.

3.4.2 –Choosing the grid points. We have to choose a discrete (q,w)-grid of
points on which to evaluate Lx and Lx�. On the one hand, the grid should
contain many points so that the spectral functions contain sufficient information
about the fingerprint. On the other hand, having too many grid points results
in an inefficient scheme. Lemma 3.1 tells us that we do not have to compute
Lx for odd q. Furthermore, we know that, at a given q, the spectral functions
detect angular periodic features of size � 2�=q radians. This leads to a natural
cutoff at large q where the length scale becomes smaller than the feature size in
a typical fingerprint, and noise starts to dominate. Similarly, there is a natural
maximum for !, namely where 2�=! matches minab:a6=b lnRab. Finally we
note that Lx(-q,-!) = L�x(q,!) and Lx�(-q,-w) = (-1)qL�x�(q,!). This
means that the grid point (-q,-!) contains exactly the same information as
(q,!) and hence can be omitted. The considerations listed above are the only
theoretical guidelines for choosing the grid; the best choice must be found by
trial and error.

2Invariant under rotations ’ that are an integer multiple of 2�.
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The considerations for Mx,Mx� are similar. The grid is a (q,R)-grid. The
maximum q should be roughly the same as for the L-functions. The natu-
ral cutoffs for R are given by minab:a6=b Rab and maxab Rab. It holds that
Mx(-q,R) = M�x(q,R) and Mx�(-q,R) = (-1)qM�x�(q,R). Hence it suffices
to look at positive q only.
3.4.3 – Introducing weights. In the computation of a spectral function at enroll-
ment, it is possible to introduce a weight factor for each of the (a,b)-pairs in
the summation. It is advantageous to set a low weight for minutia pairs which
are unlikely to be recovered later. A low recovery likelihood may occur e.g.
when a minutia has low quality. Another reason can be a very large value of
Rab, in which case the recovery is sensitive to noise at the edge of the image,
or a very small Rab which may cause later minutia misidentification in case of
noise. In our experiments we have not used weights other than 0 or 1.
3.4.4 –Choosing the score function. Let F denote one of the four spectral func-
tions Lx,Lx�, Mx, Mx� obtained at enrollment, and F 0 the noisy version of F
obtained later, in the verification phase. We need a metric or ‘score’ function
which quantifies how close F 0 is to F. As F and F 0 are complex-valued, there
are quite some options. We have experimented with correlation functions for
the radial and phase part of the complex numbers, as well as the real and
imaginary part. Furthermore we have tried distance in the complex plane, with
and without normalization of the function F as a whole. In our experiments it
turns out that a complex correlation-like quantity is best able to discriminate
between genuine fingerprint matches and impostors. We define our score S as

S(F, F 0) = j�(F, F 0)j (3.8)

where � stands for the correlation as defined in Section 3.2.1, and the matrices
F, F 0 are treated as vectors.
3.4.5 – Fusion of scores. The spectral functions Lx and Lx� together contain more
information about the fingerprint than each one separately. The information is
partially overlapping. We construct a ‘fused’ score by adding the two scores
(3.8) in the same way as [105]: S(Lx,L 0x) + S(Lx�,L 0x�). Analogously, for the
M-functions we work with the fused score S(Mx,M 0x) + S(Mx�,M 0x�).

3.5—Experimental results
We have applied our minutia-pair approach to the VeriFinger database and the
MCYT database [65]. The Verifinger database contains fingerprints from six
individual persons, ten fingers per individual, eight images per finger. The size
of each image is 326� 357 pixels. The MCYT database contains fingerprints
from 100 individuals, 10 fingers per individual, 12 images per finger (256� 400
pixels). The fingerprints are generally of higher quality than in the Verifinger
database.
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We extracted minutia coordinates and orientations from the images by using
the VeriFinger software [3].

3.5.1 –Optimal parameter choices. Good results were obtained with the follow-
ing parameter settings. For the L-functions, jqj 2 f1, . . . , 24g and ! 2 [0.2, 37.7]
with 32 equally spaced values. For theM-functions, q 2 f1, . . . , 16g; R 2 [16, 130]
with 20 equally spaced points (MCYT database); R 2 [16, 160] with 25 equally
spaced points (VeriFinger database). For the Lx andMx functions we take only
even q, as explained in Lemma 3.1. We set � = 2.3 pixels.
A minutia extracted by VeriFinger is labeled with a quality Q 2 [0, 100]. We
took only minutiae with Q > 45. Furthermore we used an additional selection
rule that turns out to improve overall results a bit: a minutia pair is discarded
from the

P
ab summation in (3.2,3.3,3.6,3.7) if 2Rab exceeds the horizontal size

of the image.
In Fig. 3.2 we show an example of the Mx and Mx� spectral function. Entirely
different fingers obviously produce very different results. The two leftmost
columns correspond to the same finger. Noisy images of the same finger do
not produce results that, to the human eye, are clearly correlated. However, it
turns out (Section 3.5.2) that the similarities are enough to distinguish between
the enrolled user from an impostor.

3.5.2 –ROC curves and Equal Error Rates. We work in a verification setting,
i.e. a stated identity has to be verified. We determine the False Rejection
Rate (FRR) by comparing, for each finger in the database, all the pairs of
images. We determine the False Acceptance Rate (FAR) by looking at each
pair of different fingers, where one image is drawn at random for each finger
(independently per pair).3 We draw Receiver Operating Characteristic (ROC)
curves as FAR plotted against FRR. Each point in the ROC curve corresponds
to one threshold setting. The Equal Error Rate (EER) is the error rate in the
point where FRR equals FAR. We build ROC curves based on only fingeprints
from the available databases and not analyzing possible attacks.
Table 3.1 lists the EER values that we obtained. The ROC curves are shown in
Fig. 3.3. We see that the M-functions consistently outperform the L-functions,
and that the Lx�,Mx� spectral functions outperform the location based func-
tions. Furthermore we see that fusion of Mx and Mx� yields only a modest
improvement over Mx�. We conclude that, in our pair-based approach, the
best option is to work either with Mx� or the fusion of Mx and Mx�.
We benchmark our system against results reported by Xu et al. [105], which
are based on ten individuals in the MCYT database who have high-quality
fingerprint images. The ROC curves are shown in Fig. 3.4, and Table 3.2 contains

3This includes pairs of unlike fingers, e.g. thumb vs index finger. The statistics do not
change much when only pairs of like fingers are compared.
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person 1, finger 6
image 5

person 1, finger 6
image 8

person 3, finger 4
image 2

Re
Mx

Im
Mx

Re
Mx�

Im
Mx�

Figure 3.2: Example of the spectral functions Mx and Mx�. MCYT database.
The vertical axis is the q-axis, with q increasing upward. In each image, black
represents the most negative value on the grid, and white the most positive.

the EER comparison.4 We conclude that our pair-based spectral function Mx�
has a discrimination performance comparable to Xu et al.’s spectral function.
3.5.3 –Rotation of the verification image. The results of Section 3.5.2 were
obtained without Xu et al.’s procedure of trying out several image rotations so
as to optimise the matching score. Now we discuss what happens when we do
try a number of different rotation angles ’.
First we checked for the MCYT and the VeriFinger database how a rotation
’ 2 (-10�,+10�) affects the Mx and Mx�-based score in case of a genuine
image pair. At some optimal angle ’0 the score is maximal. For all genuine
pairs we determined ’0, for Mx and Mx�. The histograms of ’0 are shown in
Fig. 3.5. We see that typically j’0j < 6�.
In Fig. 3.6 we present ROC curves that show the impact of trying multiple
rotation angles ’ in a limited range; we set the range based on Fig. 3.5. In the

4Unfortunately, [105] does not mention which ten individuals were selected.
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Table 3.1: Equal Error Rates obtained with the parameter settings given in
Section 3.5.1. The notation ‘F’ stands for either L or M. No rotation of the
verification image.

Database Function F Fx Fx� Fusion
MCYT L 5.3% 3.5% 3.0%

M 4.0% 2.5% 2.2%
Verifinger L 11% 4.9% 5.7%

M 8.0% 3.3% 3.2%

Table 3.2: Equal Error Rates for a subset of ten individuals in the MCYT
database who have high-quality fingerprints. No rotation of the verification
image. The last row is from Table VI in [105]. The L and M function were
computed for individuals 16,24,26,32,34,35,46,53,80,94.

Function F Fx Fx� Fusion
L 1.1% 0.73% 0.31%
M 0.65% 0.35% 0.15%
Xu et al 0.47% 0.42% 0.22%

case of the MCYT database we see a consistent though small improvement. For
the VeriFinger database the change is not always favourable; the ROC curves
intersect. For both databases, the effect on the EER is minimal.
Increasing the range of ’ does not improve the matching of genuine pairs; it
does however increase the FAR. Hence the ROC curves become worse when we
increase the range of ’.
These results allow for a very interesting trade-off: instead of opting for a
minimal improvement of matching accuracy, we can skip the ’-search and thus
significantly reduce the computation time. Note that Xu et al.’s method has a
’-search with 11 different values of ’.

3.6—Computational efficiency

In this analysis we do not use the potential speedup that can be gained by skipping
the ’-search.
Speed is important predominantly in the verification phase. From a freshly
captured image the spectral function has to be computed on a number of grid
points which we denote as Ngr. The spectral function has to be computed not
once but several times, because N’ different image orientations have to be
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tried. Fortunately this does not multiply the total effort5 by a factor N’, as
the spectral function has a simple transform under rotation. (This holds for Xu
et al as well as our L and M functions.)
Let Z be the number of minutiae. Let us denote the cost of computing one
summation term of the spectral function in one grid point as Ts, and the
cost of applying a rotation transform in one grid point as Trot. The cost of
computing the score can be written as c �Ngr where c is some small constant.
The superscript ‘G’ will refer to Xu et al’s spectral function; the superscript
‘M’ to our function M. The total cost for the verification phase (not counting
the secure sketch) is

Xu et al: NGgrZT
G
s + (N’ - 1)NGgrT

G
rot +N’cNGgr

pair-based:NMgr

�
Z
2

�
TMs + (N’-1)NMgr T

M
rot +N’cNMgr .

We have TGs � TMs , TGrot � TMrot , Trot < Ts. The main difference between the
two approaches lies in the first term: NGgrZ versus NMgr

�Z
2

�
, i.e. NGgr versus

1
2N

M
gr (Z - 1). Xu et al report a 128 � 256 grid, yielding NGgr = 32768. In

contrast, our Mx�-function is evaluated on a grid of size NMgr 6 16 � 25 = 400.
Given that typically Z � 35, we have 1

2N
M
gr (Z-1) � 6800. Hence our verification

is faster than [102,103,105].
Note that [104] introduces a reduced template size by applying Principal
Component Analysis or a Discrete Fourier Transform to select informative
features. This selection reduces the template size by roughly a factor 10.
However, these methods still require computation of the spectral function on
many grid points.

3.7—Discussion
Achieving translation invariance by looking at minutia pairs seems to be ad-
vantageous compared to taking the absolute value of a Fourier transform. The
minutia-pair approach is able to extract information from a fingerprint using
fewer grid points. We conjecture that this is due to the fact that our spectral
functions retain phase information instead of discarding it. Of the four functions
that we studied, the Mx� performs best. Fusion of the matching scores from
Mx and Mx� leads to an EER comparable to Xu et al.
Due to the reduction of the number of grid points our method is faster than
the verification described by Xu et al., in spite of the increased number of
summation terms. As an unexpected bonus, it turns out that we can omit the
search for an optimal rotation angle; this gives an additional speed improvement.

5Here we look only at the computation of the spectral function and the score; not at the
cost of N’ Secure Sketch reconstruction attempts.
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As topics for future work we mention (i) further speedup by discarding grid
points that have a bad signal-to-noise ratio; (ii) applying Principal Component
Analysis and similar techniques to improve the EER; (iii) constructing a HDS
based on Mx and Mx�.
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Figure 3.3: ROC curves for our pair-based spectral functions applied to two
databases. No rotation of the verification image.
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MCYT database, 10 persons

LxLx�

fusion FAR=FRR

FAR

FRR

MCYT database, 10 persons
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FAR

FRR

Figure 3.4: ROC curves for the ten-person subset of the MCYT database. No
rotation of the verification image.
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MCYT
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VeriFinger
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Figure 3.5: Histograms of the optimal rotation angle ’0 (degrees).

MCYT database, Mx�
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VeriFinger database, Mx�
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with rotation, j’j 6 4.5�
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Figure 3.6: ROC curves with and without rotation of the verification image.
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Chapter 4

Fingerprint template protection
using minutia-pair spectral

representations

In Chapter 2 and Chapter 3 we developed a technique to transform fingerprint
images to a fixed-length representation and then quantize (to binary), as the
foundation to construct a privacy-preserving scheme for fingerprints. Next we
ask can we construct a high-performance (in terms of matching accuracy and
speed) helper data system based on fingerprint minutiae? (Research Question
2). First we extend the minutia-pair spectral approach by including the second
invariant angle that is present in a minutiae pair. At every step of the scheme
we do an analysis of the performance of the two-stage HDS for various choices
of spectral function parameters and number of images used at enrollment. We
notice that, for high-quality fingerprints, the transition from an unprotected
spectral function to fully protected enrollment data can be done with almost
no performance penalty.

