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1
Introduction

What is a project? Ask this question to 10 different people and you will probably
get 10 different answers. A commonly used definitions is ‘A set of activities aimed
to achieve a specific objective and have a clear start, middle and end’ (Goldratt and
Cox, 2016). This is of course a very broad definition. For example, writing this
thesis is a project but so is building a house or organizing a conference.

Projects consist of activities. Activities can be seen as parts of a project, that each
have a specific objective and have a clear start and end. When all activities are
completed, the project is completed. Typically, activities require resources, such
as workforce, materials and equipment. The more resources available, the better
and faster an activity is completed. However, resources are scarce, which makes
planning activities difficult. Activities can also have precedence relations. Some
activities can be executed in parallel, others can only be executed in a particular
order.

Projects are typically a ‘one off’ task. For example, writing a dissertation is
something a student does only once. One could argue that over the years many
theses are written. However, these projects are executed by different PhD candidates
on different topics. Therefore it is fair to say that each project is unique. The
uniqueness of a project makes it difficult to predict the realization of a project in
terms of duration, cost and quality. For the organization executing the project, it is
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Quality

Cost Time

Figure 1.1: The iron triangle in project management

key that all projects it is carrying out are properly managed. Although all projects
are unique, there can be similarities. For example when organizing an annual
conference, the organizers gain experience and can better predict the outcome of a
project. At this high level of abstraction, we can use a probabilistic view to improve
on current project management practices.

In this thesis we study production planning problems in a high-tech environment.
At first, approaching a production environment from a project planning perspective
sounds somehow strange. Production planning or production control is a field
of research existing for already many years. In the field of production planning,
one generally thinks of concepts like customer demand, inventory and throughput
times. While this is still a very valid approach for mass-produced products, this
approach is not suitable for complicated products, for example aircrafts. With a
sales price of 445.6 million USD and only 12 deliveries in 2018

1 the Airbus A380

aircraft is an example where producing a product could be seen as a project. Of
course a company can work on multiple projects simultaneously. In that case the
available resources are shared amongst projects and can put additional constraints
on the individual project. Aircrafts are not the only example. This type of products,
also known as capital goods, are very complicated, customer specific and capital
intensive products. Manufacturing them is a long process, with many uncertainties.

The success of a project is determined by three factors: cost, time and quality.
Together, these factors form the so-called iron triangle (Atkinson, 1999) as shown in
Figure 1.1. Using these factors, one can define the success of a project. A project
is successful when it is completed on-time, within budget and meets the quality
requirements. The project manager decides on trade-offs between the three factors

1https://www.airbus.com/newsroom/press-releases/en/2018/01/airbus-2018-price-list-press-
release.html
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Factor Chapter 2,3,4 Chapter 5
activity leadtime uncertain deterministic

customer demand deterministic uncertain

number of activities per
project

deterministic uncertain

optimization problem unconstrained, optimize
project

capacity constrained, op-
timize portfolio.

main application area high-tech manufacturing
systems

new drug development

Table 1.1: Properties of the two model types

(Meredith and Mantel Jr, 2011). A project’s cost can be reduced, but this decreases
quality and/or increases the duration.

In this thesis we focus on the cost and time aspects of project management and
the trade-off between them. We do not explicitly consider the quality aspects of a
project. The reason for this is that in production environments, the required quality
of the final product is set by the customer. It is a requirement that should be met,
instead of a variable that can be changed by the manufacturer. Furthermore we aim
to develop general quantitative models that can be used in different application
areas. It is difficult to come up with a general quantitative measure for quality that
suits multiple application areas.

Predicting the result of a project in terms of time and cost is difficult due to
uncertainties that arise during the project. Uncertainties can cause delays and
can lead to high costs. Therefore we develop stochastic models that capture these
uncertainties. In this thesis, we develop two types of models, which are motivated
from two different application areas. In Table 1.1 we show the differences between
the two model types.

In Chapters 2,3 and 4, the main uncertainty we consider is the duration of project
activities, which together determine the total leadtime the production of a product.
In each chapter we develop production plans that take into account the leadtime
uncertainty. What differs between the chapters is the complexity of the production
network and the way costs are incurred. We mainly derive structural results which
are illustrated by numerical examples.
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t
planned leadtime

Early Late

f(t)

Figure 1.2: Distribution of stochastic leadtime (random variable) and planned leadtime
(decision variable)

In Chapter 5 we develop a completely different model, which does not build on the
models in previous chapters. Here, we focus on uncertainty in customer demand
and the number of activities in the project. The main application area here is new
drug development, where the outcome of a project is uncertain. This model is
developed specifically for this application area. In the next sections we will further
introduce both types of models.

1.1. Project Planning Under Leadtime Uncertainty

In the first three chapters of this thesis, we focus on project planning. This problem
is motivated from the production of lithography machines. After the customer order
has been confirmed, the production plan for this specific machine can be developed.
A set of activities and precedence relations is developed and precedence relations
are defined. Each activity has a planned duration, which we in a manufacturing
environment often refer to as the leadtime.

However, manufacturing a new product is subject to all kinds of uncertainties (Mula
et al., 2006). For example, resources might be unavailable, errors in production
require repairs or ordered materials are delayed. Due to these causes the duration
of an activity, or its leadtime is uncertain. For this reason, models with deterministic
leadtimes are not suitable and stochastic models should be used (Herroelen and
Leus, 2005). Therefore, in this part of the thesis we model the leadtime of an activity
by a random variable. Due to this uncertainty it is difficult to allocate time to an
activity in advance. This problem is shown in Figure 1.2 in this thesis.
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This figure shows the probability density function of a stochastic leadtime and a
so called planned leadtime, the time reserved for that activity. Depending on the
realization an activity is completed either too early or too late. When increasing
the planned leadtime, the probability that the activity is late reduces. On the other
hand, increasing the leadtime also increases the probability that a system finishes
too early. Both an early completion and a late completion are undesired, since
deviations from the plan are costly.

Different streams of literature use different definitions for leadtime. For example,
in supply chain management, leadtime refers to a norm, while the actual duration
of an activity is referred to as flowtime or throughput time (Cox and Blackstone,
2002). To emphasize the difference between the planned leadtime (the norm) and
the stochastic leadtime (the actual duration), we will only use planned leadtime and
stochastic leadtime as described in Figure 1.2.

The figure shows the leadtime of one activity, but in a project with multiple activities
it is even more important that deadlines are met. Otherwise delays propagate
through the project. On the other hand, when every activity has a long planned
leadtime, the total leadtime of the project becomes too long. Therefore it is key
to develop a production plan that allocates the appropriate amount of time to the
right activities such that a high service level can be achieved at minimal costs. This
plan should describe exactly when an activity should start and when it should be
completed.

When developing a project plan all kinds of factors should be taken into account.
What is a good plan? What is a good plan for one stake-holder might be an
infeasible plan for another. To develop a suitable plan, we consider the cost for
deviating from the plan. As leadtimes are uncertain, there will always be deviations
from the plan. Our objective is to minimize the expected cost for deviating from the
plan, i.e. we average over all possible realizations of the leadtime random variables.
This is different from other planning methods, such as the Project Evaluation and
Review Technique (PERT) (Malcolm et al., 1959), which mainly focus on minimizing
the total duration of a project. The cost for deviating from the plan are different
throughout the network. A deviation at the start of a project is for example not
very costly, while a deviation from the project due date is extremely expensive. By
minimizing the cost, we find a plan that allocates the right amount of planned time
to the right nodes.
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1.1.1 Cost Structures

In this thesis, we consider project networks with two different cost structures. Both
cost accounting schemes incur a linear holding and a linear penalty cost for earliness
and tardiness for deadlines. This can be intermediate deadlines between activities
or the final project deadline. This type of cost function was first introduced by Yano
(1987a) and after that it became a commonly used cost function in the literature.
For a network with only one activity, this problem is mathematically identical to the
commonly known Newsvendor problem, first formulated by Edgeworth (1888). In
a Newsvendor problem, one sets a target level for a stochastic variable. The optimal
target level minimizes the expected cost for the stochastic variable realizing above
or below this target level. The term Newsvendor stems from an application where a
publisher needs to decide how many newspapers it prints to satisfy demand for that
day (Arrow et al., 1951). In planning problems, we set a target (planned leadtime)
for the stochastic leadtime. At optimality, the probability that the actual duration of
this node exceeds the planned duration is a Newsvendor fractile h

h+p where h is the
cost for completing earlier than planned and p the cost for completing later than
planned.

When analyzing networks with multiple activities, the problem becomes more
difficult. However, in general it is still a Newsvendor type of problem, i.e. balancing
costs of being early with costs of being late. Instead of 1 type of holding costs, we
now assume that each activity in the network adds value to the final product. The
more activities are completed, the higher the value of the project and the higher
the holding cost per time unit. Under these increasing holding costs, waiting time
early in the project is cheap, while waiting time right before the due date is the
most expensive. From a cost perspective one could argue that safety time therefore
should be allocated early in the project. On the other hand, safety time early in
the project is not very effective. It can only be used to compensate for delays that
occurred in the few activities that are scheduled earlier. Putting the same amount
of safety time at the end of the project is more effective, as it can compensate for
delays in all activities of the project. Following this argument, one should put all
safety time at the end of the project. This shows the difficulty of allocating safety
time: it is a trade-off between cost and effectiveness.

To explain the difference between the two cost functions, we consider an example of
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Due date

Co
st

 ra
te

Planned start of 
activity 1

Planned start of 
activity 2

time

Actual start of 
activity 1

h2

h1

pay as realized

additional cost for 
pay as planned 

Figure 1.3: Difference between the two cost functions

a project consisting of two activities. Activity two is the first activity to start, activity
1 starts when 2 is completed. We assume the precedence relation to be fixed. In
Figure 1.3 the cost rate per time unit is shown. At the moment activity two starts,
we start incurring holding cost h2 per time unit. We incur this cost until the product
is delivered to the customer. After some time, we pass a time point where activity
1 is planned to start. However, activity 1 can only start at this time when activity 2

is already completed. In the figure, activity 2 is late and hence the start of activity
1 is delayed. Now there are two options to start incurring holding cost for node 1.
Either incur the holding cost for node 1 from the actual start time of node 1 or from
the planned start time of node 1. Both holding cost are incurred until the due date
of the product. In this thesis, we define the ‘pay as realized’ costing scheme as the
scheme that starts incurring cost from the actual start time and the ‘pay as planned’
costing scheme as the scheme that starts incurring holding cost for a node from its
planned start time.

In the figure, the total amount of holding cost incurred for the product is the integral
of the cost rate from the start of the project, until the final activity is completed. For
the ‘pay as realized’ costing scheme this is the grey area in Figure 1.3. The ‘pay
as planned’ costing scheme includes both the grey and the red area. At first sight,
this is only a minor difference between the two cost functions. However, this small
difference has significant implications for properties of the planning solution and
algorithms for finding the optimal solution.

Besides a constant holding cost rate and the corresponding linear increasing total
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Assembly Systems General Networks
Pay as planned Chapter 2

Chapter 3

Pay as realized Chapter 4

Table 1.2: Overview of Chapters 2, 3 and 4

holding cost, one could also look at other types of cost functions. In Ferguson
et al. (2007) and San-José et al. (2015) nonlinear cost functions are considered for an
inventory model. For a one activity project these results could be used. However,
generalizing these results to a network of activities is difficult. Therefore, we focus
on linear cost functions for project networks. The obtained results can then be used
when analyzing nonlinear cost structures.

1.1.2 Research Objectives

We analyze both cost structures and apply them to a variety of network structures
in Chapters 2, 3 and 4. What distinguishes the chapters are the cost structures
considered and the network structures we analyse. In Table 1.2 an overview is
given. Chapter 2 studies both cost functions simultaneously for an assembly system
with N parallel subassembly activities and one final assembly activity. Chapters 3

and 4 both study more complicated networks, and each focus on a specific cost
structure.

The assembly system in Chapter 2 consists of one final assembly activity, which
can only start when N parallel sub-assembly activities are completed. For such a
system the ’pay as realized’ cost structure is already widely used in the literature
on planned leadtimes. Although the ‘pay as planned’ cost function is known in the
literature of project management (see Baker and Trietsch (2019)), it is rarely used
in the field of production planned leadtimes. In this chapter, we introduce and
analyze the ‘pay as planned’ cost function with the following objective:

Research Objective 1 Analyze the ‘pay as planned’ cost structure and compare the
structural results to results for the ‘pay as realized’ cost structure for an assembly system.

Our main contribution in this chapter is the introduction of the ‘pay as planned’ cost
structure. We show that for production environments where intermediate deadlines
are relatively important compared to the final deadline, the ‘pay as planned’ cost
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structure is suitable. For this cost function we derive optimality equations and
properties of the optimal solution. We develop a so called ‘blame policy’ that we
analytically compare the cost structure to the ‘pay as realized cost structure’. In
this comparison, we also unveil that the optimal solution of this cost structure can
contain negative planned leadtimes, which do not make sense in practice. We prove
that under the ‘pay as planned’ cost structure, planned leadtimes of the optimal
solution are always positive. The chapter is a slightly modified version of Jansen
et al. (2019).

Most production systems and also most projects have more complicated precedence
relations than assembly system. Therefore, in Chapter 3 we extend the results
for the ‘pay as planned’ cost structure to a general class of networks, namely
directed acyclic networks with multiple end points. This allows us to model projects
that have multiple converging points (activities that can only start when a set of
predecessors is completed) and diverging points (a set of activities that all can start
when a single activity is completed). We introduce a new problem formulation that
instead of planned leadtimes (durations) uses planned start times (time points) to
describe the project plan. Our objective is to extend the results from the assembly
system to this type of networks.

Research Objective 2 Develop a problem formulation suitable for general networks and
extend structural results obtained from the assembly system for the ‘pay as planned’ cost
structure.

Our main contribution in this chapter is the derivation of optimality equations
for this general network structure. Before the derivation, we extend the idea of
the blame policy in Chapter 2 into the concept of tardy paths. In short, a tardy
path can be seen as the stochastic version of a critical chain, a term coined by
Goldratt (1997). After a project is completed i.e. when all stochastic durations have
realized, we search for a path that determined the completion of the project. The
tardy path cannot be determined beforehand, we can only, given a plan, determine
the probability of a tardy path. For each node in the network, we can derive a
Newsvendor Equation, that relates the probability of a tardy path starting in that
node to the value that node adds to the final product. Furthermore, we show that
the problem is convex and that simulation-based optimization is a valuable tool
to determine the optimal solution for a specific problem. The chapter is a slighlty
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modified version of Jansen et al. (2018).

The problem formulation developed in Chapter 3 is also applicable to the ‘pay as
realized’ cost structure. In fact, using this formulation, we can extend existing
analytical results for specific network structures, which is the main objective of
Chapter 4.

Research Objective 3 Derive optimality equations for a general network under the ‘pay
as realized’ cost structure.

While the ‘pay as realized’ cost structure is commonly used in the literature, the
derivation of analytical results was limited to specific network structures, such
as serial systems and two-stage assembly systems. Our main contribution in this
chapter is that we derive optimality equations for any strictly converging network
with 1 final node. To this end, we use the idea of tardy paths again, but slightly
modify the mathematical definition of it. We show that also for this cost structure
optimality equations have a Newsvendor shape. In the field of setting planned
leadtimes, this is a long awaited result and it can be seen as a closure to the field of
planned leadtimes. As determining the optimal solution is complicated, the result
helps in validating solutions obtained via heuristic methods. Finally we discuss
the possibilities and limitations of extending the results to networks with fork-join
structures and networks with multiple end nodes.

1.2. Capacity Constrained Project Portfolio Planning

The first part of this thesis focused on optimal planning of individual projects.
The chapters built on each other and are extensions and variations of the single-
activity Newsvendor problem. The last chapter of this thesis addresses a completely
different problem and does not built on the models developed in the previous
chapters. More than the previous chapters, the research described in this chapter is
ongoing work. Therefore the results are obtained for relatively small and specific
problem instances. Future research is needed to generalize the results.

We consider an organization executing multiple projects simultaneously. For an
organization executing multiple projects, optimizing each project individually most
likely is not the best strategy. This is due to the fact that projects interact with
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each other. Suppose we have an organization executing multiple projects. If
these projects have similar activities it can be useful to execute these activities
simultaneously. For example, when both projects need materials from a supplier, it
can be wise to place a single order, saving transportation and ordering cost. On the
other hand activities can require the same resources, which implies that activities
of different projects need to be executed sequentially. Optimizing each project
individually can then lead to infeasible plans for the resource. Besides avoiding
infeasibilities, it is also key to plan the projects such that the resource is highly
utilized. The problem of planning a set of activities from different projects for
multiple resources is resource-constrained project scheduling. For an overview of
this field we refer the reader to Brucker et al. (1999).

In Chapter 5 we develop a resource-constrained project scheduling model for a
specific industry, namely the development of new drugs in the pharmaceutical
industry. Projects executed require high investments, with an average of USD
2.6 Billion per drug (DiMasi et al., 2016). The development of a drug is a highly
uncertain process. This is emphasized in Figure 1.4. This figure shows the timeline
of the development of a drug, based on average data from the Food and Drug
Administration (FDA) of the United States. For every drug receiving approval from
the FDA, many other drug development projects are terminated early. There can
be many reasons for early termination, such as limited or no efficacy, severe side
effects, or the development costs exceeding the potential revenue of a drug.

The figure also shows that, if a drug reaches the phase of FDA approval, a long
development period has passed. It is only after this long development period that
the drugs starts generating revenue to return the investments.

As acknowledged by Colvin and Maravelias (2011), the high risk of early termi-
nation is what distinguishes drug development projects from most other projects,
where it is beforehand clear which activities need to be executed to complete the
project. This makes it difficult to schedule activities of projects that share resources.
If a resource is scheduled for a specific activity, it might be idle when that project is
cancelled. On the other hand, not reserving the resource can result in delays of the
project in the case the project is continued. Both outcomes are costly and should be
avoided.

2Modified from https://www.slideshare.net/rahul pharma/drug-discovery-and-development-
10698574

https://www.slideshare.net/rahul_pharma/drug-discovery-and-development-10698574
https://www.slideshare.net/rahul_pharma/drug-discovery-and-development-10698574
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Figure 1.4: Drug development timeline 2

To overcome this problem, pharmaceutical companies outsource parts of their drug
development projects to Contract Research Organizations (CRO’s). For a pharma
company outsourcing reduces the risk of under-utilizing resources and it gives
flexibility (Howells et al., 2008). A CRO executes parts of drug development projects
for a fixed fee. Typically, it has a large amount of resources, such as laboratory and
hospital facilities, but also highly skilled employees, such as nurses and doctors. A
CRO executes multiple projects for multiple pharma companies. In this way it can
reach economies of scale and improve the utilization of its resources.

To achieve this, it is key for the CRO to properly manage its capacity. According
to Song et al. (2019) capacity management involves two central questions. On the
one hand a firm needs to determine how much capacity it should install and on
the other hand how to best utilize existing capacity. A CRO can affect its capacity
utilization by selecting the right project proposals from pharma companies. When
a pharma company offers a project to a CRO, the CRO has to decide whether it
accepts or rejects the proposal. Besides having the right project, it is also key for
a CRO to have the right amount of resources available. Choosing the amount of
resources is difficult, since demand from pharma companies is uncertain. Therefore,
it is our objective to develop models that maximize CRO’s profitability, by choosing
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the right amount of resources and selecting the right projects.