4.1—Introduction

4.1.1 –Biometric template protection. Biometric authentication has become
popular because of its convenience. Biometrics cannot be forgotten or left
at home. Although biometric data is not exactly secret (we are leaving a
trail of fingerprints, DNA etc.), it is important to protect biometric data for
privacy reasons. Unprotected storage of biometric data could reveal medical
conditions and would allow cross-matching of entries in different databases.
Large-scale availability of unprotected biometric data would make it easier
for malevolent parties to leave misleading traces at crime scenes (e.g. artificial
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fingerprints [61], synthesized DNA [28].) One of the easiest ways to properly
protect a biometric database against breaches and insider attacks (scenarios
where the attacker has access to decryption keys) is to store biometrics in
hashed form, just like passwords. An error-correction step has to be added to
get rid of the measurement noise. To prevent critical leakage from the error
correction redundancy data, one uses a Helper Data System (HDS) [19,54,81],
for instance a Fuzzy Extractor or Secure Sketch [13,22,47].
We consider the HDS approach to be the preferred method for privacy-preserving
storage of biometric enrolment data, because of its strong privacy guarantees
combined with low computational requirements. (Approaches based on homo-
morphic encryption have excellent privacy but are computationally expensive;
approaches based on random projections are cheap but their security is difficult
to ascertain.) The best known and simplest HDS scheme is the code-offset
method (COM). The COM utilizes a linear binary error-correction code and
thus requires a fixed-length representation of the biometric measurement. Such
a representation is not straightforward when the measurement noise can cause
features of the biometric to appear/disappear. For instance, some minutiae
may not be detected in every image captured from the same finger.
Bringer et al. [11] proposed a fixed-length representation based on minutia
vicinities. However, it is vulnerable to minutia misdetections. Topcu et al. [87]
introduced a system containing a machine learning step; it is difficult to convert
to a privacy-preserving scheme. Jin et al. [43] proposed minutiae processing
using kernel methods to arrive at a fixed-length representation. However, they do
not explain how to deal, privacy-wise, with the personalised reliable components
and personalised training data which are required for the reconstruction step.
Tuyls et al. [88] used Gabor filters to derive a fixed-length representation, and
applied a HDS. However, their scheme does not have translation invariance,
and the helper data is personalized.
A fixed-length representation called spectral minutiae was introduced by Xu
et al. [102–105]. For every detected minutia of sufficient quality, the method
evaluates a Fourier-like spectral function on a fixed-size two-dimensional grid;
the contributions from the different minutiae are added up. Disappearance of
minutiae or appearance of new ones does not affect the size of the grid. Topcu et
al. [86] applied biohashing to spectral minutiae as a form of template protection.
Shao and Veldhuis [79] applied a HDS to spectral minutiae.
One of the drawbacks of Xu et al.’s construction is that phase information is
discarded in order to obtain translation invariance. Nandakumar [63] proposed
a variant which does not discard the phase information. However, it reveals per-
sonalised reliability data, which makes it difficult to use in a privacy-preserving
scheme.
A minutia-pair based variant of Xu et al.’s technique was introduced in [82]. It
has a more compact grid and reduced computation times. Minutia pairs (and
even triplets) were used in [26, 44], but in the context of a different attacker
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model which allows encryption keys to exist that are not accessible to the
adversary.

4.1.2 –Contributions and outline.
� We extend the pair-based spectral minutiae method [82] by introducing a

new spectral function that captures different information from the minutia
orientations. A minutia pair contains two invariant angles, namely the
two orientations relative to the connecting line. In [82] only one of these
was exploited.

� Then we use the spectral functions as the basis for a two-stage template
protection system consisting of two helper data systems, along the lines
of [19]. The first stage discretises the analog spectral representation using
a zero-leakage HDS [19,81]. This first HDS reduces quantization noise,
and the helper data reveals no information about the quantized data.
Discretisation of the spectral functions typically yields only one bit per
grid point. We concatenate the discrete data from all the individual grid
points into one long bitstring. In the second stage we apply the Code
Offset Method. Our code of choice is a Polar code, because Polar codes
are low-complexity capacity-achieving codes with flexible rate.

� We present False Accept Rate (FAR) vs. False Reject Rate (FRR) tradeoffs
at various stages of the data processing. We introduce the ‘superfinger’
enrollment method, in which we average the spectral functions from
multiple enrollment images. By combining three images in this way, and
constructing a Polar code specifically tuned to the individual bit error rate
of each bit position, we achieve an Equal Error Rate (EER) around 1%
for a high-quality fingerprint database, and around 6% for a low-quality
database. Our HDS achieves these numbers while matching extracted
strings that are short, 25 bits or less. The entropy of such a string is less
than the string length because of mutual dependencies between the bits.
This in contrast to the much larger numbers mentioned in other works.

� Our results show that, once we have switched to the spectral representation,
privacy protection causes little performance degradation in terms of FAR,
FRR. However, the transition from a list of minutiae to the spectral
representation reduces performance.

In a sense we have a ‘negative’ result. Our EER is worse than for matching
schemes without privacy protection, or schemes that use homomorphic encryp-
tion. (On the other hand, by combining multiple fingers the EER can be lowered
to an acceptable level.) The main contribution of this paper is, however, that
we push the minutia-pair spectral function approach to its limits while at the
same time giving the ZLHDS technique a baptism of fire in a real-life biometrics
problem. We find that (i) we cannot really recommend spectral functions as a
good fixed-length representation, although there is no better alternative; (ii)
the ZLHDS performs splendidly; (iii) we can confirm that Polar codes are well
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suited for use in a HDS, even under tougher circumstances than in previous
work [16].
In Section 4.3 we introduce notation and briefly review helper data systems, the
spectral minutiae representation, and polar codes. In Section 4.4 we introduce
the new spectral function. In Section 4.5 we explain our experimental approach
and motivate certain design choices such as the number of discretisation intervals
and the use of a Gaussian approximation. We introduce two methods for
averaging enrollment images. Section 4.6 contains our results, mostly in the
form of ROC curves. In Sections 4.7 and 4.8 we discuss the results and identify
topics for future work.

4.2—Methods
The aim of this study is to develop improved techniques for privacy-preserving
storage of biometric data. We use fingerprint data from publicly available
databases and analyze the performance of our template protection scheme using
standard nonproprietary techniques. We compare primarily against the existing
spectral minutiae technique of Xu et al.

4.3—Preliminaries

4.3.1 –Notation and terminology. We use capitals to represent random variables,
and lowercase for their realizations. Sets are denoted by calligraphic font. The
set S is defined as S = f0, . . . ,N - 1g. The mutual information (see e.g. [18])
between X and Y is I(X; Y). The probability density function (pdf) of the random
variable X 2 R in written as f(x) and its cumulative distribution function (cdf)
as F(x). We denote the number of minutiae found in a fingerprint by Z. The
coordinates of the j’th minutia are xj = (xj,yj) and its orientation is �j. We
write x = (xj)Zj=1 and � = (� j)Zj=1 We will use the abbreviations FRR = False
Reject Rate, FAR = False Accept Rate, EER = Equal Error Rate, ROC =
Receiver Operating Characteristic. Bitwise xor of binary strings is denoted
as �.
4.3.2 –Helper Data Systems. A HDS is a cryptographic primitive that allows
one to reproducibly extract a secret from a noisy measurement. A HDS consist
of two algorithms: Gen (generation) and Rep (reconstruction), see Fig. 1.1. The
Gen algorithm takes a measurement X as input and generates the secret S and
a helper data W. The Rep algorithm has as input a noisy measurement Y and
the helper data; it outputs an estimator Ŝ. If Y is sufficiently close to X then
Ŝ = S. The helper data should not reveal much about S. Ideally it holds that
I(W;S) = 0. This is known as Zero Leakage helper data.
4.3.3 –Two-stage HDS template protection scheme. Fig. 4.1 shows the two-
stage HDS architecture as described e.g. in [19]. The enrollment measurement
x is transformed to the spectral representation (xi)Mi=1 on M grid points. The
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first-stage enrollment procedure Gen1 is applied to each xi individually, yielding
short (mostly one-bit) secrets si and zero-leakage helper data wi. The s1 . . . sM
are concatenated into a string k. Residual noise in k is dealt with by the
second-stage HDS (Code Offset Method), whose Gen2 produces a secret c and
helper data r. A hash h(cjjz) is computed, where z is salt. The hash and the
salt are stored.
In the verification phase, the noisy y is processed as shown in the bottom half
of Fig. 4.1. The reconstructed secret ĉ is hashed with the salt z; the resulting
hash is compared to the stored hash.

Figure 4.1: Two-stage Helper Data System. Figure adapted from [19].

4.3.4 –Minutia-pair spectral representation. Minutiae are features in a finger-
print, e.g. ridge endings and bifurcations. We briefly describe the minutia-pair
spectral representation introduced in [82]. For minutia indices a,b 2 f1, . . . ,Zg
the distance and angle are given by Rab = jxa-xbj and tan�ab = ya-yb

xa-xb
. The

spectral function Mx is defined as

Mx�(q,R) =
X

a,b2 f 1,...,Zg
a<b

eiq�abe- (R-Rab)2

2�2 ei(�b-�a), (4.1)

where � is a width parameter. The spectral function is evaluated on a discrete
(q,R) grid. A pair (q,R) is referred to as a grid point. The variable q is
integer and can be interpreted as the Fourier conjugate of an angular variable,
i.e. a harmonic. The function Mx is invariant under translations of x. When a
rotation of the whole fingerprint image is applied over an angle �, the spectral
function transforms in a simple way,

Mx�(q,R)! eiq�Mx�(q,R). (4.2)

4.3.5 – Zero Leakage Helper Data Systems. We briefly review the ZLHDS de-
veloped in [19,81] for quantization of an enrollment measurement X 2 R. The
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density function of X is f, and the cumulative distribution function is F. The
verification measurement is Y. The X and Y are considered to be noisy versions
of an underlying ‘true’ value. They have zero mean and variance �2X, �2Y ,
respectively. The correlation between X and Y can be characterized by writing
Y = �X+ V, where � 2 [0, 1] is the attenuation parameter and V is zero-mean
noise independent of X, with variance �2V . It holds that �2Y = �2�2X + �2V .
We consider the identical conditions case: the amount of noise is the same
during enrollment and reconstruction. In this situation we have �2X = �2Y and
�2 = 1 - �2V

�2X
.

The real axis R is divided into N intervals A� = (
�,
�+1), with � 2 S,
S = f0, . . . ,N - 1g. Let p� = Pr[X 2 A�]. The quantization boundaries are
given by 
� = Finv(

P�-1
j=0 pj). The Gen algorithm produces the secret s as s =

maxf� 2 S : x > 
�g and the helper data ew 2 [0, 1) as ew = [F(x)-
Ps-1
j=0 pj]=ps.

The inverse relation, for computing x as a function of s and ew, is given by
�s, ew = Finv(

Ps-1
j=0 pj + ewps).

The Rep algorithm computes the estimator ŝ as the value in S for which it holds
that y 2 (�ŝ, ew, �ŝ+1, ew), where the parameters � are decision boundaries. In the
case of Gaussian noise these boundaries are given by

��, ew = �
��-1, ew + ��, ew

2 +
�2V ln p�-1

p�
�(��, ew - ��-1, ew)

. (4.3)

Here it is understood that �-1, ew = -1 and �N, ew = 1, resulting in �0, ew = -1,
�N, ew = 1.
The above scheme ensures that I(fW;S) = 0 and that the reconstruction errors
are minimized.
4.3.6 –The Code Offset Method (COM). We briefly describe how the COM
is used as a Secure Sketch. Let C be a linear binary error correcting code
with message space f0, 1gm and codewords in f0, 1gn. It has an encoding Enc:
f0, 1gm ! f0, 1gn, a syndrome function Syn: f0, 1gn ! f0, 1gn-m and a syndrome
decoder SynDec: f0, 1gn-m ! f0, 1gn. In Fig. 4.1 the Gen2 computes the helper
data W as W = SynY(2). The S in Fig. 4.1 is equal to Y(2). The Rep2 computes
the reconstruction Ŝ = Ŷ(2) � SynDec(W� Syn Ŷ(2)).
4.3.7 –Polar codes. Polar codes, proposed by Arıkan [5], are a class of linear
block codes that get close to the Shannon limit even at small code length. They
are based on the repeated application of the polarization operation

�1 0
1 1

�

on two bits of channel input. Applying this operation creates two virtual
channels, one of which is better than the original channel and one worse. For n
channel inputs, repeating this procedure in the end yields m near-perfect virtual
channels, with m=n close to capacity, and n -m near-useless channels. The
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m-bit message is sent over the good channels, while the bad ones are ‘frozen’,
i.e used to send a fixed string known a priori by the recipient.
Polar codes have a number of advantages, such as flexible code rate and
excellently performing soft-decision decoders. The most popular decoder is the
Successive Cancellation Decoder (SCD), which sequentially estimates message
bits (Si)mi=1 according to the frozen bits and the previously estimated bits Ŝi-1.
Polar codes have been recently adopted for the next generation wireless standard
(5G), especially for control channels, which have short block length (6 1024).
Because of these advantages we have chosen Polar codes for implementing the
error correction step in our HDS scheme (see Section 4.6).

4.4—A new spectral function

Consider Fig. 4.2 (modified from [101]). The invariant angle �a is defined as
the angle from the orientation of minutia a to the connecting line ab, taken
in the positive direction. (The �b is defined analogously). Modulo 2� it holds
that �a + �a = �ab and �b + �b = �ab + �. The spectral function (4.1) uses
only the invariant angle �a - �b + � = �b - �a. The second invariant angle,
which can be written e.g. as �-�a -�b = �a + �b - 2�ab, is not used in [82].
We therefore now introduce a new spectral function, denoted as Mx�, which
incorporates the invariant angle �- �a - �b.

Mx�(q,R) =
X

a,b2 f 1,...,Zg
a<b

ei�ab(q-2)e- (R-Rab)2

2�2 ei(�b+�a). (4.4)

Figure 4.2: The relevant angles in a minutia pair. The �a and �b are rotation
invariant. The �ab is sensitive to image rotation.
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Under image rotation over an angle � this function transforms as

Mx�(q,R)! eiq�Mx�(q,R). (4.5)

We will use Mx�, Mx� and their fusion.

4.5—Experimental approach

4.5.1 –Databases. We use the MCYT, FVC2000(DB2), and FVC2002(DB2)
database. From this point on we omit the ‘DB2’ designation for brevity. The
MCYT database [65] contains good-quality images from 100 individuals: 10
fingers per individual and 12 images per finger. FVC2000 and FVC2002 contain
low-quality images (only index and middle fingers [60]). Each FVC database
contains 100 fingers, 8 images per finger. In FVC2002, images number 3, 4, 5,
and 6 have an exceptionally large angular displacement, so they are omitted
from the experiments.
We extract the minutia position and orientation (xj,yj, �j) by using VeriFinger
software [3]. For MCYT we evaluate the spectral functions on the same grid
as [82], namely R 2 f16, 22, 28, . . . , 130g and q 2 f1, 2, . . . , 16g and we maintain
� = 2.3 pixels. For the FVC databases we use the same grid, and � = 3.2 pixels
turns out to be a good choice. The average number of minutiae that can be
reliably found is Z = 35.

4.5.2 –No image rotation. As mentioned in [82], during the reconstruction
procedure one can try different rotations of the verification image, but it results
only in a minor improvement of the EER. For this reason we do not apply
image rotation.

4.5.3 –Quantization methods. Before quantization all spectral functions are
normalized to zero mean and unit variance, where the variance is taken of the
real and imaginary part together. We quantize the real and imaginary part of
the spectral functions separately. We study two methods: ’hard thresholding’
(without helper data) and the Zero Leakage quantization of Section 4.3.2. The
hard thresholding gives a bit value ‘1’ if ReM > 0 and ‘0’ otherwise. We will
show results for this method mainly to demonstrate the advantages of Zero
Leakage quantization.

4.5.4 –Gaussian probability distributions. When using the ZLHDS formulas we
will assume that the spectral functions are Gaussian-distributed. Figs. 4.3 and
4.4 illustrate that this assumption is not far away from the truth.1

4.5.5 – Zero leakage quantization.

1Note that we often see correlations between the real and imaginary part. This has no
influence on the ZLHDS.
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Figure 4.3: Histogram of Re Mx�, and a fitted Gaussian.

Figure 4.4: Histogram of Im Mx�, and a fitted Gaussian.

Signal to noise ratio; setting N. In the ZLHDS of Section 4.3.5, the optimal
choice of the parameter N (number of quantization intervals) depends on the
signal to noise ratio. Fig. 4.5 shows a comparison between N = 2 and N = 3.
At low noise it is obvious that N = 3 extracts more information from the source
than N = 2. At �V=�X larger than approximately 0.3, there is a regime where
N = 3 can extract more in theory, but is hindered in practice by the high bit
error rate. At �V=�X > 0.55 the N = 2 ‘wins’ in all respects.
For our data set, we define a �2X(q,R) for every grid point (q,R) as the variance
of M(q,R) over all images in the database. The noise �2V(q,R) is the variance
over all available images of the same finger, averaged over all fingers.
Figs. 4.6 and 4.7 show the noise-to-signal ratio �V=�X. Note the large amount
of noise; even the best grid points have �V=�X > 0.45. Fig. 4.5 tells us that
setting N = 2 is the best option, and this is the choice we make. At N = 2 we
extract two bits per grid point from each spectral function (one from Re M, one
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Figure 4.5: Comparison of ZLHDS with N = 2 versus N = 3. Lines without
markers: Mutual information between the enrolled key S and the reconstructed
key Ŝ given helper data W, as a function of �V=�X. Markers: bit error rate as
a function of �V=�X. The curves follow equations (22) and (26) from [82].

Figure 4.6: Sorted noise-to-signal ratio of Mx� for different databases.

from Im M). Hence our bit string string k (see Fig. 4.1) derived from Mx� has
length 640. When we apply fusion of Mx� and Mx� this becomes 1280.
For N = 2 the formulas in Section 4.3.5 simplify to A0 = (-1, 0), A1 = [0,1),
p0 = p1 = 1

2 , �0, ew = Finv( ew2 ), �1, ew = Finv( 12 + ew
2 ), �1, ew = �

2 (�0, ew + �1, ew).
Since we work with Gaussian distributions, F is the Gaussian cdf (‘probability
function’).

Enrollment and reconstruction. We have experimented with three different
enrollment methods:
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Figure 4.7: Sorted noise-to-signal ratio of Mx� for different databases.

E1. A single image is used.
E2: We take the first2 t images of a finger and calculate the average spectral
function. We call this the ‘superfinger’ method. In the ZLHDS calculations the
signal-to-noise ratio of the average spectral function is used.
E3: For each of t images we calculate an enrollment string k. We apply bit-wise
majority voting on these strings. (This requires odd t.) The reconstruction
boundaries are calculated based on the superfinger method, i.e. as in E2.
Reconstruction:
We study fingerprint authentication with genuine pairs and impostor pairs. For
pedagogical reasons we will present results at four stages of the signal processing:
(1) spectral function domain, before quantization; (2) binarized domain, without
applying the first-stage HDS; (3) binarized with first-stage ZLHDS; (4) with
first-stage ZLHDS and discarding the highest-noise grid points.
In the spectral function domain the fingerprint matching is done via a correlation
score [82]. In the binarized domain we look at the Hamming weight between the
enrolled k and the reconstructed k̂. For all cases we will show ROC curves in
order to visualise the FAR-FRR tradeoff as a function of the decision threshold.
Let the number of images per finger be denoted asM, and the number of fingers
in a database as L .

E1: For the spectral domain and the quantization without HDS we compare all
genuine pairs, i.e.

�M
2

�
image pairs per finger, resulting in L

�M
2

�
data points.

For ZLHDS the number is twice as large, since there is an asymmetry between
enrollment and reconstruction. For the FVC databases we generate all possible

2We take the �rst t images to show that the approach works. We are not trying to
optimize the choice of images.
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impostor combinations (all images of all impostor fingers), resulting in O(M2L2)
data points.
For the MCYT database, which is larger, we take only one random image per
impostor finger, resulting in O(ML2) data points.
E2+E3: For genuine pairs we compare the superfinger to the remaining M- t
images. Thus we have (M- t)L data points. Impostor pairs are generated as
for E1.
Note: The VeriFinger software was not able to extract information for every
image.

4.6—Experimental results

4.6.1 – FAR/FRR rates before error correction. For each the data processing
steps/options before application of the Code Offset method, we investigate the
False Accept rates and False Reject rates. We identify a number of trends.
� Figs. 4.8 and 4.9 show ROC curves. All the non-analog curves were made

under the implicit assumption that for each decision threshold (number of bit
flips) an error-correcting code can be constructed that enforces that threshold,
i.e. decoding succeeds only if the number of bit flips is below the threshold.
Unsurprisingly, we see in the figures that quantization causes a performance
penalty. Furthermore the penalty is clearly less severe when the ZLHDS
is used. Finally, it is advantageous to discard some grid points that have
bad signal-to-noise ratio �X=�V . For the curves labeled ‘ZLHDS+reliable
components’ only the least noisy3 512 bits of k were kept (1024 in the case
of fusion). Our choice for the number 512 is not entirely arbitrary: it fits
error-correcting codes. Note in Fig. 4.9 that ZLHDS with reliable component
selection performs better than analog spectral functions without reliable
component selection. (But not better than analog with selection.) For
completeness we mention that Verifinger’s privacy-less matching based on
minutiae (without spectral functions) has an EER of 0.58% for FVC2000 [1]
and 0.52% for the FVC2002 database [2]. Clearly the transition to spectral
functions causes a performance loss.

� The E2 and E3 enrollment methods perform better than E1. Furthermore,
performance increases with t. A typical example is shown in Fig. 4.10.

� The spectral functions Mx� and Mx� individually have roughly the same
performance. Fusion yields a noticeable improvement. An example is shown
in Fig. 4.11. (We implemented fusion in the analog domain as addition of
the two similarity scores.)

3This is defined as a global property of the whole database. Our selection of reliable
components does not reveal anything about an individual and hence preserves privacy. Note
that [63] does reveal personalised reliable components and obtains better FA and FN error
rates.
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� Tables 4.1 to 4.5 show Equal Error Rates and Bit Error Rates. We see that
enrollment methods E2 and E3 have similar performance, with E2 yielding a
somewhat lower genuine-pair BER than E3.

� In Table 4.1 it may look strange that the EER in the rightmost column is
sometimes lower than in the ‘analog’ column. We think this happens because
there is no reliable component selection in the ‘analog’ procedure.

� Ideally the impostor BER is 50%. In the tables we see that the impostor
BER can get lower than 50% when the ZLHDS is used and the enrollment
method is E2. On the other hand, it is always around 50% in the ‘No HDS’
case. This seems to contradict the Zero Leakage property of the helper data
system. The ZLHDS is supposed not to leak, i.e. the helper data should not
help impostors. However, the zero-leakage property is guaranteed to hold
only if the variables are independent. In real-life data there are correlations
between grid points and correlations between the real and imaginary part of
a spectral function.

Table 4.1: Equal Error Rates and Bit Error Rates. MCYT database. Enrollment
methods E1 and E2. Numbers displayed as a percentage are EERs. Numbers
without a % sign are BERs: the left number is for genuine pairs, right for
impostors.

#images (t) Analog No HDS ZLHDS ZLHDS+r.c.

1

Mx� 2.6% 3.7% 3.4% 3.2%
0.33 0.50 0.30 0.49 0.29 0.49

Mx� 2.4% 3.7% 3.4% 3.2%
0.33 0.50 0.31 0.50 0.29 0.49

Fusion 2.1% 2.9% 2.6% 2.3%
0.33 0.50 0.30 0.49 0.29 0.49

2

Mx� 2.1% 3.2% 2.3% 2.1%
0.33 0.50 0.28 0.46 0.27 0.46

Mx� 1.7% 3.01% 2.4% 2.2%
0.33 0.50 0.28 0.47 0.27 0.47

Fusion 1.6% 2.3% 1.7% 1.4%
0.33 0.50 0.28 0.46 0.27 0.47

3

Mx� 1.4% 2.2% 1.3% 1.1%
0.31 0.50 0.24 0.45 0.23 0.46

Mx� 1.1% 2.0% 1.2% 1.1%
0.31 0.50 0.25 0.46 0.23 0.46

Fusion 1.1% 1.5% 0.9% 0.7%
0.31 0.50 0.24 0.46 0.23 0.46

4

Mx� 1.2% 1.7% 1.0% 0.9%
0.29 0.50 0.22 0.45 0.21 0.45

Mx� 1.0% 1.6% 0.9% 0.8%
0.30 0.50 0.22 0.45 0.21 0.45

Fusion 0.9% 1.1% 0.6% 0.5%
0.30 0.50 0.22 0.45 0.21 0.45
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Table 4.2: EERs and BERs for the FVC2000 database. Enrollment methods E1
and E2.

#images (t) Analog No HDS ZLHDS ZLHDS+r.c.

1

Mx� 6.0% 9.4% 9.0% 8.0%
0.39 0.50 0.37 0.50 0.36 0.50

Mx� 6.1% 10.4% 9.5% 8.1%
0.39 0.50 0.38 0.50 0.37 0.50

Fusion 4.8% 7.3% 6.5% 5.5%
0.39 0.50 0.38 0.50 0.36 0.50

2

Mx� 4.5% 7.2% 5.7% 5.0%
0.37 0.50 0.33 0.47 0.32 0.47

Mx� 4.8% 7.9% 6.9% 5.6%
0.38 0.50 0.34 0.47 0.32 0.47

Fusion 3.9% 5.1% 5.0% 4.1%
0.37 0.50 0.33 0.47 0.32 0.47

3

Mx� 3.0% 5.6% 5.3% 4.4%
0.36 0.50 0.31 0.46 0.29 0.46

Mx� 3.2% 7.2% 5.3% 4.9%
0.37 0.50 0.32 0.46 0.30 0.46

Fusion 2.2% 4.5% 4.0% 3.3%
0.37 0.50 0.32 0.46 0.30 0.46

4

Mx� 2.1% 5.5% 5.5% 4.8%
0.37 0.50 0.31 0.45 0.29 0.45

Mx� 2.2% 7.1% 6.5% 5.0%
0.37 0.50 0.32 0.46 0.30 0.46

Fusion 1.3% 4.3% 4.3% 3.3%
0.37 0.50 0.31 0.45 0.30 0.45

Table 4.3: EERs and BERs for the FVC2002 database. Enrollment methods E1
and E2.

#images (t) Analog No HDS ZLHDS ZLHDS+r.c.

1

Mx� 5.8% 12.1% 10.8% 8.8%
0.38 0.50 0.37 0.50 0.36 0.50

Mx� 6.4% 10.9% 10.9% 9.2%
0.39 0.50 0.38 0.50 0.36 0.50

Fusion 5.5% 9.4% 9.3% 7.0%
0.39 0.50 0.38 0.50 0.36 0.50

2

Mx� 5.4% 10.9% 9.8% 7.3%
0.39 0.50 0.35 0.48 0.33 0.48

Mx� 5.5% 10.7% 8.4% 7.4%
0.39 0.50 0.36 0.48 0.34 0.48

Fusion 4.4% 9.8% 7.3% 5.9%
0.39 0.50 0.36 0.48 0.34 0.48
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Figure 4.8: Performance result for several processing methods. FVC2000.
Enrollment method E2 with t = 3.
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Figure 4.9: Performance result for several processing methods. MCYT. Enroll-
ment method E2 with t = 3.
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Figure 4.10: Performance effect of the number of images used for enrollment.
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Figure 4.11: Performance of Mx� and Mx� individually, and of their fusion.
MCYT database; enrollment method E1; analog domain.