Research Objective 4 Develop mathematical models that capture the portfolio selection
problem from a CRO point of view.

The portfolio selection problem is not new. One could argue that the problem
only shifted from a pharma company to a CRO. However, the CRO has different
incentives than a pharma company. Hence, the CRO solves the problem differently.
A pharma company takes into account the market potential of a drug when
selecting which drugs to develop. For a CRO this is irrelevant, since it gets paid
for executing an activity, regardless of whether the pharma company decides to
terminate or continue the project, after this activity is executed. What is relevant
for a CRO are the characteristics of the offer compared to other project offers it
receives.The difficulty here is that it is uncertain which offers it will receive in the
future.

1.3. Outline of the Thesis

The remainder of this thesis is outlined as follows. In Chapter 2 we introduce the
‘pay as planned’ costing scheme for an assembly system with 1 final node and
multiple parallel predecessors, all feeding this node. We compare the results to
the ‘pay as realized’ cost function using existing results from the literature. This
chapter contains an overview of the relevant literature in Section 2.2. This literature
is also relevant for Chapter 3 and Chapter 4 since both chapters consider extensions
of the same problem. Therefore, these chapters do not contain a separate literature
section.

In Chapter 3 we extend the ‘pay as planned’ costing scheme to general networks
with multiple end nodes and fork-join structures. In the final chapter on the
planned leadtime problem, Chapter 4, we develop structural results for the ‘pay
as realized’ cost structure for converging networks with one end node.

In Chapter 5 we switch to a different problem setting, where we analyze a capacity-
constrained project selection problem. The related literature for this problem can be
found in Section 5.2. Instead of focusing on high-tech production systems, we use
the process of new drug development as our application area.
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We would like to note that the problems discussed in Chapters 2, 3 and 3 are related.
Therefore, we rely mostly on the same notation. However, the differences in the
network structures and cost functions require different and additional notation.
For the sake of completeness, we choose to define all the required notation in each
individual chapter. This approach makes the mathematical formulation of each
chapter self sufficient.



2
Leadtime Planning for Assembly

Systems

2.1. Introduction

Companies that aim to operate with a minimum cost and a high service level face
a challenging task of identifying the best operational strategies for achieving these
objectives. Attaining these goals is difficult as companies face many uncertainties
on the supply, production and demand sides. The magnitudes and effects of these
uncertainties on the operations of a company depend on its production strategy.
The best strategy can be determined by identifying how deeply the customer order
penetrates the company’s supply chain (Atan et al., 2017).

A production strategy known as ‘configure-to-order’ strategy is commonly utilized
by companies that offer customized and, mostly, expensive products. The end
product fulfills the exact customer needs. This is an appealing strategy for high-
tech, car manufacturing and white goods industries.

The supply chain of a company using a configure-to-order strategy distinguishes
between two main phases. The first phase concerns the orders placed with the
suppliers. This phase is forecast-driven and is executed in advance to prevent
excessive customer leadtimes. The second phase is driven by the customer order
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and concerns the production of the final customer-specific product. The point
that divides these two phases is known as the customer order decoupling point
(de Kok and Fransoo, 2003). The focus of this chapter is on the second phase of the
configure-to-order strategy.

We consider a company that keeps inventory of components only. Production of
multiple subassemblies is triggered by a customer order. These subassemblies are
then assembled into a final product. In many production environments, production
and assembly leadtimes are random (Dolgui et al., 2013). To overcome uncertainties
in leadtimes, companies typically use safety stocks (Whybark and Williams, 1976;
Chopra et al., 2004). However, the subassemblies and final product are customer-
specific and thus cannot be kept on stock. Therefore, safety stocks cannot be used
as a technique to absorb the uncertainties in the production process. A plan, which
sets planned production leadtimes for subassembly activities and final assembly
activities, is used to buffer against uncertainties. We call these production leadtimes
planned leadtimes. The planned leadtime is the sum of the average leadtime and a
safety time. The difficulty of planning the second phase of the configure-to-order
strategy arises from the interactions among multiple processes. A good plan should
coordinate the production of subassemblies and ensure on-time delivery of the final
product.

The company incurs a cost for holding each subassembly and the final product.
These costs are incurred from the planned start time of an activity (subassembly
or final) until the delivery of the final product to the customer. Since each activity
adds value to the final product, the total holding costs per time unit increase over
time and are maximal at the final assembly activity. A penalty cost is incurred for
a late delivery of the product to the customer. The objective of this chapter is to
determine the planned leadtimes for all the activities such that the sum of expected
holding and penalty costs is minimized.

Setting planned leadtimes to ensure timely delivery of customer orders is a key
tactical decision for many companies (Atan et al., 2016). Multiple researchers have
developed models to assist the companies with this decision. The distinguishing
feature of our work is the way holding costs are accounted for. All previous
work assumes that the holding costs are incurred from the actual start times of
the activities. This so-called ‘pay as realized’ cost accounting scheme is realistic
when materials are supplied exactly when they are needed, for example in a Just
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In Time (JIT) environment. In this chapter, instead of incurring a holding cost from
the actual start time of an activity, we start to incur holding cost of an activity
from its planned start time. This is motivated by practice. Companies that rely on
safety times instead of safety stocks to protect against uncertainties are mostly the
ones that produce capital-intensive products. These companies allocate expensive
material to production activities. The material is ordered from external suppliers
or from other departments within the same company. The material is ready at
the planned start times. If production cannot start at the planned start time, the
material needs to be stored and interest for invested capital should be paid. These
are the costs that we consider as holding costs in this chapter. As these cost need
to be paid for, regardless of whether a production activity is started at its planned
start time or not, we incur these holding cost from the planned start time. We refer
to this cost accounting scheme as the ‘pay as planned’ scheme.

In addition to introducing a new holding cost accounting scheme, we contribute
to the literature by introducing the concept of a ‘blame policy’, which can be
applied to all planned leadtime optimization problems for any assembly system
structure with stochastic leadtimes. For each realization of leadtimes, the blame
policy identifies the activity that causes the late delivery of the product. For a
system operating according to the optimal planned leadtime solution, we prove
that the blame probability of each activity satisfies a Newsvendor equation. This
equation states that the probability that an activity is blamed for late delivery is
proportional to the value the activity adds to the final product. We end up with a
set of Newsvendor equations, which can be numerically solved to obtain the unique
optimal solution to the cost minimization problem.

We compare the ’pay as planned’ cost function with the results obtained for the
‘pay as realized’ cost function used in Atan et al. (2016). The authors study the
same configure-to-order system with the holding costs incurred from the actual
start times of the activities. We derive structural results for the cost difference. We
prove that our optimal solution allocates more time to each subassembly activity
and less time to the final assembly activity compared to the optimal solution to the
cost function of Atan et al. (2016). We present a numerical experiment illustrating
that if the service level requirement is high, the difference between the optimal
costs is marginal. However, the difference between the optimal planned leadtimes is
significant. Our solution leads to a significantly higher probability that intermediate



18 Chapter 2. Leadtime Planning for Assembly Systems

deadlines are met.

Our numerical experiments also unveiled that in some cases the optimal solution
of the ‘pay as realized’ cost function in Atan et al. (2016) can contain negative
planned leadtimes. Negative planned leadtimes are counter-intuitive and can lead
to difficulties when implementing the production plan in practice. We prove that
for the ‘pay as planned’ cost function, the optimal planned leadtimes are always
non-negative.

The remainder of this chapter is organized as follows. In Section 2.2 we provide
a brief review of the literature on setting the planned leadtimes. In Section 2.3
we introduce notations and formulate the optimization problem. In Section 2.4 we
define the blame policy and derive a set of Newsvendor equations. We describe
properties of the cost function and the optimal solution in Section 2.5 and compare
the optimal solution with the one obtained by Atan et al. (2016). Numerical results
are presented in Section 2.6. We provide concluding remarks and discuss future
research directions in Section 2.7.

2.2. Literature Review

Most of the earlier work on setting planned leadtimes focuses on single-activity
systems and systems with specific structures. For a single-activity system, Weeks
(1981) shows the equivalence of the planned leadtime problem to the well-known
Newsvendor problem. Subsequently, Matsuura and Tsubone (1993); Matsuura et al.
(1996) and Buzacott and Shanthikumar (1994) study the single-activity problem and
conclude that safety times should be preferred over safety stock if the company has
accurate forecasts on the shipments over the leadtime.

Multi-activity systems are more difficult to analyze as optimal decisions across
activities are not independent. Earlier work on serial multi-activity systems includes
Yano (1987a) and Gong et al. (1996). Yano (1987a) develops an algorithm to solve
the problem of determining the optimal planned leadtimes for serial systems under
the ‘pay as realized’ costing scheme. Gong et al. (1996) proves that this problem
is mathematically equivalent to the problem of determining the optimal base-stock
levels in serial inventory systems. Clark and Scarf (1960) solves this problem to
optimality and provides a recursive algorithm to determine optimal base-stock
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levels.

Elhafsi (2002) also studies a serial production system with the objective to determine
the optimal planned leadtimes at each activity. Different from Yano (1987a) and
Gong et al. (1996), Elhafsi (2002) penalizes tardiness of intermediate activities,
while in the former ones the penalty cost is only incurred if the last activity is
late. It can be shown that for specific values of the cost parameters, the optimal
solution is identical to the solution under the ‘pay as planned’ costing scheme.
The authors propose a recursive algorithm to compute the expected cost and solve
the resulting convex nonlinear optimization problem to approximate the optimal
planned leadtimes. Furthermore, the authors show that when all activities have an
identical exponential leadtime distribution, an exact solution can be obtained.