Table 4.4: EERs and BERs for the FVC2000 database. Enrollment method E3.

#images (t) Analog No HDS ZLHDS ZLHDS+r.c.

3

Mx� 3.0% 5.8% 5.2% 4.2%
0.37 0.50 0.36 0.50 0.34 0.50

Mx� 3.2% 8.1% 6.1% 5.4%
0.37 0.50 0.36 0.50 0.35 0.50

Fusion 2.2% 5.3% 4.0% 3.1%
0.37 0.50 0.36 0.50 0.34 0.50

Table 4.5: EERs and BERs for the MCYT database. Enrollment method E3.

#images (t) Analog No HDS ZLHDS ZLHDS+r.c.

3

Mx� 1.4% 2.4% 1.6% 1.4%
0.31 0.50 0.29 0.49 0.28 0.49

Mx� 1.1% 2.2% 1.5% 1.4%
0.32 0.50 0.30 0.50 0.28 0.50

Fusion 1.1% 1.6% 1.0% 0.9%
0.32 0.50 0.30 0.49 0.28 0.50
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4.6.2 –Error correction: Polar codes. The error rates in the genuine recon-
structed k̂ are high, at least 0.21. In order to apply the Code Offset Method
with a decent message size it is necessary to use a code that has a high rate
even at small codeword length.
Consider the case of fusion of Mx� and Mx�. The codeword length is 1280
bits (1024 if reliable component selection is performed). Suppose we need to
distinguish between 220 users. Then the message length needs to be at least
20 bits, in spite of the high bit error rate. Furthermore, the security of the
template protection is determined by the entropy of the data that is input into
the hash function (see Fig. 4.1); it would be preferable to have at least 64 bits
of entropy.
We constructed a number of Polar codes tuned to the signal-to-noise ratios
of the individual grid points. The codes are designed to find a set of reliable
channels, which are then assigned to the information bits. Each code yields
a certain FAR (impostor string accidentally decoding correctly) and FRR
(genuine reconstruction string failing to decode correctly), and hence can be
represented as a point in an ROC plot. This is shown in Fig. 4.12. For the
MCYT database we have constructed a Polar code with message length 25
at an EER around 1.2% (compared to 0.7% before error correction). For the
FVC2000 database we have constructed a Polar code with message length 15
at �6% EER (compared to 3.3% EER before error correction). Note that the
error correction is an indispensable part of the privacy protection and inevitably
leads to a performance penalty. However, we see that the penalty is not that
bad, especially for high-quality fingerprints.
We briefly comment on the entropy contained in the extracted ‘message’ strings.
In Section 4.8 we present a method to compute the upper bound on the
entropy of a random vector, in the case where the probability distribution
obeys a number of symmetries. This provides an upper bound to the mutual
information between the k-bit strings extracted at enrollment and verification.
We use this method to get a rough estimate for the actual systems at hand.
For the MCYT database and message length 25, the message bit means vary
between 0.49 and 0.51, and the off-diagonal elements of the covariance matrix
vary between -0.02 and 0.02. Applying the method of Section 4.8 with constant
off-diagonal covariance 0.02 yields an upper bound of 24.3 bits of entropy. For
FVC2000 with message length 15 bits, the bit means vary between 0.44 and
0.58, and the off-diagonal elements of the covariance matrix have magnitudes
below 0.04. Applying the method of Section 4.8 with constant off-diagonal
covariance 0.04 yields an upper bound of 14.1 bits of entropy. The actual
entropies may be a lot lower than the estimates that we give here. Because
of these low entropies, the data extracted from multiple fingers needs to be
combined in order to achieve a reasonable security level of the hash. We do
not see this as a drawback of our HDS; given that the EER for one finger is
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Figure 4.12: FRR versus FAR achieved by Polar codes and random codebooks
(average over three random codebooks). The � markers denote random codebook,
and happen to coincide with the line connecting the Polar markers.

around 1%, which is impractical in real-life applications, it is necessary anyhow
to combine multiple fingers. For comparison by using the results of [95] we
obtain 6.5 bits of secrecy from ROC curves. However the model in [95] requires
a good approximation of an ROC curve, which is very hard to obtain.

4.6.3 –Error correction: random codebooks. There is a large discrepancy be-
tween the message length of the Polar code (k 6 25) and the known information
content of a fingerprint. According to Ratha et al [71] the reproducible entropy
of a fingerprint image with Z = 35 robustly detectable minutiae should be more
than 120 bits. Furthermore, the potential message size that can be carried in a
1024-bit string with a BER of 23% is 1024[1 - h(0.23)] = 227 bits. (And 122
bits at 30% BER.)

We experimented with random codebooks to see if we could extract more
entropy from the data than with polar codes. At low code rates, a code based
on random codewords can be practical to implement. Let the message size be ‘,
and the codeword size m. A random table needs to be stored of size 2‘ �m bits,
and the process of decoding consists of computing 2‘ Hamming distances. We
split the 1024 reliable bits into 4 groups of m = 256 bits, for which we generated
random codebooks, for various values of ‘. The total message size is k = 4‘ and
the total codeword size is n = 4m. The results are shown in Fig. 4.12. In short:
random codebooks give hardly any improvement over Polar codes.
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4.7—Summary
We have built a HDS from a spectral function representation of fingerprint
data, combined with a Zero Leakage quantization scheme. It turns out that
the performance degradation w.r.t. unprotected templates is caused mainly
by the step that maps a list of minutiae to spectral functions. The step from
unprotected spectral functions to HDS-protected spectral functions is almost
‘for free’ in the case of high-quality fingerprints.
The best results were obtained with the ‘superfinger’ enrollment method (E2,
taking the average over multiple enrollment images in the spectral function
domain), and with fusion of the Mx�, Mx� functions. The superfinger method
performs slightly better than the E3 method and also has the advantage that it
is not restricted to an odd number of enrollment captures.
For the high-quality MCYT database, our HDS achieves an EER around 1%
and extracts an noise-robust 25-bit string that contains less than 24.3 bits of
entropy. In practice multiple fingers need to be used in order to obtain an
acceptable EER. This automatically increases the entropy of the hashed data.
The entropy can be further increased by employing tricks like the Spammed
Code Offset Method [100].

4.8—Discussion
Any form of privacy protection (excepting perhaps homomorphic crypto) causes
fingerprint matching degradation. Building a good template protection system
is therefore an exercise in ‘damage control’: protect privacy while limiting
the performance loss. We have pushed the two-dimensional spectral function
approach to its limits, but even after the omission (in [82]) of the second
invariant angle is corrected we still see that the transition from a minutia
list to spectral functions destroys a lot of information. It remains a topic for
future work to determine whether a higher-dimensional spectral function can
retain more information while still yielding a practical template size. Given
the experiences in [19] and the current paper, we expect that the ZLHDS
privacy protection technique will do a good job there too, i.e. cause only little
performance degradation, as long as the biometric data is of reasonable quality.
We see that Polar codes perform extremely well at the high BER caused
by noisy biometrics. Polar codes have been used in a HDS before [16], but
under somewhat different circumstances, namely a simple a priori known noise
distribution. The results of Section 4.6.2 demonstrate the efficiency of Polar
codes also in the case where the noise distribution is unknown and has to be
estimated from the training data.
We briefly comment on the computational effort of our scheme in the verification
phase. The number of (complex-valued) summation terms in the computation
of a spectral function is

�Z
2

�
Ngrid �

�35
2

�
� 20 � 16 = 1.9 � 105. The reconstruction

step of the first-stage ZLHDS has negligible cost compared to that. Successive
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Cancellation Decoding of Polar codes is lightweight, with complexity O(n logn),
n = 1024. On a modern processor, computing a hash takes less than 100 clock
cycles per input byte. Clearly the bottleneck is the computation of the spectral
functions. We have observed that reducing the number of grid points from the
current 20 � 16 causes severe degradation of the matching performance, while
increasing the number of points does not yield much improvement.
As topics for future work we mention (i) testing the HDS on more databases;
(ii) further optimization of parameter choices such as the number of reliable
components, and the number of minutiae used in the computation of the
spectral functions; (iii) further tweaking of the Polar codes; (iv) other (spectral?)
representations that cause less performance degradation while still allowing for
a HDS to be constructed.

4.9—Entropy upper bound
Let X 2 f0, 1gn be a random variable with probability mass function px. Using
the Lagrange multiplier technique it is readily ascertained that the maximum-
entropy distribution for X, for given first and second moment, must be of the
Gaussian form px / exp[-aTx - xTMx], where x is interpreted as a column
vector, a is a vector and M is a matrix. In general the a and M are very
complicated functions of the first moments mi

def= Exi and the covariances
cij

def= Exixj -mimj (i 6= j). The computations become more tractable if we
impose permutation invariance on X as well as 0$ 1 symbol symmetry. Then we
have px = N-1

� exp[�(jxj - n
2 )2], where � is a parameter and the normalization

constant N� is defined as N� =
Pn
w=0

�n
w

�
exp[�(w- n

2 )2]. Furthermore the
imposed symmetries yield mi = 1

2 for all i, and constant covariance cij = c for
i 6= j. The relation between � and c is given by the 2nd moment constraint
N-1
�

Pn
w=0(w - n

2 )2
�n
w

�
exp[�(w - n

2 )2] = n
4 + (n2 - n)c. This equation has

to be solved numerically for �. Then, with the numerical value of �, we can
evaluate the entropy (in nats) as E ln 1

px
= lnN� - �[n4 + (n2 - n)c].
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Chapter 5

Eliminating Leakage in Reverse
Fuzzy Extractors

In the previous chapters we used HDSs for fingerprint template protection.
In this chapter we use HDS for Physically Obfuscated Keys. The PUF takes
the challenge and generates a noisy response and further the device uses the
helper data for error correction. As mentioned in Chapter 1 error correction
on the resource constrained device is problematic. This problem is solved by
outsourcing the error correction (a trick often called ‘reverse fuzzy extractor’)
to some external party. This approach has a drawback since each outsourcing
of error correction reveals an error pattern. The PUF response may be leaked if
the noise is data dependent. Another drawback is that the PUF may age which
changes the response over time, and consequently the PUF becomes recognizable
by its error pattern. This can lead to a privacy problem. Experimental data
confirms the existence of asymmetric (data-dependent) noise and drift in several
types of PUFs, e.g. RO PUFs. In this chapter we introduce two modifications
to the Reverse FE scheme which together eliminate both leakage problems: (i)
additional noise that turns asymmetric into symmetric noise. This solves the
security problem; for PUFs with large noise asymmetry our approach leads to a
reduction in channel capacity. The loss in channel capacity is approximately
30% which is acceptable for a practical key storage implementation. (ii) drift
compensation by storing the estimated drift and recent error patterns in the
prover device. This solves the privacy problem. Keeping track of only two
error patterns already is enough to obtain an accurate drift estimator, thus
demonstrating the efficiency of the proposed protocol.
This chapter is based on the paper
A. Schaller, T. Stanko, B. Škorić, and S. Katzenbeisser. Eliminating leakage in
reverse fuzzy extractors. In IEEE Transactions on Information Forensics and
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Security. 13, 4, pages 954-964, 2018.
I contributed to Sections III, IVc and V of the paper which are covered in
Sections 5.3, 5.4.3 and 5.5 below.

5.1—Introduction

In the past decade Physically Unclonable Functions (PUFs) have attracted
increasing attention. With their desirable property of unclonability they were
proposed as a promising security building block that can be applied to various
identification and authentication applications. Several protocols featuring PUFs
have been devised in the past, such as key storage, authentication and remote
attestation schemes [74,78,93]. In this paper we focus on key storage, which
is sometimes referred to as ‘Physically Obfuscated Key’. In particular, we will
consider the use of a PUF-based key storage in the context of privacy-preserving
protocols that are designed to hide the identity of the users from eavesdroppers,
such as low-cost anonymous access tokens.
PUFs are physical systems and thus their measurements always contain a certain
amount of noise. However, cryptographic primitives like hashes and ciphers do
not tolerate any noise. Thus, the noise in a PUF measurement must be removed
before the measurement can be used as input to a cryptographic primitive. This
introduces a complication: redundancy data (for the error correction) needs to
be stored somewhere as part of the PUF enrollment data. The usual attacker
model states that this redundancy data is public and thus can be accessed by the
adversary. Hence, error correction needs to be designed such that the redundant
data hardly leaks information about the PUF key. An error correction scheme
that satisfies this requirement is variously known as Helper Data Scheme (HDS),
Secure Sketch (SS) or Fuzzy Extractor (FE). FEs have the additional property
that they generate a (nearly) uniform key. A FE can be trivially derived from
a SS. One of the most popular HDSs is the Code Offset Method that employs
a linear Error-Correcting Code (ECC). Particularly compact implementations
are possible if syndrome decoding is used.
In many PUF applications the device containing the PUF is assumed to be
resource-constrained. In the key reconstruction phase the device needs to
perform an ECC decoding step, which may be infeasible given the constraints.
An elegant solution was proposed in [39], where it was shown how the ECC
decoding can be securely outsourced to a more powerful second party. The
scheme was dubbed ‘Reverse Fuzzy Extractor’. The most difficult HDS task
for the device is now merely to compute a syndrome, which can be done very
efficiently. On the downside, in each protocol run the Reverse FE reveals to
eavesdroppers which error pattern is present in the PUF measurement, as
compared to the enrollment measurement. In [39] it was argued that the PUF
key is secure as long as the measurement noise is independent of the PUF value
itself.
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In this paper we (a) examine what happens when this assumption does not
hold, i.e., we study the security implications of data-dependent noise; and (b)
argue that the statement ”the PUF key is secure as long as the measurement
noise is data-independent”, while true, does not cover all security aspects of
the protocol.
Point (a) is important because data-dependent noise was shown to exist in
PUFs such as FlipFlop PUFs, Latch PUFs and Buskeeper PUFs [94]. We use
the Binary Asymmetric Channel (BAC) as our noise model. We quantify the
leakage in this model and study possible countermeasures. It turns out that
applying an extra Z-channel [32] after the BAC is a very effective solution.
Regarding point (b), we note that PUFs exhibit a slow ’drift’ in the values
of their response bits over time, which is due to device ageing. This drift is
characteristic to individual PUF instances. A passive network attacker can
try to identify PUF instances by analyzing the revealed error pattern, since
the drift is directly reflected in the error pattern. This creates a privacy risk
in case the PUF is used in privacy-preserving protocols, especially those that
rely on the Reverse Fuzzy Extractor [6, 31], as the drift allows an attacker to
link protocol executions from the same PUF. We show from experimental data
that several PUF types indeed exhibit a drift. We propose an adaptation of the
Reverse FE protocol that eliminates the drift issue.