For inventory systems, Rosling (1989) showed that an assembly system can be
remodeled as a serial inventory system. This is useful, since results for the assembly
system can be obtained by solving the equivalent serial system. For the planned
leadtime problem the assembly system cannot be converted into an equivalent serial
system. Therefore, solving the planned leadtime problem for assembly systems is
more challenging than determining the optimal basestock levels in an assembly
system. Research on setting the planned leadtimes for assembly systems has been
initiated by Yano (1987b). The author considers a system with two subassemblies
and a final assembly. The system incurs inventory holding costs for each activity
from the moment the activity starts until the product is delivered to the customer. If
the product is available after the promised delivery date, a penalty cost is charged
per unit late. The objective is to find the optimal planned leadtimes. Yano (1987b)
formulates the problem as a non-linear program. Although the cost function is not
convex in all planned leadtimes, it has some properties that enable Yano (1987b)
to solve the problem numerically. For systems with more than three activities, this
approach often leads to computational problems.

After the seminal work by Yano (1987b) researchers developed approximation
methods to solve the leadtime optimization problem for larger assembly systems.
Hopp and Spearman (1993) present a model to determine the optimal leadtimes
for purchasing components for a manufacturing system which performs the final
assembly of these components. The authors develop an iterative approximation
procedure to determine the optimal purchasing leadtimes. Shore (1995) studies
the same problem and proposes an alternative procedure that results in closed-
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form expressions for the decision variables. Song et al. (2001) develop a recursive
procedure to estimate the distributions of activity leadtimes and propose a method
to calculate activity due dates so that a specific service target is met. Considering
cost a ‘pay as realized’ cost structure, Axsäter (2005) studies a multi-echelon
assembly system and suggests a decomposition technique to set the activity start
times. Different from Axsäter (2005), Chauhan et al. (2009) study a single-period
setting. The authors develop an approximation procedure to set the activity start
times. In Ben-Ammar et al. (2018) planned leadtimes for multi-level assembly
systems are determined. The authors relax specific assumptions on cost parameters
and develop a Branch and Bound algorithm to find optimal planned leadtimes for
discrete activity leadtime distributions.

In another recent study, Atan et al. (2016) study an assembly system that consists
of a number of parallel multi-activity stages feeding a multi-activity final assembly
stages. Each process has a stochastic leadtime. From the moment a production
activity starts until the final product is delivered to the customer, the system incurs
a marginal holding cost and a penalty cost is charged for late deliveries to the
customer. The authors derive recursive equations for the tardiness and earliness of
all processes and determine an exact expression for the total expected cost. They
develop an iterative heuristic procedure to calculate the optimal planned leadtimes.
This procedure is based on a conjecture which claims that the probability that an
activity is responsible for the lateness of the overall system is proportional to the
value added by that activity.The conjecture forms the starting point of Chapter 4 in
which we derive structural results for a more general system.

The research in this thesis initiated from a production planning perspective. We
believe that project management problems can benefit from the results of studies
on leadtime planning and vice versa. Although language and model formulation
are different, both modeling approaches are similar. An example of a project
planning approach to production planning is Márkus et al. (2003). The authors
use a deterministic project planning model for two real-life production planning
case studies.

Another relevant work in project planning is Ronen and Trietsch (1988). In this
paper, the authors develop a model for purchasing materials for large projects.
The model supports the decision regarding when and from whom to order each
component. The model used for determining the optimal ordering moment for
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Figure 2.1: An assembly system with N subassembly activities and one final activity

each component can be interpreted as a model under the ‘pay as planned’ costing
scheme. As all components should be ready at the same time, the network can be
modeled as an assembly system with the final assembly node having a duration of
zero.

Another interesting work is Trietsch (2006) which considers the planning of
activities with uncertain durations and precedence constraints. The author shows
that optimal buffering can be achieved by setting optimal release dates for all
activities in a network. In particular, the criticality of a release date should match
the relative cost of setting it earlier. Although the problem is modeled differently
(the time buffers are seen as separate activities), the problem can be remodeled as a
version of the ‘pay as planned’ costing scheme. Trietsch and Baker (2012) implement
the optimization method of Trietsch (2006) in a decision support system for project
planning.

2.3. Problem Formulation

We consider a configure-to-order assembly system consisting of N parallel activities
delivering subassemblies to a single final assembly activity. The set of subassembly
activities is V = {1, 2, ..., N} and 0 is the final assembly activity (see Figure 2.1).
Subassembly activities are initiated by a customer demand for a unit of product
and the product is ready for delivery at completion of activity 0. Each activity i ∈
{0} ∪V requires the execution of multiple tasks. We refer to the total time required
to finish all tasks within an activity as the leadtime of this activity. Non-negative
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random variable Ti with cumulative distribution Fi(·) and density fi(·) represents
the leadtime of activity i1. We assume that fi(ti) > 0 for all ti > 0 and leadtimes at
different activities are independent. Although we consider independent random
variables, the results also hold for most dependent leadtimes. In Chapter 3

we derive conditions under which the independent leadtime assumption can be
relaxed.

The system operates according to a plan that assigns a leadtime to each activity.
This leadtime is called the planned leadtime. The planned leadtime of activity i is xi.
We define si as the planned start time of activity i. Without loss of generality, we
set the planned customer delivery time to 0. Then the planned start times can be
easily calculated from the planned leadtimes as

s0 = −x0,

si = −xi − x0 i ∈ V.

The actual start time of an activity is a random variable and depends on the actual
leadtimes of all predecessors. For all activities with no predecessor, i.e. for all i ∈ V,
we assume that all required resources are available at the planned start time and
thus these activities can always start on time. However, their completion times are
random. If Ti = xi, then activity i is on time. Otherwise, it is either early or late.
We define Ei and Li as the earliness and lateness of activity i, respectively. Let
(x)+ = max{0, x}. Then, for all i ∈ V,

Ei =
(

xi − Ti

)+
,

Li =
(

Ti − xi

)+
.

Activity 0 can only start after all subassemblies have been delivered. If one or more
subassemblies are late, activity 0 starts immediately after the latest subassembly has
been finished. If all subassemblies finish early, activity 0 starts at its planned start
time s0. This assumption of holding back production when preceding activities
finish early is common in the literature (Yano, 1987a; Axsäter, 2005). It represents
the situation where materials and workforce are available at the planned start time,

1Unless otherwise stated, all definitions are valid for i ∈ {0} ∪V
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Figure 2.2: Timeline for a realization of a production plan in a four-activity assembly
system

and not earlier. Hence, the earliness and lateness expressions for activity 0 are

E0 =
(

x0 − T0 −max
i∈V
{Li}

)+
,

L0 =
(

T0 + max
i∈V
{Li} − x0

)+
.

We define Wi as the waiting time of activity i due to the lateness of other parallel
activities,

Wi = max
j∈V
{Lj} − Li, i ∈ V.

Since W0 has no parallel activities, W0 = 0. Note that the random variables Ei,
Li and Wi depend on the vector of decision variables x = {x0, x1, ..., xN}. We do
not explicitly indicate this dependence in the notation, except when it improves
readability (as in Lemma 2.1, where we write L0(x)). For an assembly system with
4 activities, a production plan and a realization of leadtimes are shown in Figure
2.2.

A realization of the random variables T0, T1, ..., TN is indicated by ω = (t0, t1, ..., tN) ∈
Ω = RN+1

+ . In particular, Ti(ω) = ti is a realization of Ti.

The timeline in Figure 2.2 shows the planned start and finish time for each activity.
The gray horizontal bars denote the realizations Ti(ω) of the random variables Ti.
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In this case, activity 1 and 2 finish late, while activity 3 finishes early. Activity 1

is the latest one and subassemblies produced at activities 2 and 3 have to wait for
activity 1. The final assembly activity starts at s0 + L1(ω) and finishes later than its
planned finish time. Thus the final product is delivered late.

The system incurs a marginal holding cost hi > 0 from the planned start time of
activity i until the final product is delivered to the customer. The total holding costs
per time unit at activity i are hc

i . We have hc
i = hi for i ∈ V and hc

0 = ∑
i∈V

hc
i + h0.

In addition to the holding costs, the system incurs a penalty cost p per unit time
late for delivery to the customer. The total holding costs for the planned duration
of activity i is hc

i xi for i ∈ {0} ∪V. If the product is delivered late, in addition to the
penalty cost, a holding cost hc

0 is also charged per unit late. Hence, the total costs
for lateness of the final activity are (hc

0 + p)L0. Let x = (x0, . . . , xN) be the vector
of all planned leadtimes. We define C(x) as the total expected cost of a product
produced according to the planned leadtimes x. Then

C(x) =
N

∑
i=0

hc
i xi + (hc

0 + p)E[L0]. (2.1)

The cost C(x) is composed of two terms. The first term is the deterministic
term of the planned leadtimes. The second one is the variability term depending
on stochastic and planned leadtimes. The objective is to determine the planned
leadtimes that minimize the total expected cost C(x).

2.4. Solution Approach

Our solution approach is based on solving a set of Newsvendor equations. We show
that the probability that an activity is ‘blamed’ for the lateness of the system equals
a Newsvendor fractile. We first explain the concept of blaming by defining a blame
policy in Section 2.4.1 and then derive the corresponding Newsvendor equations
for our cost function in Section 2.4.2.
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2.4.1 Blame Policy

When a product is delivered late, one may ask which activity or activities caused
the lateness. For each late delivery, there are one or more activities with leadtimes
exceeding their planned leadtimes. These activities are candidates to be blamed. In
this section, we define a policy to identify the single activity to be blamed for the
lateness of the system for a given realization of the random leadtimes. We call this
policy the blame policy. For each possible event that results in lateness of the system,
the blame policy identifies the activity to be blamed for the lateness.

Next, we define a set of rules, referred as blame conditions. For each activity i ∈
{0}∪V, we define the event θi as the set of realizations ω = (t0, t1, . . . , tN) satisfying
the following blame conditions:

1. Activity i starts at its planned start time.

2. The leadtime Ti(ω) of activity i exceeds its planned leadtime, i.e., Ti(ω) > xi.

3. The successor of activity i is able to start immediately after activity i finishes,
i.e., Wi(ω) = 0.

4. The final product is delivered late, i.e., L0(ω) > 0.

Equivalently, we have

θ0 = {ω : max
j∈V
{Lj(ω)} = 0, L0(ω) > 0},

θi = {ω : Ti(ω) > xi, max
j∈V
{Lj(ω)} = Li(ω), L0(ω) > 0}, i ∈ V.

Event θi represents the set of all realizations ω in which activity i is blamed for the
late delivery of the final product. Note that an activity can only be blamed if the
final product is late, i.e., L0(ω) > 0. If a subassembly activity finishes late, but this
lateness is compensated by the final activity, none of the activities is blamed. Also,
if both the subassembly activity i and activity 0 exceed their planned leadtimes, i.e.,
Ti(ω) > xi and T0(ω) > x0, only activity i is blamed. Activity 0 can only be blamed
if it starts on time, that is Li(ω) = 0 for all i ∈ V, and the final product is late.
Finally, since we assume the random variable Ti to be continuous, the events θi are
mutually exclusive for all i ∈ {0} ∪ V and together cover all possible realizations
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ω = (t0, t1, . . . , tN) for which delivery is late. For all i ∈ {0} ∪ V we define Ω as
the supporting probability space of P(θi) and hence it follows that P(L0 > 0) =

∑i∈{0}∪V P(θi).

For a given realization of the random variables, the blame policy identifies the
specific activity that is responsible for the late delivery of the final product. As
an example, consider the realization in Figure 2.2. The activity to be blamed is
activity 1, because it starts on time, exceeds its planned leadtime, activity 0 starts
immediately after activity 1 finishes and delivery is late. Activity 2 also exceeds
its planned leadtime, but cannot be blamed, since activity 0 starts after activity
1 finishes, i.e., Condition 3 is violated. Activity 3 cannot be blamed because
conditions 2 and 3 are violated, T3(ω) < x3 and W3(ω) > 0. Activity 0 cannot
be blamed, because it starts later than planned and thus Condition 1 is violated.

It is crucial to note that the blame policy is independent of the cost function. It can
be applied to all planned leadtime optimization problems for all assembly systems
that face stochastic leadtimes and have the structure as shown in Figure 2.1. The
goal of the blame policy is to define a set of rules which identify a single node that
is responsible for the lateness of the final product.

It is possible to define other blame policies. For example, one blame policy might
be that no matter what happens with the leadtimes of the subassemblies, the final
assembly is always responsible for the lateness of the system. Even if the final
activity starts late due to its predecessors, we still blame this node. The optimal
planned leadtimes under this alternative blame policy and our blame policy are the
same. Note that our policy is fairer compared to this alternative policy since each
node can be responsible regardless of where it is located in the network.

What makes our blame policy special and different from its alternatives is that
it provides an insight on the optimality equations of the ‘pay as planned’ cost
function. These optimality equations, i.e. equations satisfied by the set of planned
leadtimes that minimize (2.1), relate the probability that an activity is blamed to the
value that activity adds to the final product. Hence, under the optimal solution of
the ‘pay as planned’ cost function, the probability that each node is blamed is equal
to a Newsvendor fractile. We provide the details in Section 2.4.2.

In Chapter 4 we study the ‘pay as realized’ cost function and define an alternative
blame policy in Section 4.5. We show that this alternative policy plays a crucial role
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in the optimality equations of the ‘pay as realized’ cost function.

2.4.2 Newsvendor Equations

Newsvendor equations originate from the field of inventory management. A
Newsvendor equation describes the optimal stockout probability and it can be used
to calculate the optimal order-up-to level. At optimality, penalty and inventory
holding costs are balanced. For our problem, Newsvendor equations describe the
probability that a specific activity is blamed for late delivery. The optimal planned
leadtimes can be obtained by solving these Newsvendor equations. The optimal
solution balances holding costs for being early and penalty costs for being late.
Summing these Newsvendor equations over all activities results in an equation
describing the probability that the product is delivered late. We call this ‘the general
Newsvendor equation.’

We define x∗ as the optimal planned leadtime solution, where superscript ∗ is used
to denote state variables at optimality. For example, L∗i = (Ti − x∗i )

+ is the lateness
at activity i when the planned leadtimes are set to their optimal values. Lemma 2.1
presents the partial derivatives of E[L0]. The proof of this lemma and those of all
other results in this chapter are deferred to Appendix 2.A.

Lemma 2.1

∂E[L0(x)]
∂x0

= −
N

∑
i=0

P(θi),
∂E[L0(x)]

∂xi
= −P(θi), i ∈ V. (2.2)

From (2.1) and Lemma 2.1 it follows that the gradient of C(x) is given by

∇C(x) =

(
∂C(x)

∂x0
, . . . ,

∂C(x)
∂xN

)
=

(
hc

0 − (hc
0 + p)

N

∑
i=0

P(θi), hc
1 − (hc

0 + p)P(θ1), . . . , hc
N − (hc

0 + p)P(θN)

)
.

∇C(x) vanishes at optimality. Hence, we obtain the following optimality equations,
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i.e., equations that are satisfied by the optimal solution x∗

P(θi) =
hc

i
hc

0 + p
=

hi
hc

0 + p
, i ∈ V (2.3)

and
N

∑
i=0

P(θi) =
N

∑
i=0

hi
hc

0 + p
=

hc
0

hc
0 + p

. (2.4)

The left-hand side of (2.4) is the probability that the product is delivered late, that
is, P(L∗0 > 0). This equation is referred to as the general Newsvendor equation.
Subtracting (2.3) from (2.4) yields

P(θ0) =
h0

hc
0 + p

. (2.5)

These findings are summarized in the next theorem stating that at optimality, the
probability that activity i is blamed for late delivery is proportional to the value hi

this activity adds to the final product.

Theorem 2.1 The optimal planned leadtime solution x∗ of the unconstrained optimization
problem min

x
C(x) satisfies the following set of Newsvendor equations:

P(θi) =
hi

hc
0 + p

, i ∈ {0} ∪V. (2.6)

Clearly, if hi is high, it is costly to finish activity i early as holding cost will
accumulate. Hence, under the optimal solution, activities which add high value
to the final product are planned such that, with high probability, they are to be
blamed for the late delivery.

The blame probabilities in Theorem 2.1 can be formulated in terms of the leadtime
densities and decision variables x. For activity i ∈ V we have

P(θi) = P
(

Ti > xi, Wi = 0, L0 > 0
)

, (2.7)

where the random variables Wi and L0 depend on the leadtime Ti. Conditioning on



2.5 Structural Results 29

Ti yields

P(θi) =
∫ ∞

xi

P
(

Wi = 0, L0 > 0|Ti = ti

)
fi(ti)dti

=
∫ ∞

xi

P
(

max
j∈V
{Lj} = Li, L0 > 0|Ti = ti

)
fi(ti)dti

=
∫ ∞

xi

N

∏
j=1,j 6=i

P
(

Tj − xj < ti − xi

)
P
(

ti − xi + T0 − x0 > 0
)

fi(ti)dti

=

∞∫
xi

N

∏
j=1,j 6=i

 xj+ti−xi∫
0

f j(tj)dtj


 ∞∫

x0−(ti−xi)

f0(t0)dt0

 fi(ti)dti.

For activity 0 we get

P(θ0) = P(max
j∈V
{Lj} = 0, L0 > 0)

=
N

∏
j=1

P(Tj − xj < 0)P(T0 − x0 > 0)

=
N

∏
j=1

 xj∫
0

f j(tj)dtj

 ∞∫
x0

f0(t0)dt0.

The above expressions can be used to numerically solve the optimal planned
leadtimes from the Newsvendor equations in Theorem 2.1.

2.5. Structural Results

Our cost function fundamentally differs from cost functions studied in the litera-
ture. In literature most papers use a ‘pay as realized’ cost accounting scheme, while
we introduced the ‘pay as planned’ cost accounting scheme. This has implications
for the structure of the optimal solution. In Section 2.5.1, we describe properties
of the ‘pay as planned’ cost function and its optimal solution. In Section 2.5.2 we
compare our optimal solution with the one obtained by Atan et al. (2016) for the
‘pay as realized’ cost function.
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2.5.1 Properties of the Cost Function and the Optimal Solution

Since min
x

C(x) is an unconstrained optimization problem, one or more planned
leadtimes of the optimal solution may be negative. For cost functions studied in the
literature, this turns out to be possible, as shown in Section 2.6.2. Negative planned
leadtimes, however, are often not accepted in practice: it is counter-intuitive to have
the planned finish time before the planned start time of a task. The next theorem
states that, for the ‘pay as planned’ cost function, vectors x with negative planned
leadtimes are never optimal.

Theorem 2.2 For any x with at least one negative planned leadtime xi, i ∈ {0} ∪V, there
exists a vector of non-negative planned leadtimes with lower cost.

This theorem implies that the optimization problem can be restricted to x ≥ 0. Since
C(x) ≥ ∑N

i=0 hc
i xi, the cost of the all-zero vector 0 is less than the cost of any x with

∑N
i=0 hc

i xi > C(0). Hence, optimization can be further restricted to the bounded
region {x : x ≥ 0, ∑N

i=0 hc
i xi ≤ C(0)}. Since C(x) is continuous, we can conclude

that the optimal x∗ indeed exists.

Proposition 2.1 The optimal solution x∗ of min
x

C(x) exists and is non-negative.

Using that the solution space can be restricted to non-negative planned leadtimes,
we next derive monotonicity properties for the blame probabilities of different
activities. Lemma 2.2 holds for any i ∈ V, while Lemma 2.3 holds for activity
0.

Lemma 2.2 For activity i ∈ V and x ≥ 0, the probability P(θi) is strictly decreasing in xi

and x0 and strictly increasing in xj, j ∈ V, j 6= i.

Lemma 2.3 For activity 0 and x ≥ 0, the probability P(θ0) is strictly decreasing in x0 and
strictly increasing in xi, i ∈ V.