5.1.1 –New Contributions. This paper is an extension to our publication [76],
where we presented an evaluation of the systematic drift of Physically Unclonable
Functions due to aging and further analyzed leakage involved. This version
extends our previous work with the following contributions:

� We adopt the Binary Asymmetric Channel (BAC) as a noise model
and provide detailed numbers on the potential leakage caused by the
asymmetry of the noise.

� We propose an approach to eliminate the leakage. We apply artificial
asymmetric noise. This results in two concatenated BACs which together
form a symmetric channel. Due to the symmetry the leakage is entirely
eliminated.

� The introduction of artificial noise leads to a loss of channel capacity. We
estimate this loss.

� Finally, we propose a modified Reverse Fuzzy Extractor Protocol, which
is resistant against leakage even if involved PUF instances exhibit drift.

The rest of the paper is organized as follows. In Section 5.2 we define notations,
give a brief overview on PUFs and Fuzzy Extractors, introducing the Reverse
Fuzzy Extractor in particular. In Section 5.3 we discuss the problem of data-
dependent noise and describe our solution. In Section 5.4 we look at experimental
data on drift and analyze the leakage caused by drift. We introduce an improved
version of the Reverse Fuzzy Extractor in Section 5.5.
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5.2—Preliminaries

5.2.1 –Notation and terminology. The notation ‘log’ stands for the base-2 log-
arithm. Random variables are written in capital letters and their values in
lowercase. The binary entropy function is written as

h(p) def= -p log p- (1 - p) log(1 - p). (5.1)

The Shannon entropy of a random variable X is denoted as H(X), and mutual
information as I(X; Y).
The Binary Asymmetric Channel (BAC) is a memory-less channel. An trans-
mitted bit X is received as a noisy bit X 0. The channel is fully characterized
by two parameters: � def= Pr[X 0 = 1jX = 0] and � def= Pr[X 0 = 0jX = 1]. Without
loss of generality we consider only �,� 2 [0, 12 ]. The case � = � is called the
Binary Symmetric Channel (BSC). The case � = 0 or � = 0 is known as a
Z-channel. We will occasionally write � = �- �, � = �+ �, with � 2 [0, 12 ] and
j�j 6 min(�, 12 - �).
5.2.2 –Physically Unclonable Functions. A Physically Unclonable Function (PUF)
is a complex physical structure that generates a response to a physical stimulus.
The response depends on the challenge as well as on the micro- or nanoscale
physical structure of the PUF itself. One typically assumes that the PUF can
not be cloned, not even by the manufacturer of the device. Furthermore, the
challenge-response behavior of the physical system is assumed to be complex
enough such that the response to a given challenge can not be predicted.
Several different PUF constructions exist; for an overview we refer to [59].
Among them are memory-based PUFs, such as SRAM PUFs, which exploit
biases in memory cells. At the power-up phase these cells initialize to either ’0’
or ’1’. Most cells show a significant tendency to initialize to one of both values.
The entirety of the the start-up values creates a start-up pattern, which is taken
as PUF response. PUFs can also be based on random timing characteristics of
circuits, among them Ring Oscillator PUFs and Arbiter PUFs.
Due to physical characteristics of the device, measurements of a PUF response
are subject to noise; thus, subsequent measurements will be slightly different. In
order to use them in cryptographic protocols, noisy responses must be stabilized.
This is done by employing a Fuzzy Extractor [25], which extracts the stable
part of the PUF response and transforms it to a uniformly distributed value.
5.2.3 – Fuzzy Extractors. The authors of [25] introduced Fuzzy Extractors as a
means to deal with the noise. Commonly, Fuzzy Extractors work in two phases,
a generation phase Gen() performed upon enrollment and a reconstruction phase
Rec() performed after each measurement. During Gen(), a secret key K and
a public Helper Data W are derived from a noisy PUF reference (enrollment)
measurement X. The algorithm Rec() transforms a noisy PUF measurement
X 0 back into the key K, thereby using the Helper Data W. This works as long



5

5.2. PRELIMINARIES 79

as X and X 0 are close enough (e.g., are two PUF measurements of the same
challenge). Usually the reconstruction is achieved using an error correcting
code.
5.2.4 –The Reverse Fuzzy Extractor. We briefly review the Reverse FE proto-
col [39].1 We omit all details that are not critical for the key reconstruction itself
(such as signal processing of the raw PUF data, or additional protection of the
helper data, hashes of the key, quantities derived from the key, usage of the key).
The Reverse Fuzzy Extractor is a two-party protocol which involves a prover,
in possession of a (resource- constrained) PUF-enabled device, who wants to
authenticate towards a computational powerful verifier. The description below
is identical to the ‘Syndrome-Only’ Code Offset Method [7, 25] with the sole
difference that syndrome decoding is outsourced to the verifier. A sequence
diagram of the protocol is given in Figure 5.1.
System setup:
The parties agree on a linear error correcting code C,with message length m
and codeword length n. The encoding algorithm of C is Enc : f0, 1gm ! f0, 1gn,
and the algorithm for computing the syndrome is denoted as Syn : f0, 1gn !
f0, 1gn-m. The code is chosen such that an efficient syndrome decoder SynDec :
f0, 1gn-m ! f0, 1gn exists. The parties also agree on a key derivation function
KeyDeriv : f0, 1gn ! f0, 1gm.
Enrollment:
A PUF enrollment measurement X 2 f0, 1gn is obtained. The helper data
W = Syn(X) is computed. The prover stores W, while the verifier stores
K = KeyDeriv(X).

Figure 5.1: Sequence diagram of the Reverse Fuzzy Extractor authentication
protocol.

1We will actually work with a more general primitive: a Secure Sketch. It is always
possible to construct a Fuzzy Extractor from a Secure Sketch.
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Reconstruction: The prover performs a fresh measurement X 0 2 f0, 1gn. He
computes � = W�Syn(X 0) and sends � to the verifier. The verifier computes the
error pattern E = SynDec(�) and sends E to the prover. The prover computes
the estimators X̂ = X 0 � E and K̂ = KeyDeriv(X̂).
Note that this protocol is extremely lightweight, as the prover only has to perform
one Syn and one KeyDeriv operation. Note further that � = Syn(X� X 0), due
to the linearity of the code C. Hence, if there is not too much noise, E is the
error pattern that maps X 0 back to X and X̂ = X during reconstruction.
Note, that one should not confuse asymmetric noise with biased PUF sources.
It is known that a large bias in the distribution of the bit values of X causes
problems if the code offset method is applied directly [40, 51], and various
solutions have been suggested [21, 58, 80]. In this paper, however, we are
concerned not about the distribution of the source X but about the asymmetry
of the noise.

5.3—Data-dependent noise

5.3.1 –Quantifying the problem. If the PUF noise is not independent of the
measurement X, then some information about X is leaked to eavesdroppers via
the error pattern E, during the reconstruction (Section 5.2.4). For instance,
imagine that for a single bit of the PUF response a 0! 1 transition is much
more likely than a 1 ! 0 transition. Then the error locations in E point to
locations where a ‘0’ in X is much more likely than a ‘1’. This is a security risk.
It becomes even more serious if the adversary observes multiple transcripts
from the same prover, carrying different information about X, and is able to
link those transcripts together.
We adopt the Binary Asymmetric Channel (see Section 5.2.1) as our noise
model and quantify the amount of leakage in this model. We further assume,
for simplicity, that the bias is constant over the device, i.e., we consider a global
bias.

Lemma 5.1. Let X 2 f0, 1gn be the enrollment measurement, with i.i.d. bits
Xi � (1-p,p), i.e., all bits have the same bias Pr[Xi = 1] = p. Let X 0 2 f0, 1gn be
the reconstruction measurement. Let the noise behave as a BAC. Let E = X�X 0
be the error pattern during reconstruction. Then the mutual information between
the error pattern and X is given by

I(X;E) = n
�
h
�

(1 - p)�+ p�
�

- (1 - p)h(�) - ph(�)
�

(5.2)

and the entropy of X given E is

H(XjE) = nh(p) - I(X;E). (5.3)
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The proof is given in Appendix 5.7.1. Note that setting � = � in Lemma 5.1
gives I(X;E) = 0, i.e. if the noise is data-independent then an attacker learns
nothing about X by observing E.
More generally, an attacker could observe multiple error vectors
E(1), . . . ,E(k) 2 f0, 1gn from the same device. We define Ti as the number of
observations that yield an error in location i, i.e., Ti = jfk : E(k)

i = 1gj =
Pk
j=1 E

(j)
i . We define T = (Ti)ni=1. The generalization of (5.2) then becomes

I(X;E(1) � � �E(k)) = I(X; T) = H(T) -H(T jX) = nH(Ti) - nH(TijXi),

where in the last line the index i is arbitrary. For the evaluation of H(TijXi)
and H(Ti) we need the corresponding probability distributions. For given
Xi, Ti is binomial-distributed, thus Pr[Ti = tjXi = 0] =

�k
t

�
�t(1 - �)k-t and

Pr[Ti = tjXi = 1] =
�k
t

�
�t(1 - �)k-t. This yields Pr[Ti = t] = (1 - p)Pr[Ti =

tjXi = 0] + pPr[Ti = tjXi = 1].
Figure 5.2 shows the leakage nI(Xi; Ti) relative to the total information nH(Xi) =
nh(p) that can potentially be leaked, i.e., the leaked fraction. This is shown for
various parameter settings of � and k, where p has been tuned so as to maximize
the attacker’s uncertainty about Xi. By numerical methods we found the value
of p (indicated as p*) that maximizes H(XijTi), where we used the above given
probability distributions to compute H(XijTi) as H(Xi)+H(TijXi)-H(Ti). This
is shown for various parameter settings of � and k, where p has been tuned so as
to maximize H(XijTi), the attacker’s uncertainty about Xi. While k is the num-
ber of observed error instances observed by the attacker, � is the average of �
and � of the BAC, i.e., the average of the bit flip probabilities (see Section 5.2.1).
The leakage is considerable. For example, in the � = 0.05 graph we see that
already at � = 0.025 ten observations reveal almost 10% of the entropy of X. In
order to connect Figure 5.2 to real-life PUFs, we evaluated PUF measurements
of different PUF types regarding the extent of asymmetric noise and quantified
the resulting leakage. For this purpose we leveraged the UNIQUE dataset [49],
which contains measurements of different PUF types, including SRAM, latch,
D-Flip-Flop (DFF), Arbiter and Ring Oscillator (RO) PUFs. Note that [49]
conducted the standard analysis usually done for PUFs, which are agnostic
of noise characteristics and does not asses whether the noise is symmetric or
asymmetric. It uses the overall bit error rate Pr[X = 0] � � + Pr[X = 1] � �.
Table 5.1 lists values for � and �, which were computed by considering pairs
of enrollment and reconstruction PUF measurements and applying the BAC
model accordingly. In particular, for a given PUF type, we randomly selected
an enrollment measurement at 20 �C and compared it with all reconstruction
measurements taken at -40 �C, 20 �C and 80 �C. Values for � and � were
computed by counting bit flips in the PUF measurement (see Section 5.2.1).
Once values for (�,�) pairs were determined for each combination of PUF type
and reconstruction temperature, corresponding � and � values were derived.
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Figure 5.2: The attacker’s knowledge about Xi after observing k error instances,
for various BAC parameters and various k. In each plotted point p� is individ-
ually tuned to maximize H(XijTi) as a function of �, � and k.

For Ring Oscillator (RO) PUFs, D-flip-flop (DFF) PUFs (high temperature)
and Latch PUFs (low temperature), large values of j�j up to 0.08, 0.17 and
0.2 respectively can occur (at � � 0.2), while SRAM PUFs have very little
asymmetry with j�j = 0.07,� = 0.002. These are the ‘raw’ values before reliable
component selection has been applied, or other processing, e.g. repetition codes,
that reduces � and �. It is clear from Figure 5.2 that even after noise reduction
residual asymmetries lead to significant leakage.

Table 5.1: Values for � and �, given for various PUF types at different opera-
tional temperatures.