According to the above lemmas, blame probability P(θi) is decreasing in x0 and xi

and increasing in any other planned leadtime. Hence, final activity 0 is the only
activity for which a larger planned leadtime x0 leads to a reduction of all blame
probabilities.
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Theorem 2.1 states that the optimal solution x∗ satisfies a set of Newsvendor
equations. The monotonicity results in Lemma 2.2-2.3 are instrumental to establish
the following theorem.

Theorem 2.3 The Newsvendor equations (2.6) have a unique non-negative solution.

Corollary 2.1 The optimal solution x∗ of min
x

C(x) is unique.

2.5.2 Comparison with ‘Pay as Realized’ Cost Function

As explained in Section 2.1, our cost function charges the holding costs from the
planned start time of the activities while in other studies the holding cost is charged
only after the activities actually start. Except for this difference in the cost function,
the modeling assumptions in Atan et al. (2016) are exactly the same as ours. In this
section, we provide an analytical comparison of the cost functions.

Let Ca(x) denote the total expected cost used in Atan et al. (2016). The expression
for Ca(x) is

Ca(x) =
N

∑
i=0

hc
i xi − h0E

[
max
i∈V
{Li}

]
+ (hc

0 + p)E[L0] (2.8)

The only difference between (2.1) and (2.8) is the second term of the cost function
Ca(x). This term contains the random variable maxi∈V{Li}, which is the lateness
of the latest subassembly. Atan et al. (2016) exclude the expected holding cost that
might be incurred at activity 0 during the time it waits for all subassemblies to
finish. This is exactly the difference indicated in Figure 1.3.

At first sight, the ‘pay as planned’ cost function looks simpler. However, it is more
challenging to solve. Atan et al. (2016) rely on the fact that, under their accounting
scheme the optimality equations are decoupled. This is why they can use a recursive
procedure to solve for the optimal planned leadtimes. On the other hand, under
the new accounting scheme, the optimality equations are not decoupled. Therefore,
we cannot use the recursive procedure to solve for the optimal planned leadtimes.
This is why a new solution procedure is required.

We define xa∗ as the optimal solution to the optimization problem min
x

Ca(x). For
any planned leadtime vector x we can compute the expected costs using (2.1) and
(2.8). Since our cost function penalizes the lateness of intermediate time points
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while Ca(x) does not, our function always leads to higher expected costs. This
result is stated in the following proposition:

Proposition 2.2 For the cost functions C(·) and Ca(·) the following inequalities hold:

1. C(x) ≥ Ca(x) for all x;

2. C(x∗) ≥ Ca(xa∗).

Obviously, x∗ and xa∗ are not necessarily the same. The next proposition compares
the two optimal planned leadtimes.

Proposition 2.3 For the optimal planned leadtime solutions x∗ and xa∗ the following
relations hold:

1. x∗0 < xa∗
0 and x∗i > xa∗

i for all i ∈ V;

2. There exist i ∈ V such that x∗i + x∗0 ≥ xa∗
i + xa∗

0 .

Proposition 2.3(a) states that solution x∗ allocates more time to each of the
subassembly activities and allocates less time to the final assembly activity
compared to xa∗. As a consequence, the solution x∗ ensures that the intermediate
deadline is met more often. This is in line with the intended practical applications
of both solutions. Solution x∗ should be used when exceeding the intermediate
deadline is costly because materials are waiting. Solution xa∗ should be used when
materials are delivered JIT. Part (b) implies that for a two-activity serial system (i.e.,
N = 1), the total leadtime is longer for our solution. This is an intuitive result, since
safety time added to a subassembly activity cannot compensate for lateness in the
final assembly, while safety time in the final assembly can compensate for lateness
in both the subassembly and the final assembly.

The difference between our expected cost and the one in Atan et al. (2016) is
h0E [maxi∈V{Li}]. Hence, an important parameter driving differences between
x∗ and xa∗ is h0. Below we study for a two-activity serial system the asymptotic
behavior of the optimal planned leadtimes as h0 → ∞, while keeping service level
α constant. The service level is defined as

α = P(L0 = 0) =
p

hc
0 + p

.
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As h0 changes, we keep service level α constant by adapting p = α
1−α hc

0 (and not
changing h1).

Proposition 2.4 For a two-activity serial system, as h0 → ∞ while keeping service level α

constant:

lim
h0→∞

{xa∗
0 } = F−1

0 (α),

lim
h0→∞

{xa∗
1 } = ∞,

lim
h0→∞

{x∗0} = F−1
0 (α),

lim
h0→∞

{x∗1} = ∞.

We see that the asymptotic behavior of both optimal solutions is similar. The
optimal planned leadtimes of the final activity approach the same limiting value.
The leadtimes of the first activity grow without bound, which is due to the blame
probability P(θ1) = h1

hc
0+p approaching to 0. Hence, in the limit, lateness of the

complete system is equal to lateness of the final activity. The above proposition
does not provide information on the asymptotic behavior of the difference between
the optimal planned leadtimes of the first activity. Numerical experiments indicate
that x∗1 − xa∗

1 does converge, though not to 0 (as for the final activity) but to a
positive number.

We obtain additional analytical results for the case with exponentially distributed
leadtimes. We consider a two-activity system. In the following propositions we
provide the optimality equations for both cost functions.

Proposition 2.5 For a two-activity serial system with independent and identically dis-
tributed exponential leadtimes with rate λ, the optimal solution x∗ satisfies the following set
of Newsvendor equations:

(1 + λx∗0)e
−λ(x∗0+x∗1 ) =

h1

hc
0 + p

e−λx∗0 − e−λ(x∗0+x∗1 ) =
h0

hc
0 + p

Proposition 2.6 For a two-activity serial system with independent and identically dis-
tributed exponential leadtimes with rate λ, the optimal solution xa∗ satisfies the following
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set of Newsvendor equations:

λxa∗
0 e−λ(xa∗

1 +xa∗
0 ) =

h1

hc
0 + p

e−λxa∗
0 =

h0

hc
0 + p

The expressions in Proposition 2.6 suggests that we can obtain xa∗
0 and xa∗

1

recursively. On the other hand, the expressions in Proposition 2.5 are not decoupled.
Hence, under our cost accounting scheme, obtaining the optimal solution is more
challenging.

In addition to the optimality equations, for the special case with exponential
leadtimes, we can determine the expression for the difference x∗1 − xa∗

1 as h0 → ∞.

Proposition 2.7 For a two-activity serial system with independent and identically dis-
tributed exponential leadtimes with rate λ, we have

lim
h0→∞

{x∗1 − xa∗
1 } =

1
λ
(ln(λx∗0 + 1)− ln(λx∗0)).

2.6. Numerical Analysis

Section 2.5.2 outlines differences between our optimal solution and the one in Atan
et al. (2016). In this section we provide the numerical results which do not only
quantify differences in optimal costs but also structural differences in the optimal
solutions.

2.6.1 Cost Comparison

In this section we provide a representative example to show differences between the
optimal solutions and the corresponding optimal costs. We consider an assembly
system with two subassemblies (activity 1 and 2) and a final assembly activity
(activity 0). We assume equal echelon unit holding costs for all activities, thus
h0 = h1 = h2 = 1. We set the unit penalty costs to p = 27. Hence, under the
optimal solution, the service level is α = p

hc
0+p = 90%. We assume that leadtimes
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x0 x1, x2 Total P(max{L1, L2} > 0) P(L0 > 0)
x∗ 3.01 1.73 4.75 0.32 0.1
xa∗

3.40 1.18 4.58 0.52 0.1

Table 2.1: Structural differences between the two optimal planned leadtime solutions.

C(x∗) Ca(x∗) C(xa∗) Ca(xa∗)
16.03 15.69 16.18 15.61

Table 2.2: Expected costs under the optimal planned leadtime solutions.

are exponentially distributed with rate λi = 1 for all i ∈ {0} ∪V. Table 2.1 provides
the optimal planned leadtimes and some properties of the optimal solutions and
Table 2.2 summarizes the expected total costs.

The expected costs for each of the optimal leadtime solutions x∗ and xa∗ can be
computed according to both cost functions C(·) and Ca(·). These are also shown in
Table 2.2. Suppose a company uses cost function Ca(·) and determines the optimal
solution xa∗. The total expected cost for this solution is 15.61. However, this cost
function does not take into account costs that occur if activity 0 cannot start in time.
Cost function C(·) does take these additional costs into account. Given that the
production is planned according to solution xa∗, the expected cost according to cost
function C(·) will be 16.18. This is an increase of 3.6%. Thus, for this case, cost
function Ca(·) neglects a significant part of the total expected costs. However, the
solution xa∗ is not optimal for cost function C(·). If a company would optimize
according to this cost function, the solution is x∗. This leads to a total costs of 16.03,
which implies an improvement of 0.9%.

One could argue that an improvement of 0.9% in expected costs is relatively small
and thus that both solutions xa∗ and x∗ can be used. There are a few reasons why
the cost difference is this small. First, the holding cost during the average duration

of each activity, i.e.,
N
∑

i=0
hc

i E[Ti], appears in both cost functions and it is constant. In

this example, the value of this constant term is 5.0, i.e., almost one third of the total
costs. Second, the cost for being late at the final activity are (hc

0 + p)E[L0]. A high
service level requirement, such as 90%, makes this term significant. Under solution
x∗ this term equals 3.52 (22.0% of the total costs), while under solution xa∗ this term
equals 3.61 (22.3% of the total costs).
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Although the costs for both solutions are close, there are significant differences
in the structure of the optimal solutions. In Table 2.1, we provide the planned
leadtimes of each activity and lateness probabilities. We observe that x∗ allocates
significantly less time to the final activity (3.01 vs 3.40). Since activities 1 and 2

have equal leadtime distributions and equal holding costs, these activities have the
same optimal planned leadtimes in both solutions. We see that x∗ plans more time
for the subassembly activities (1.73 versus 1.18), a difference of 46%. This has a
significant impact on the probability that one or more subassemblies finish late. This
probability is 0.32 if x∗ is used while it is 0.52 if xa∗ is used. Hence, the probability
that the final assembly can start in time is 0.68 for our solution. This probability
is 0.48 for the other solution. Therefore, the advantage of using x∗ instead of xa∗

is that intermediate deadlines are met more often, while expected costs and total
leadtime only change marginally. From a production planner’s perspective, this is
useful, since it makes scheduling resources for different products easier.

The insights of this numerical example can be generalized to other parameter
combinations. The main driver in the cost difference between our solution and
the one by Atan et al. (2016) is the relative importance of meeting the intermediate
deadline (start of final assembly) compared to the final deadline (delivery to the
customer). A high h0/(h1 + h2) ratio makes the intermediate deadline important,
while a high p/hc

0 ratio makes the final deadline important. Increasing h0 while
keeping other parameters constant increases the importance of the intermediate
deadline and decreases the importance of the final deadline. This leads to higher
cost differences. However, in such an example, the service level would decrease
significantly. For example, when h1 = h2 = 1, h0 = 10 and p = 27, the optimal
service level is 27/39=69%.

Similarly, increasing p while keeping other parameters constant makes the final
deadline important and reduces the cost difference between our solution and the
one by Atan et al. (2016). To show this, we perform a numerical experiment in which
we vary p. We consider a two-activity serial system with exponentially distributed
leadtimes: λ1 = λ0 = 1. Holding cost parameters are h1 = h0 = 1. We calculate
the optimal solutions x∗ and xa∗ and the corresponding expected cost C(x∗) and
Ca(xa∗). In Figure 2.3 the relative cost difference, defined as C(x∗)−Ca(xa∗)

C(x∗)
, is shown.

According to this figure, under the chosen parameter setting, for very low values of
p the relative cost difference can be as high as 17%, while it is around 3% for higher
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Figure 2.3: Relative cost difference between the two cost functions.

p values. We would like to note that obtaining analytical expressions for the relative
cost difference under the optimal solutions is not possible even for this special case
with exponential leadtimes. The challenge stems from the fact that the optimality
equations under our cost accounting scheme are not decoupled.

2.6.2 Negative Planned Leadtimes

As stated in Proposition 2.1, the planned leadtimes in our optimal solution are
always non-negative. However, this is not case for the optimal solution by Atan
et al. (2016). In this section, we show that xa∗ can have negative components.

We consider a two-activity serial system with exponentially distributed leadtimes
with rate λi, i = 0, 1. We set λ1 = 1 and solve multiple instances by varying λ0,
and hence E[T0] = λ−1

0 . In all instances h0 = h1 = 1 and the desired service level
α = 90%. In Figure 2.4, we plot x∗1 and x∗a1 as function of E[T0].

When the average leadtime of activity 0 gets much longer than the average leadtime
of activity 1, the planned lead time xa∗

1 decreases and becomes negative. On the
other hand, x∗1 stays positive and close to E[T1]. Hence, when E[T0] > E[T1], our
cost function leads to a meaningful optimal solution. When E[T1] > E[T0], both
cost functions lead to a similar optimal solution.
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Figure 2.4: Optimal planned leadtimes for activity 1 for different values of 1
λ0

.

The same behavior can be observed for symmetric assembly systems (equal holding
costs and identical distributions for all subassemblies) by comparing maxi∈V{Ti}
to T0. For asymmetric assembly systems, a negative optimal planned leadtime is
typically expected for a subassembly activity i with E[T0] >> E[Ti].

When an optimal solution contains negative planned leadtimes, this means that the
activity is planned to start later than its successor is planned to start. To bypass this
problem in practice, the plan is adapted as follows. In the adapted plan xa′

1 = 0
and xa′

0 = xa
0 + xa

1. This doesn’t change the realization of the plan. Activity 1 will
start at the same time and activity 0 will start immediately after it. These alternative
solutions that for the ‘pay as realized’ cost function lead to the same cost are further
discussed in Chapter 4.

2.7. Concluding Remarks

In this chapter we study the problem of setting planned leadtimes in a configure-to-
order assembly system with random leadtimes. We introduce the ‘pay as planned’
cost accounting scheme, which besides holding costs and a penalty cost for late
delivery, also accounts for not meeting intermediate deadlines. The objective is to
determine the optimal planned leadtimes, which minimize the total expected cost.
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Our methodology relies on introducing a blame policy. Given that a product
is delivered late, this policy identifies which activity should be blamed for the
lateness. We show that for a system that is planned according to the optimal
planned leadtime solution, the probability that a activity is blamed is proportional
to the value the activity adds to the final product. We prove this statement by
deriving a set of Newsvendor equations, that are only satisfied by the optimal
planned leadtime solution.

The same system with a ‘pay as realized’ cost function has been studied in Atan
et al. (2016). We compare our optimal solution with their optimal solution and
provide analytical results to point multiple structural differences. In addition, the
two solutions are compared in numerical experiments. These experiments show
that if the service level requirement is high, the difference between the optimal costs
is marginal. However, the difference in the optimal planned leadtimes is significant.
Our solution results in a significantly higher probability that intermediate deadlines
are met. Also, negative optimal planned leadtimes, a problem faced when using the
other cost function, are not possible for our cost function.

In this chapter we introduced the ‘pay as planned’ cost accounting scheme for
an assembly system. In Chapter 4 we extend the definition of the framework to
more general networks and generalize the structural results. This chapter also
considers systems with dependent leadtimes. As leadtimes for different suppliers
often correlate, this is a very relevant research direction. Finally, note that we do
not penalize the activities for being blamed for the lateness of the system. Another
future work might be to consider a cost function such that each activity is penalized
for the late delivery. Then, different from our study, the optimal solution would
depend on the blame policy. Finding the optimal blame policy can be challenging
yet very interesting and relevant extension.

2.A. Proofs

Proof of Lemma 2.1

First we show that
∂E[L0(x)]

∂x0
= E

[
∂L0(x)

∂x0

]
,
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or equivalently, that for every sequence h1, h2, . . . converging to 0,

lim
n→∞

E[L0(x + hne0)]−E[L0(x)]
hn

= E

[
∂L0(x)

∂x0

]
, (2.9)

where e0 is the unit vector with 1 at position 0. Since

L0(x)(ω) =

(
t0 + max

i∈V
(ti − xi)

+ − x0

)+

, the derivative ∂L0(x)
∂x0

(ω) exists for almost all ω and

∂L0(x)
∂x0

(ω) =

{
−1, t0 + maxi∈V(ti − xi)

+ − x0 > 0,
0, t0 + maxi∈V(ti − xi)

+ − x0 < 0.

For all ω, ∣∣∣∣ L0(x + hne0)(ω)− L0(x)(ω)

hn

∣∣∣∣ ≤ 1,

so by bounded convergence we can conclude that (2.9) holds. Hence,

∂E[L0(x)]
∂x0

= E

[
∂L0(x)

∂x0

]
= −P(L0 > 0) = −P

( N⋃
i=0

θi
)
= −

N

∑
i=0

P(θi).

This proves the lemma for the derivative of E[L0] with respect to x0. The proof of
the derivatives with respect to xi for i ∈ V proceeds along the same lines.

Proof of Theorem 2.2

We consider a planned leadtime vector x. If xi < 0 for some i ∈ V, we can write L0

as

L0 =

(
T0 + max

j∈V
{(Tj − xj)

+} − x0

)+

=

(
T0 + max

j∈V
{(Tj − xj + xi)

+} − x0 − xi

)+

(2.10)
and x′ can be constructed as follows:

x′i = 0,

x′j = xj − xi, j ∈ V, j 6= i,
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x′0 = x0 + xi.

From (2.10) it follows that L′0 = L0 and thus C(x′) = C(x) + (h0 + hc
i )xi < C(x).

Note that x′j > xj for all j ∈ V. So we can successively apply this construction to
the negative subassembly planned leadtimes (as long as there are any), resulting in
a vector x with lower costs than the original one and xi ≥ 0 for all i ∈ V. Finally, if
x0 < 0, we can write L0 as

L0 =

(
T0 + max

i∈V
{Li} − x0

)+

= T0 + max
i∈V
{Li} − x0

and construct a vector x′ as follows:

x′0 = 0,

x′i = xi, i ∈ V.

The lateness L′0 for x′ is equal to L0 + x0, so C(x′) = C(x) + px0 < C(x).

Proof of Lemma 2.2

For a subassembly activity i ∈ V, (2.7) can be written as:

P(θi) = P(Ti − xi > 0, Ti − xi > max
j∈V\{i}

{Tj − xj}, Ti − xi + T0 − x0 > 0). (2.11)

If xi increases, each of the three events in the right-hand side decreases and thus
P(θi) decreases as well. Only the third event depends on x0. This event decreases if
x0 increases. The second event is the only one depending on xj and it increases if xj

increases. Hence, we can conclude that P(θi) decreases in xi and x0 and increases
in any xj, j ∈ V\{i}.

Proof of Lemma 2.3

For the final assembly activity, we have:

P(θ0) = P(max
i∈V
{Ti − xi} ≤ 0, T0 − x0 > 0).
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The first event in the right-hand side increases in each xi and the second event does
not depend on xi. Therefore P(θ0) increases in each xi. Only the second event
depends on x0 and it decreases if x0 increases.

Proof of Theorem 2.3

Theorem 2.1 and Proposition 2.1 imply that there exists a non-negative solution to
the Newsvendor equations of Theorem 2.1. To prove uniqueness we consider two
non-negative vectors y and z with y0 ≤ z0 and show that the blame probabilities
corresponding to y and z are not identical unless y = z. We define the set U as

U = {i : i ∈ V, zi > yi} .