Parameter SRAM LATCH
-40 �C 20 �C 80 �C -40 �C 20 �C 80 �C

� 0.0752 0.0548 0.0718 0.2435 0.0423 0.0914
j�j 0.0008 0.0002 0.0019 0.1953 0.0219 0.0175

DFF RO
-40 �C 20 �C 80 �C -40 �C 20 �C 80 �C

� 0.1312 0.0445 0.2076 0.2265 0.2093 0.2209
j�j 0.0035 0.0198 0.1650 0.0802 0.0737 0.0776

A naive attempt to deal with the leakage problem would be to tune the KeyDeriv
function so that it compresses X more strongly, taking into account the expected
leakage; however, there is no clear upper bound on the leakage, as the adversary
can eavesdrop on additional protocol rounds.
Keeping in mind that even a few percent of key leakage can endanger the
cryptographic primitives, we conclude that, no matter how KeyDeriv and the
distribution of X are tuned, the Reverse FE has a serious leakage problem when
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the noise is data-dependent.
5.3.2 –Eliminating the leakage. In order to eliminate the leakage, we propose
a simple solution in the BAC case: to apply, in the reconstruction phase, an
additional Z-channel that compensates the asymmetry in the measurement
channel X ! X 0. The parameters required for the Z-channel can be pre-
computed based on calibration measurements which are done at system setup
or at enrollment. The adapted reconstruction procedure is as follows.
Reconstruction:
1) The prover performs a fresh measurement X 0 2 f0, 1gn. He applies additional
Z-channel noise to X 0, yielding X 00. He computes � = W � Syn(X 00) and sends
� to the verifier.
2) The verifier computes the error pattern E = SynDec(�) and sends E to the
prover.
3) The prover computes the estimators X̂ = X 00 � E and K̂ = KeyDeriv(X̂).

0

1

0

1

0

1

X X 0 X 00

1 - �

1 - �

1 - �Z

1 - z̄

�

�

z̄

�Z

Figure 5.3: Concatenation of two Binary Asymmetric Channels.

We define the notation �Z = Pr[X 00i = 1jX 0i = 0] and z̄ = Pr[X 00i = 0jX 0i = 1] for
the Z-channel bit flip probabilities (see Figure 5.3). Note that at least one of
the parameters �Z, z̄ is zero. The nonzero parameter is tuned such that the
combined channel, consisting of the BAC with appended Z-channel, is a BSC.
We will denote the bit error rate of this BSC as ". The parameter tuning is
given by the following theorem.

Theorem 5.2. Let X! X 0 be a given BAC with parameters �,� (or �, �). Let
X 0 ! X 00 be a second BAC with parameters �Z, z̄ such that the combined channel
X! X 00 is a BSC with bit error rate ". Then " is minimized by the following
parameter choice:

� > � (� 6 0) : �Z = 0, z̄ =
�- �

1 + �- �
=

2j�j
1 + 2j�j

� > � (� > 0) : z̄ = 0, �Z =
�- �

1 + �- �
=

2�
1 + 2� .
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Both cases yield " = �+j�j
1+2j�j .

The proof is given in Appendix 5.7.2. Note that Theorem 5.2 does not assume
that a Z-channel is the solution but starts more generically from a second BAC.
Of course the legitimate parties need to estimate the noise parameters �,� of
the BAC in order to be able to set �Z, z̄ as specified in Theorem 5.2. The noise
parameters have to be established either (i) as part of a system setup phase
before the enrollments or (ii) during operation, by using a subset of the PUF
cells as non-secret test cells for calibration purposes.
Our solution entirely eliminates leakage from the communicated error pattern,
but this comes at a cost: the additional noise degrades the channel, i.e., it
reduces the amount of useful information about X that can be recovered after
error correction. We now quantify how much ‘worse’ the channel X ! X 00 is
than the original channel X! X 0. First we show that the final noise parameter
" cannot be larger than the highest BAC parameter.

Corollary 5.3. The bit-error probability " specified in Theorem 5.2 satisfies

" 2
��+ �

2 ,maxf�,�g
�

= [�,�+ j�j]. (5.4)

Proof. Let � > �(� > 0) w.l.o.g. From Theorem 5.2 we have " = �+�
1+2� .

Obviously, " 6 �+�. Furthermore, " = �+�
1+2� = �(1+2�)+�-2��

1+2� = �+ �(1-2�)
1+2� >

�.In the last step we used 0 6 � 6 1
2 . Thus, we obtain " 2 [�,�+�] =

��+�
2 ,�

�
.

The derivation for � < 0 follows exactly the same lines.

Next we characterize the loss of channel quality by looking at the channel
capacity. The channel capacity places a lower bound on how much source
entropy (from X) is required to derive a noise-robust key of a certain size. A
capacity equal to 1 corresponds to absence of noise, in which case all entropy
from X is directly usable. In general, the capacity C is the fraction of all the
entropy in X that may survive error correction in case of an ideal error-correcting
code.
The BSC X! X 00 has capacity CBSC = 1 - h("), with " = �+j�j

1+2j�j as specified in
Theorem 5.2. The capacity of the BAC is given by (see e.g. [62]),

CBAC =
�- j�j
1 - 2�h(�+ j�j) -

1 - �- j�j
1 - 2� h(�- j�j)

+ log
�
1 + 2-h(�+j�j )-h(�-j�j )

1-2�

�
(5.5)

= 1 - h(�) + (
�
�

)2
�

2 ln 2 + O(
�2

�2
[� ln�]2). (5.6)



5

5.4. THE DRIFT PROBLEM 85

Theorem 5.4. The capacity loss due to introducing the Z-channel can be approx-
imated as

� CBAC -CBSC = j�j(1 - 2�) log 1 - �
�

+ O(�2) = j�j log 1
�

+ O(�� log 1
�

). (5.7)

Proof. Follows from Taylor-expanding the expressions for CBAC and CBSC.

In Figure 5.4 we plot the capacity loss CBAC-CBSC relative to the original capacity
CBAC. The ‘raw’ noise levels in PUFs (i.e., without reliable cell selection) for
different PUF types. As shown in Table 5.1, D-flip-flop PUFs can have high
noise levels up to � = 0.2, � = 0.1 [94]. In this case and according to Figure 5.4,
the Z-channel insertion would then lead to almost 40% capacity loss. In contrast,
SRAM PUFs exhibit comparably little asymmetry with � = 0.07, � = 0.02,
which results in less then 5% capacity loss. Depending on the context this
may be acceptable. If not, the noise �, � can be reduced, as in Figure 5.4 we
see that the capacity loss is less severe at low noise. Reduction of noise due
to �, � asymmetry can be achieved by techniques such as reliable component
selection and repetition codes. The optimal tuning of the parameters in the
noise reduction techniques depends on the specific PUF properties.
The consequence of reduced channel capacity in practical scenarios lies in the
fact that more PUF material is needed due to this loss of channel capacity . In
fact, the channel capacity is inversely proportional to the size of required PUF
input bits.

Figure 5.4: Relative loss of channel capacity due to the extra Z-channel.

5.4—The drift problem
In some PUF instances individual cells have a bias towards either zero or one.
We present measurements which show that these biases change over time; we
call this the drift of a PUF. Furthermore, we provide a model for the drift and
estimate the privacy leakage (and the induced key leakage) in Reverse Fuzzy
Extractors due to the drift.
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5.4.1 –Drift model. We adopt the bias-based PUF model proposed in [94]. We
define the bias of a PUF cell i to be the probability that the cell ends up
in a ‘1’ state and denote the bias during enrollment as a value bi 2 [0, 1]; it
can be estimated by counting the number xi of occurrences of a ‘1’ response
during k enrollment measurements: b̂i = xi=k 2 f0, 1k , . . . , 1g. A PUF is fully
characterized by a vector of biases, b = (bi)i = 1n. Similarly, b 0i represents
the bias of cell i at a later time. It can be estimated from the number x 0i of ‘1’
responses in a series of l PUF responses: b̂ 0i = x 0i=l 2 f0, 1l , . . . , 1g.
The drift is modeled by a transition probability �(b 0jb ) indicating how likely
it is that the PUF has bias vector b 0 at a later time given that it had b at
enrollment. Assuming that the n PUF cell responses are mutually independent
(this assumption seems justified as we did not see any correlation between cell
responses in the PUF types under investigation [17,94]), and that drift behavior
is the same for all bits, we can express the transition probability for the entire
PUF as

�(b 0jb ) =
nY

i=1

�0(b 0ijbi). (5.8)

The function �0 does not depend on the cell index i. To estimate �0 we made
histograms of drifted biases, conditioned on the enrolled bias, i.e., for each
possible value of b̂i we computed a histogram counting b̂i ! b̂ 0i occurrences.
Here the b̂i ! b̂ 0i transitions were collected from all cells. Finally, we converted
the histograms to probability distributions.
5.4.2 –Drift data. We made use of PUF measurement data obtained in the
UNIQUE project [49]. In this project custom ASICS with different PUF types,
including SRAM, latch, D-Flip-Flop (DFF), Arbiter and Ring Oscillator (RO)
PUFs, were developed and tested under different conditions. The UNIQUE data
set includes measurements of PUFs which were exposed to an accelerated aging
process. The simulation of aging is based on the Negative Bias Temperature
Instability (NBTI) mechanism, carried out by operating the ASICs at an extreme
temperature of +85 �C and with high supply voltage of 1.44V (120% of the 1.2V
standard Vdd). The treatment lasted for 2150 hours corresponding to an aging
factor of 18.2. This way, continuous use of the PUF device can be simulated in
short time.
Three different datasets were available for our experiments: enrollment data
taken right after manufacturing (referred to as time t0), measurements at the
beginning of the aging process (at time t1) and measurements after the aging
process had terminated (time t2). Measurements at t1 correspond to a simulated
operating time of approximately 1 week with respect to t0 whilst t2 corresponds
to approximately 4.5 years. For our bias transition model we compared t0
versus t1 and t0 versus t2.
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(a) SRAM: t0! t1 (b) SRAM: t0! t2 (c) Latch: t0! t1 (d) Latch: t0! t2

(e) DFF: t0! t1 (f) DFF: t0! t2 (g) RO: t0! t1 (h) RO: t0! t2

Figure 5.5: Bias transition probabilities �0(b 0jb) for SRAM, latch, DFF and
RO PUFs corresponding to different time intervals (t0 ! t1 and t0 ! t2).

Figure 5.5 shows �0 for SRAM, latch, DFF and RO PUFs, for t0 ! t1 and
t0 ! t2. In Figures 5.5a, 5.5c and 5.5e we observe a diagonal ‘saddle’ between
(0, 0) and (1, 1) for the t0 ! t1 data. This indicates that SRAM, latch and DFF
PUFs have a stable bias over a short operating time. The RO PUF (Figure 5.5g)
is an exception, featuring an ‘island’ of high probabilities in the middle of the
plot area, indicating more transitions to bias 0.5 (random behavior); this is not
unexpected, as ring oscillators can be used to generate random numbers as well.
For the transition t0 ! t2 we see a flattening of the ‘saddle’ for all PUF types
(Figures 5.5b, 5.5d, 5.5f and 5.5h). This indicates, as expected, that there is
a significant drift after a longer operation time. Note that not all transition
probabilities are symmetric under 0 $ 1 reversal; this phenomenon mainly
occurs for the latch and RO PUFs.
The FE reconstruction phase typically employs only a single measurement
(l = 1). Hence, in practice FEs usually do not use fine-grained information
about biases during reconstruction. Instead, fine-grained bias information is
used only for the selection of reliable cells. A FE will typically store pointers
to stable cells (i.e., cells that have an enrollment bias close to ‘0’ or ‘1’); only
those are then used for key derivation.
For this context we introduce a simplified drift model in which the biases are
binarized to 0/1 values, and only reliable PUF cells are taken into account.
For this purpose, we regard cells as reliable, if they observe an enrollment bias
bi 2 [0, 0.05] [ [0.95, 1]. Although the intervals that define stable components
are chosen somewhat arbitrarily, it turns out to be a workable choice. The
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Figure 5.6: Bit error rates of stable cells for various PUF types after t0 ! t1
and t0 ! t2 aging. The red line in each box indicates the median. The colored
bottom and top of each box marks the 25th/75th percentile. The height of a box
displays the inter quartile range (IQR). The whisker’s ends indicate the lowest
and highest bit error rates that are within 1.5 times the IQR. Single outsider
values are marked by red plus signs.

model has only two parameters: ad, the probability of a 0! 1 bit transition
due to drift, and �d, the probability of a 1 ! 0 transition due to drift. The
numerical values of these parameters slowly vary as a function of time. Table 5.2
lists the transition probabilities of reliable cells, based on the empirical data
from the UNIQUE project, and Figure 5.6 shows the same data as bit error
rates graphically.2 For SRAM and RO PUFs, the t0 ! t2 bit error rate is
considerably higher than the t0 ! t1 bit error rate.

Table 5.2: Transition probabilities 0 ! 1 and 1 ! 0 for t0 ! t1 and t0 ! t2
aging (biases bi 2 [0, 0.05] [ [0.95, 1]. (Mean�standard deviation) �10-4 is
listed).

Period Transition SRAM LATCH DFF RO

t0 ! t1
0! 1 36� 2 25� 7 17� 3 76� 55
1! 0 20� 1 12� 3 19� 4 50� 43

t0 ! t2
0! 1 130� 4 222� 135 62� 28 350� 199
1! 0 91� 4 41� 38 29� 10 323� 184

5.4.3 – Leakage analysis. The results of Section 5.4.2 show that aging indeed
causes drifting of the PUF measurement X 0 over time. Thus, the noise E = X 0�X

2Note that this figure incorporates fixed values,which have been found to be erroneous
in [76].
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in the Reverse FE protocol contains a part D 2 f0, 1gn (the drift) that changes
only over long time scales, while the rest of E consists of short-timescale random
noise N unrelated to aging. We can represent E as E = D�N. This both has
an impact on security and privacy.
Privacy. We first quantify the privacy leakage of the Reverse FE protocol
caused by observation of the drift. A privacy leakage occurs due to device
unique drift that is manifested in the public error patterns. Privacy-preserving
protocols [6, 31] that leverage the Reverse FE therefore are vulnerable to a
passive network attacker. By eavesdropping the communicated error patterns,
the attacker is able to link multiple protocol executions to individual PUF
instances. Equation (5.10) gives the exact information he gains about the drift
from observing a set of error patterns. Thus, the attacker is able to effectively
undermine potential privacy-preserving mechanisms in place.

Lemma 5.5. Let X1 and X2 be the enrollment measurements of two different
PUFs, uniformly distributed on f0, 1gn. Let D1 and D2 be their respective drifts.
Let the drift be independent in each bit, with parameters ad, �d as defined above.
Then the Hamming distance between D1 and D2 is binomial-distributed, with
parameters n and Puneq, where

Puneq = 2ad + �d

2 (1 -
ad + �d

2 ). (5.9)

The proof is given in Appendix 5.7.3.
The following corollary shows how the uniqueness of individual drifts can be
quantized in terms of Hamming distance.

Corollary 5.6. Let X1 and X2 be the enrollment measurements of two different
PUFs, uniformly distributed on f0, 1gn. Let D1 and D2 be their respective
drifts. Let the drift be independent in each bit, with parameters ad, �d. Then
the expected Hamming distance between D1 and D2 is �HD = nPuneq, and the
variance is �2HD = nPuneq(1 - Puneq).

Proof. Follows from Lemma 5.5 and the properties of the binomial distribution.

If the short-timescale noise N does not mask the drift, then the observed noise
pattern E, via the constant part D, becomes a unique characterizing property
for each PUF, as quantified in Corollary 5.6.
For the further analysis we introduce the following notation. Given multiple
observations of the protocol run, we denote the set of observed error patterns
as E = (Ea)ka=1, where k is the number of observations. Similarly, we define
N = (Na)ka=1, with Ea = D�Na. We write Xdrifted = X�D.
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Theorem 5.7. Let Nav 2 f0, 1gn be the pattern obtained by averaging N: Nav =
[Nak ]. The amount of information about D gained from observing E is given by

I(E;D) = H(D�Nav) -H(Nav). (5.10)

Proof: see Appendix 5.7.4.
If the noise Na is data-independent, then the adversary can get a good estimate
of D by averaging the error patterns, and we can almost say that observing E is
the same as observing D and E (or, equivalently, D and N). The D can be used
by the attacker as an identifier. In the case of data-dependent noise, Na leaks
information about Xdrifted. This too can be used by the attacker as an identifier.
Security. Next we analyze the security implications if the adversary is able to
link multiple instances of the authentication protocol run by the same PUF
device. (Either because of the above explained privacy problem or by some
other means.)
Since we did not specify the KeyDeriv algorithm, we cannot compute the mutual
entropy between E and the PUF key K in general. Instead, we derive a bound
on the mutual information between E and X.

Theorem 5.8. The leakage about X caused by observation of the error patterns
E can be upper bounded as

I(E;X) 6 I(D;X) + I(N;Xdrifted), (5.11)

Proof: see Appendix 5.7.5.
The two leakage terms in Theorem 5.8 are very similar. The I(N;Xdrifted) term
is exactly the leakage shown in Figure 5.2, but now about Xdrifted instead of X,
which is practically the same from a security point of view, since the attacker has
access to D. The mutual information I(D;X) is precisely given by Lemma 5.1
where the error pattern E is replaced by the drift D, and the parameters �,�
by ad,�d. The I(D;X) is nonzero if the drift is asymmetric.
Note that, in contrast to the leakage I(N;Xdrifted), the existence of the I(D;X)
leakage does not necessarily imply that there is a grave security problem:
The drift D is a single error pattern, whereas measurements of short-term
asymmetric noise reveal new information every time. A properly designed
extraction procedure KeyDeriv can compensate for the leakage I(D;X) by
sufficiently compressing X. In case privacy is not important, we see the leakage
I(D;X) primarily as an issue that reduces the efficiency of the Fuzzy Extractor.
Finally we briefly comment on the case where the adversary observes the helper
data W as well as the communicated noise patterns E.

Theorem 5.9. The leakage caused by observing W and E can be bounded as

I(WE;X) 6 I(W;X) + I(E;X). (5.12)
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Proof: See Appendix 5.7.6.
The bound in Theorem 5.9 is tight, since H(EjW) � H(E). Thus we can also
read Theorem 5.9 as I(WE;X) � I(W;X) + I(E;X), i.e., leakage from W plus
almost independent leakage from E.

5.5—Solving the drift problem

In this section we present a modified Reverse Fuzzy Extractor in which the
protocol messages do not cause leakage, even if there is PUF drift. The
modified protocol assumes a passive network adversary, who is able to observe
the channel between the prover and the verifier and hence is able to capture the
communicated error patterns E. In the modified Reverse Fuzzy extractor the
prover keeps track of the computed error patterns E over time. If E starts to
exhibit behavior constant in time (a drift D), then the prover device modifies
its stored helper data in such a way that the drift is compensated; future error
patterns E will thus not reveal the drift. This technique is compatible with the
addition of a Z-channel as described in Section 5.3.2.

5.5.1 –Proposed solution for the drift problem. In a nutshell our proposal is as
follows. The prover device has additional non-volatile memory in which it stores
an estimated drift vector D̂ 2 f0, 1gn and a list L of up to Nmax error patterns
observed during previous executions of the protocol. The D̂ serves to keep track
of how far the PUF has drifted away from the enrolled PUF measurement X.
The reconstruction protocol does error correction with respect to the (estimated)
drifted PUF value X̂drifted, and then shifts the result by the amount of D̂. Taking
the drifted value X̂drifted as the zero point for error correction has the additional
advantage that the number of bit errors is reduced. The stored helper data
is always equal to W̃ = Syn(X̂drifted). A detailed description of our proposal is
given below.
System setup:
The same as in Section 5.2.4.
Enrollment:
The same as in Section 5.2.4. The enrolled helper data is W̃ = Syn(X). In
addition, the prover’s list L is initialized to the empty string ;, and D̂ is
initialized to the zero string.
Reconstruction:
1) The prover

1. performs a fresh measurement Y 2 f0, 1gn,
2. adds (pseudo-)random Z-channel noise R, yielding Y 0 = Y � R.
3. computes � = W̃ � Syn(Y 0) and sends � to the verifier.

2) The verifier computes the error pattern Ẽ = SynDec(�) and sends Ẽ to the
prover.
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3) The prover computes X̂drifted = Y 0 � Ẽ and the estimators X̂ = X̂drifted � D̂
and K̂ = KeyDeriv(X̂).
4) If K̂ = K then the prover performs the following actions.

1. Add the error pattern Ẽ�R to the list L. If necessary, the oldest entry
in L is discarded to make place.
2. If L contains Nmax entries, check if there are bit positions that are ‘1’
in the majority of the entries. If so, construct an error pattern e 2 f0, 1gn
consisting of these positions, replace D̂ by D̂� e, and replace the helper
data W̃ by Syn(X̂drifted � e). Xor all entries in L with e.

5.5.2 –Privacy of the proposed protocol. We have Y 0 = X�D�N� R, where
N is short-timescale BAC noise, and (in case of correct reconstruction of X) we
have X̂drifted = X� D̂. This gives

Ẽ = Y 0 � X̂drifted = (D� D̂)� (N� R). (5.13)
Thus, the error pattern Ẽ observed by the adversary is a combination of (i)
Z-channel-compensated (and hence symmetric) short-timescale noise N � R,
and (ii) a small long-timescale component D�D̂ which vanishes if the estimator
D̂ is accurate.
Given an accurate D̂, there is no long-timescale structure to be observed in Ẽ.
Furthermore, the symmetry of the noise N� R (as opposed to N) guarantees
that the adversary learns nothing about the data Xdrifted. Thus, both privacy
aspects are solved.
We checked the accuracy of the estimator D̂ of D, by simulating the proposed
protocol on the same data that was used for evaluating the systematic drift in
Section 5.4.2. Figure 5.7 shows the fractional Hamming distance between D̂
and D as a function of Nmax=20 for various PUF types at time periods t1 and
t2. In particular, we evaluated the protocol on the following PUF types and
their respective PUF averages of 40 individual PUF instances. As expected,
with increasing Nmax, the accuracy of D̂ improves up to the point where the
entire data set is considered (Nmax = 20), resulting in D̂ � D, i.e., a fractional
Hamming distance close to zero. Note, that the accuracy of D̂ is not exactly
zero due to quantization noise. The results show that D̂ deviates only by 2%
from the actual drift in the worst case (considering only two measurements),
for most of the PUFs. Only the RO PUFs, exhibiting very large asymmetry,
of up to 10% deviation. If the prover implements sufficient memory to store
even more error pattern instances, accuracy of estimator D̂ can be further
improved. In our experiments deviation of D̂ is already at 0.5% when using 20
measurements for SRAM, Latch and DFF PUFs. For RO PUFs, more then 20
measurements must be stored, to limit deviation of D̂ to under 5%.
Thus, a prover keeping track of only two error patterns already results in
estimator D̂ that is accurate enough, in order to mask the long-timescale drift,
thus demonstrating the efficiency of the proposed protocol.
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Figure 5.7: Accuracy of the approximated drift vector D̂ compared to the actual
drift vector D, given as fractional Hamming distances. A Hamming distance
of zero indicates a perfect estimator D̂. The actual drift D is based on 20
reconstruction measurements, taken at time periods t1 & t2. The percentage
values depict the fraction of reconstruction measurements used for computation
of D̂. Fractional Hamming distances are given as mean values over 40 PUF
instances.

5.5.3 – Security of the proposed protocol. As mentioned above, an adversary
who observes Ẽ learns nothing about Xdrifted; this is the case because of the
Z-channel insertion just as in Section 5.3.2. However, in the new protocol we
have to store additional public data D̂,L together with W̃ in memory. We
study how the security is affected by this additional information.

Theorem 5.10. An adversary who observes the prover’s memory has the following
amount of information about X,

I(X; W̃D̂L) = I(X;W)+[H(W̃jD̂)-H(W)]+I(D̂;X)+[H(LjD̂W̃)-H(LjXdrifted)].

In Theorem 5.10, the term I(X;W) is the ‘known’ result, for the ordinary code
offset method. The corresponding proof can be found in the Appendix.

� The I(D̂;X) is nonzero if the drift is asymmetric. As mentioned in
Section 5.4.3, a nonzero leakage here is not a severe problem and can be
dealt with by properly choosing the parameters in the function KeyDeriv.

� The term H(W̃jD̂) -H(W) is small, since W̃ equals the original helper
data W compensated by the drift.

� The term H(LjD̂W̃) -H(LjXdrifted) is negligible, since the noise stored in
L is symmetric and hence data-independent.

Note that our scheme has moved the leakage term I(X; D̂) from the eavesdrop-
ping domain to the domain of the physical memory of the prover device. In
particular, an attacker who is able to access the data stored on the prover device,
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i.e., list L and estimator D̂, is able to extract as much information about X, as
a passive network adversary, eavesdropping on protocol runs of the original FE
protocol scheme.

5.6—Conclusion

We addressed two leakage issues of the Reverse Fuzzy Extractor protocol.
In particular (a) data-dependent short-timescale noise poses a severe security
problem, rendering insecure any protocol that uses the Reverse FE in its original
form. Furthermore, (b) there is privacy-sensitive leakage if the long-timescale
PUF drift depends on the PUF value X.
Our study of experimental data confirms the existence of asymmetric (data-
dependent) drift in several types of PUFs.
In this chapter we introduce two modifications to the Reverse FE scheme
which together eliminate both leakage problems, (i) additional Z-channel noise
that turns a BAC into a BSC. This solves the security problem; and (ii) drift
compensation by storing the estimated drift and recent error patterns in the
prover device. This solves the privacy problem.
The first modification turns the noisy channel X ! X 0 into an even more
noisy channel X ! X 00, compensating its previous asymmetry. The second
modification ‘moves’ the drift problem from eavesdropping to the physical
attack scenario, involving an attacker with access to the prover device. In
the new scheme, an eavesdropper will not be able to identify the PUF device.
Physical access to the prover device’s nonvolatile memory in the new scheme
will yield as much information as eavesdropping in the original scheme.
Note that the noise parameters (�,�) need to be estimated accurately, otherwise
the second Binary Asymmetric Channel will not fully compensate the asym-
metry; this results in residual leakage, given by Equation (5.4) with modified
parameters. In practice it is difficult to do an entirely accurate estimate. Hence
one has to perform a suitable amount of privacy amplification in the KeyDeriv
operation (Section 5.2.4) in order to eliminate Eve’s knowledge.

5.7—Appendix

5.7.1 –Proof of Lemma 5.1. Since all bits are independent we consider a single
bit i. We have Pr[Ei = 1] = Pr[Ei = 1jXi = 0]Pr[Xi = 0] + Pr[Ei = 1jXi =
1]Pr[Xi = 1] = (1 - p)� + p�. Thus, H(Ei) = h

�
(1 - p)� + p�

�
. Next we

have H(EijXi) = Pr[Xi = 0]h(�) + Pr[Xi = 1]h(�). We obtain I(Xi;Ei) =
H(Ei) -H(XijEi) = h

�
(1- p)�+ p�

�
- [(1- p)h(�) + ph(�)]. Multiplying by

the number of bits n gives (5.2). Eq. (5.3) follows from H(XjE) = H(X)- I(X;E).
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5.7.2 –Proof of Theorem 5.2. The bit error probabilities for the X! X 00 channel
are

Pr[X 00 = 1jX = 0] = �(1 - z̄) + (1 - �)�Z

Pr[X 00 = 0jX = 1] = �(1 - �Z) + (1 - �)z̄
(5.14)

We want to impose the constraint that these probabilities are equal and then
mimimize the bit error rate under this constraint. We use Lagrange multipliers
formalism. We introduce the notation �Z = x2 and z̄ = y2, thus enforcing
�Z, z̄ > 0. The Lagrangian for this minimization problem is

L(x,y,�)=�(1-y2)+(1-�)x2+�
�
�(1-y2)+(1-�)x2-�(1-x2)-(1-�)y2

�
(5.15)

where � is the Lagrange constraint multiplier. Note that the quantity to be
minimized is the first expression in (5.14); we could equally well have taken
the second expression, or some combination. Setting the derivatives of the
Lagrangian to zero gives

@L
@x

= 2x(1 - �) + �
�
2x(1 - �) + 2x�] = 0

@L
@y

= -2y�+ �
�

- 2y�- 2y(1 - �)] = 0 (5.16)

@L
@�

= �(1-y2)+(1-�)x2-�(1-x2)-(1-�)y2=0.

The first two lines of (5.16) simplify to

x = 0 or � =
�- 1

1 - �+ �

y = 0 or � =
-�

1 + �- �

(5.17)

This leaves two possible solutions of the whole set of equations,

�Z =
�- �

1 + �- �
, �Z = 0, if � > �

z̄ =
�- �

1 + �- �
, �Z = 0, if � > �

Substituting �Z and z̄ into (5.14) yields ".
5.7.3 –Proof of Lemma 5.5. In bit i we have the following conditional probabil-
ities,

Prob[D1,i 6= D2,ijX1 = x1,X2 = x2] =

8
<

:

2ad(1 - ad) if x1,i = x2,i = 0
2�d(1 - �d) if x1,i = x2,i = 1

ad(1 - �d) + (1 - ad)�d if x1,i 6= x2,i
(5.18)
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We compute Puneq
def= Prob[D1,i 6= D2,i] = Ex1x2Prob[D1,i 6= D2,ijX1 = x1,X2 =

x2] = 1
4

P
x1,ix2,i Prob[D1,i 6= D2,ijX1 = x1,X2 = x2]. Performing the summa-

tion and then simplifying the result yields (5.9). The drift in each bit position
is independent; therefore the Hamming weight is the result of n independent
events, each of which increments the Hamming weight with probability Puneq.

5.7.4 –Proof of Theorem 5.7.

I(E;D) = H(E) -H(EjD) (5.19)
= H(D+ N) -H(N) (5.20)
= H(D+ Nav,D+ N) -H(Nav,N) (5.21)
= H(D+ Nav) +H(D+ NjD+ Nav) - [H(Nav) +H(NjNav)](5.22)
= H(D+ Nav) +H(NjNav) - [H(Nav) +H(NjNav)] (5.23)
= H(D�Nav) -H(Nav). (5.24)

5.7.5 –Proof of Theorem 5.8. We have

H(XjE) > H(XjDN) (5.25)
= H(XjD) +H(NjXD) -H(NjD) (5.26)
= H(XjD) +H(NjXdrifted) -H(NjD) (5.27)
> H(XjD) +H(NjXdrifted) -H(N) (5.28)
= H(XjD) - I(N;Xdrifted). (5.29)

In (5.25) we used that D and N together contain more information than E. In
(5.27) we used that N depends on X and D only through X �D. Finally we
take H(X) minus the whole inequality (5.25,5.29).

5.7.6 –Proof of Theorem 5.9.

H(XjWE) = H(XjW) +H(EjXW) -H(EjW)
= H(XjW) +H(EjX) -H(EjW) (5.30)
> H(XjW) +H(EjX) -H(E) (5.31)
= H(XjW) - I(E;X). (5.32)

In (5.30) we used the fact that W is a function of X. Finally we take H(X)
minus the whole inequality derived above.

5.7.7 –Proof of Theorem 5.10. We write

H(XjW̃D̂L) = H(XW̃D̂L) -H(W̃D̂L). (5.33)
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Applying the chain rule again we expand these terms as

H(XW̃D̂L) = H(X) +H(W̃D̂LjX) =
= H(XjW) +H(W) +H(D̂jX)
+ H(W̃jD̂X)

| {z }
0

+H(LjW̃D̂X)
| {z }
H(LjX̂drifted)

(5.34)

and
H(W̃D̂L) = H(D̂) +H(W̃jD̂) +H(LjD̂W̃). (5.35)

In (5.34) we have used the fact that L is noise on Xdrifted and therefore can
depend at most on Xdrifted itself. We substitute (5.34) and (5.35) into (5.33).
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Chapter 6

Conclusions

6.1—Enhancing Helper Data Systems
This thesis deals with two important topics in security: privacy-preserving use
of biometrics, and key storage in the form of Physically Obfuscated Keys. Bio-
metric authentication and POKs have found their way into consumer electronics
devices such as smartphones. The large scale deployment of these technologies
makes it important to have good understanding and control of all their privacy
and security properties. The main issue is how to reconcile the requirement of
error resilience with the privacy/security requirement. A central role is played
here by Helper Data Systems, special error-correcting schemes that are designed
to leak as little information as possible through their redundancy data. HDS
algorithms not only have to be secure but must also run efficiently. After more
than a decade of HDS research many problems have been solved. However, as
mentioned in Chapter 1, at the beginning of the PhD project several issues
were unresolved regarding the optimization and deployability of highly efficient
HDS constructions:
(i) Can we maximize the entropy extracted by a Zero Leakage Helper Data
System quantizer for a given source distribution and noise level?
(ii) Can we construct a high-performance HDS based on fingerprint minutiae?
Here high performance means high accuracy of the matching decision as well as
fast processing.
(iii) Is it feasible to use the Reverse Fuzzy Extractor trick when the noise is
data dependent and the POK has drift?
The contributions in this thesis improve the state of the art in a number of
ways, in terms of theoretical analysis as well as scheme construction:
(i) optimization of the Zero Leakage HDS quantization;
(ii) new fixed-length representations of fingerprint minutia lists, and a complete
two-stage HDS construction from it;
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(iii) a solution for the leakage problem that occurs when the error correction is
outsourced and the bit errors are data-dependent.
These improvements make it easier to implement good privacy protection for
stored biometric data, and to use the highly efficient error-correction outsourcing
trick. The latter is relevant for Physically Obfuscated Keys as well as biometric
authentication on constrained devices such as smartcards.

6.2—Summary of results

To apply helper data systems (HDS) to biometrics and Physical Unclonnable
functions (PUF) numerous challenges need to be addressed.
The first challenge is low entropy of fingerprints. A low-entropy secret pro-
tected by a one-way function can be guessed by a brute force attack, which is
unacceptable in security applications.
The second challenge is high bit error rate. The 2nd stage HDS needs a good
ECC which is capable of handling a high BER while still having a good code
rate, even for short codewords.
The third challenge is appearance/disappearance of minutiae. The number of
minutiae may be different on every image capture while an error correction
code requires input to have a fixed-length.
The fourth challenge is recognition performance degradation caused by template
protection. Securing the template requires an extra processing step, which
results in an extra information loss and lower recognition performance.
The fifth challenge is data dependent noise while outsourcing the error correction
to an external party. The revealed error pattern leaks information about the
secret data. With each repetition of the protocol, different data may leak.
The sixth challenge is PUF drift. The drift makes PUF recognizable when
outsourcing of the error correction is used. This has an impact on privacy.
Additionally the reconstruction will fail after certain amount of drift.
For the first stage HDS we optimized the quantization boundaries and derived
the optimal reconstruction boundaries. Our results allow to extract more
information in comparison to the state-of-the-art and significantly reduce the
bit error rate.
For fingerprints we introduced a new spectral function. The approach allows to
obtain a fixed-length representation on a small grid which is faster than the
state-of-the-art while keeping the same recognition performance. Additionally
the matching performance does not degrade much under image rotation.
We built a complete privacy-preserving fingerprint template protection scheme
based on a two stage HDS. When the biometric has high quality, the transition
from the analog unprotected spectral function to fully protected can be done
with almost no performance penalty. The realization of the scheme was enabled
by Polar codes which correct high bit error rate in short codewords.
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For the data dependent noise problem we modified the protocol between a
resource constrained device and strong verifier to eliminate the possible leakage.
The main technique is to introduce extra binary asymmetric noise in the
communication channel and make the noise data independent. This modification
makes the protocol secure while remaining practical; it reduces the channel
capacity by an acceptable amount.
For the PUF drift problem we introduced a separate buffer that stores recent
error patterns and the estimated drift of the PUF. If the error pattern changes
in time, the stored helper data is modified to compensate the drift.

6.3—Directions for future research
In Chapter 2, we optimized the first-stage ZLHDS quantization levels for a
given source and noise distribution. Our work improves the state-of-the-art for
an intermediate level of noise. For very low or large level of noise our results
converge to the previous work (de Groot et al. [19]). It must be noted that
the model that we use assumes that one has the perfect knowledge about the
distributions (noise and the original data). A mismatch between the actual
source distribution and the distribution used to build the HDS may cause
leakage about the secret. The amount of leakage should be further investigated.
In our derivation of optimal reconstruction boundaries, we considered only
two noise distributions. For other distributions the optimal reconstruction
boundaries can be derived by using Lemma 2.4.
Even though the scheme is called zero leakage, it is inevitable that the helper
data leaks about the enrolled value. A ZLHDS may still reveal more about the
source than what is considered acceptable in terms of privacy. For instance, the
first-stage helper data w in the continuum limit can reveal whether a source
value x 2 R has large absolute value: w � 0 implies a large probability that
x lies in the left tail of the distribution, and analogously w � 1 for the right
tail. This kind of leakage might be problematic for some components of the
enrollment vector. (Note that the leakage about the absolute value is vastly
reduced at small subdivision parameter M.) It would be very interesting to see
how the ZLHDS approach compares to the "sparse coding with ambiguization"
approach (Section 1) in this respect.
In Chapter 3 and 4, we proposed methods to transform fingerprint data (i.e.,
location and orientations of minutiae) to the fixed-length representation and
combined it with the ZLHDS to obtain two-stage HDS. Two-stage HDS provides
security of the template, however the recognition performance is much lower
than for standard methods for unprotected matching. This happens due to
the fact the that fixed-length representation approach extracts less information
than the set of minutiae.
Our scheme extracts little entropy from a finger, even when we combine multiple
enrollment images. The scheme can be further improved by trying N = 3 or even
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N = 4 for grid points that have a good signal-to-noise ratio. An alternative idea
is to apply a four-dimensional grid based on Rab, �ab, �a, and �b instead of a
two-dimensional grid. In all the existing spectral functions, the information from
the four important minutia-pair variables Rab,�ab,�a,�b gets mixed together.
Building a fixed-length representation on a four-dimensional grid based on these
variables may result in less information loss. It would be interesting to see if this
idea leads to an improved matching performance, and how much computational
overhead would be caused by the increased dimension of the grid.
The resuts of Section 4 show that template protection can be done while only
slightly reducing the recognition performance. Does it hold in general that
ZLHDS causes little performance loss?
In Chapter 5, we eliminated the leakage in the protocol between a resource
constrained device and a strong verifier by turning asymmetric noise into
symmetric. The parameters of the asymmetric noise may be difficult to estimate
accurately. If the HDS is built based on a wrongly estimated noise model, some
leakage still remains. This was not discussed in details in Chapter 5 and remains
as a future work.
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Appendix A

Summary

Enhancing the performance and security of Helper Data Systems
This thesis deals with two important topics in security: privacy-preserving use of
biometrics, and key storage by using Physical Unclonable Functions (PUF) in the
form of Physically Obfuscated Keys (POK). Biometric authentication and POKs
have found their way into consumer electronics devices such as smartphones.
The large scale deployment of these technologies makes it important to have
a good understanding and control of all their privacy and security properties.
The main issue is how to reconcile the requirement of error resilience with the
privacy/security requirement. A central role is played here by Helper Data
Systems (HDS), special error-correcting schemes that are designed to leak as
little information as possible through their redundancy data. HDS algorithms
not only have to be secure but must also run efficiently. After more than a
decade of HDS research many problems have been solved. However, at the
beginning of the PhD project several issues were unresolved regarding the
optimization and deployability of highly efficient HDS constructions. In this
thesis we concentrate on the application of HDS for fingerprints and efficient
HDS implementation in general.
We have introduced a new representation of fingerprint images. This repre-
sentation yields similar recognition performance as state-of-the art template
protection schemes, while being faster. We optimized the first step of extrac-
tion information extraction algorithm (for biometrics as well as POKs), which
significantly reduces the bit error rate.
A HDS may create a bottleneck at the error correction decoding step. The error
correction can be outsourced to a more powerful second party. However, an
eavesdropper then learns the error pattern, which leads to security issues if the
noise is data-dependent. Additionally experiments have shown that some PUFs
are prone to drift (shift of the PUF properties from which the secret key is



generated). Thus, the PUFs become recognizable when the outsourcing is used.
This has a potential impact on privacy. We have introduced an approach that
eliminates leakage and compensates the drift. Thus, we ensure that outsourced
error correction can be done in a secure and privacy preserving way.
We have built a privacy-preserving template protection scheme for fingerprints
based on our new representation of fingerprints and the optimized information
extraction algorithm. The best results were obtained by combining three
enrollment images. The performance degradation due to added privacy is
marginal for good quality fingerprints.
Our contributions make it more practical to implement good privacy protection
for stored biometric data, and to use the highly efficient error-correction out-
sourcing trick for deployment of HDSs on resource-constrained devices such as
smartcards.
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