For vector y, the probability that a activity in U is blamed is equal to (cf. (2.11))

∑
i∈U

P(θi) = P
(

max
i∈U
{Ti − yi} > 0,

max
i∈U
{Ti − yi} > max

j∈V\U
{Tj − yj}, max

i∈U
{Ti − xi}+ T0 − y0 > 0

)
. (2.12)

Note that (i) if yi for i ∈ U increases, then all three events in the right-hand side
decrease, (ii) if yj for j ∈ V\U decreases, then only the second event decreases, and
(iii) if y0 increases, only the third event decreases. Hence, if U is not empty, blame
probability (2.12) decreases if y is replaced by z. If U is empty, we consider

P(θ0) = P(max
j∈V
{Tj − yj} ≤ 0, T0 − y0 > 0).

By Lemma 2.3 we conclude that P(θ0) decreases if y is replaced by z.

Proof of Proposition 2.2

Since h0 > 0 and L0 ≥ 0 it follows that for any x

C(x) = Ca(x) + h0E[L0] ≥ Ca(x) ≥ Ca(xa∗).

In particular this inequality is valid for x = x∗.
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Proof of Proposition 2.3

For cost function Ca(·) the optimal planned leadtime xa∗
0 satisfies the Newsvendor

equation

P(T0 > xa∗
0 ) =

h0

hc
0 + p

(2.13)

and for cost function C(·) the optimal planned leadtime x∗0 satisfies

P(θ0) = P(T0 > x∗0 , max
i∈V
{Li} = 0) = P(T0 > x∗0)P(max

i∈V
{Li} = 0) =

h0

hc
0 + p

.

Since P(maxi∈V{Li} = 0) < 1, it follows that x∗0 < xa∗
0 . Similar as in the proof of

Theorem 2.3, we define the set U as

U = {i : i ∈ V, xa∗
i ≥ x∗i } .

If U is not empty, then it holds for x∗ that the blame probability of an activity in U
is equal to

∑
i∈U

hi
hc

0 + p
= P

(
max
i∈U
{Ti − x∗i } > max

j∈V\U
{(Tj − x∗j )

+},

max
i∈U
{Ti − x∗i }+ T0 − x∗0 > 0

)
≥ P

(
max
i∈U
{Ti − xa∗

i } > max
j∈V\U

{(Tj − xa∗
j )+},

max
i∈U
{Ti − xa∗

i }+ T0 − x∗0 > 0
)

> P

(
max
i∈U
{Ti − xa∗

i } > max
j∈V\U

{(Tj − xa∗
j )+}, T0 < xa∗

0 ,

max
i∈U
{Ti − xa∗

i }+ T0 − x∗0 > 0
)

.

The last sum at the right-hand is the blame probability of an activity in U for xa∗.
It should not be less but equal to the left-hand side. Hence, we conclude that U is
empty and thus xa∗

i < x∗i for all i ∈ V. This completes the proof of part (a). Part b
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is also proved by contradiction. Let us assume that

x∗i + x∗0 < xa∗
i + xa∗

0 , i ∈ V. (2.14)

The probability of a positive lateness L∗0 under x∗ is equal to the Newsvendor
fractile,

hc
0

hc
0 + p

= P(L∗0 > 0) = P(max
i∈V
{(Ti − x∗i )

+}+ T0 − x∗0 > 0)

= P(max
i∈V
{(Ti − xa∗

i − x∗i + xa∗
i )+}+ T0 − x∗0 > 0)

≥ P(max
i∈V
{(Ti − xa∗

i )+ − x∗i + xa∗
i )}+ T0 − x∗0 > 0)

≥ P(max
i∈V
{(Ti − xa∗

i )+} −max
i∈V
{x∗i − xa∗

i }+ T0 − x∗0 > 0)

> P(max
i∈V
{(Ti − xa∗

i )+} − xa∗
0 + x∗0 + T0 − x∗0 > 0)

= P(max
i∈V
{(Ti − xa∗

i )+}+ T0 − xa∗
0 > 0) = P(La∗

0 > 0),

where we used (b− a)+ ≥ b+ − a for numbers a > 0 and b in the first inequality
and assumption (2.14) in the third. This is a contradiction, since P(La∗

0 > 0) should
also be equal to the Newsvendor fractile at the left-hand side. Hence, (2.14) is not
valid, so there is an activity i for which x∗i + x∗0 ≥ xa∗

i + xa∗
0 .

Proof of Proposition 2.4

To derive the limiting behavior of xa∗
0 , we rewrite (2.13) as:

P(T0 ≤ xa∗
0 ) = 1− h0

hc
0 + p

= α +
h1

hc
0 + p

,

so
xa∗

0 = F−1
0

(
α +

h1

hc
0 + p

)
.

Since h1
hc

0+p → 0 as h0 → ∞, it follows from the continuity of F−1
0 (·) that

lim
h0→∞

{xa∗
0 } = F−1

0 (α) .
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The planned leadtime xa∗
1 satisfies the Newsvendor equation

P(T1 > xa∗
1 , T0 < xa∗

0 , T1 + T0 > xa∗
1 + xa∗

0 ) =
h1

hc
0 + p

.

The right-hand side converges to 0 as h0 → ∞. Hence the blame probability at the
left-hand side also converges to 0. Since xa∗

0 converges to a proper limit, this implies
that xa∗

1 has to grow to infinity. From Proposition 2.3 it follows that x∗1 > xa∗
1 , so

also x∗1 tends to infinity. Finally, x∗0 satisfies (2.6), which can be rewritten to

P(T1 ≤ x∗1)P(T0 > x∗0) =
h0

hc
0 + p

= 1− α− h1

hc
0 + p

.

Since x∗1 → ∞, and thus P(T1 ≤ x∗1) → 1 as h0 → ∞, it follows from the continuity
of F−1

0 (·) that
lim

h0→∞
{xa∗

0 } = F−1
0 (α) .

Proof of Proposition 2.5

To prove the first equation of Proposition 2.5, we start from (2.6). For activity 1, this
equation can be written as

P (T0 + T1 > x∗1 + x∗0 , T1 > x∗1) =
h1

hc
0 + p

P
(
T0 + T′1 > x∗0 |T1 > x∗1

)
P (T1 > x∗1) =

h1

hc
0 + p

.

In the second expression, T′1 denotes the leadtime of activity 1, given that it exceeds
x∗1 . Due to the memoryless property, this random variable is again exponentially
distributed with parameter λ. The sum of 2 independent exponential variables with
rate λ is an Erlang-2 distribution and thus we find the following expressions hold

P
(
T0 + T′1 > x∗0 |T1 > x∗1

)
= (1 + λx∗0)e

−λx∗0

P (T1 > x∗1) = e−λx∗1 .
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Hence, we obtain

P (T0 + T1 > x∗1 + x∗0 , T1 > x∗1) = (1 + λx∗0)e
−λ(x∗0+x∗1 ),

which leads to
(1 + λx∗0)e

−λ(x∗0+x∗1 ) =
h1

hc
0 + p

.

To prove the second equation of Proposition 2.5 we start from (2.6). For activity 0,
this equation can be written as

P(θ0) = P(T1 < x∗1)P(T0 > x∗0) =
h0

hc
0 + p

.

Assuming exponential distributions leads to

(1− e−λx∗1 )e−λx∗0 = e−λx∗0 − e−λ(x∗1+x∗0 ) =
h0

hc
0 + p

.

Proof of Proposition 2.6

In Atan et al. (2016), it is proven that

P(T1 > xa∗
1 , T0 < xa∗

0 , T1 + T0 > xa∗
1 + xa∗

0 ) =
h1

hc
0 + p

.

Assuming identically exponentially distributed leadtimes, this equation can be
rewritten as

∞∫
xa∗

1

xa∗
0∫

(xa∗
1 +xa∗

0 −t1)+

λe−λt1 λe−λt0 dt0dt1

=

xa∗
1 +xa∗

0∫
xa∗

1

xa∗
0∫

xa∗
1 +xa∗

0 −t1

λ2e−λ(t1+t0)dt0dt1 +

∞∫
xa∗

1 +xa∗
0

xa∗
0∫

0

λ2e−λ(t1+t0)dt0dt1. (2.15)

The first term of the right-hand side is computed as follows:
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xa∗
1 +xa∗

0∫
xa∗

1

xa∗
0∫

xa∗
1 +xa∗

0 −t1

λ2e−λ(t1+t0)dt1dt0 = λ

xa∗
1 +xa∗

0∫
xa∗

1

[
−e−λ(t1+t0)

]xa∗
0

xa∗
1 +xa∗

0 −t1
dt1

= λ

xa∗
1 +xa∗

0∫
xa∗

1

e−λ(xa∗
1 +xa∗

0 )dt1 − λ

xa∗
1 +xa∗

0∫
xa∗

1

e−λ(t1+xa∗
0 )dt1

= λxa∗
0 e−λ(xa∗

1 +xa∗
0 ) + e−λ(xa∗

1 +xa∗
0 +xa∗

0 ) − e−λ(xa∗
1 +xa∗

0 ).

The second term of the right-hand side of (2.15) can be rewritten as

∞∫
xa∗

1 +xa∗
0

xa∗
0∫

0

λ2e−λ(t1+t0)dt0dt1 = P(T1 > xa∗
1 + xa∗

0 )P(T0 < xa∗
0 )

= e−λ(xa∗
1 +xa∗

0 )(1− e−λxa∗
0 )

= e−λ(xa∗
1 +xa∗

0 ) − e−λ(xa∗
1 +xa∗

0 +xa∗
0 ).

Finally, inserting these results into (2.15) leads to λxa∗
0 e−λ(xa∗

1 +xa∗
0 ) = h1

hc
0+p .

In Atan et al. (2016) it is also proven that

P(T0 > xa∗
0 ) =

h0

hc
0 + p

.

By inserting the inverse cumulative probability for an exponential distribution,
which is e−λxa∗

0 it directly follows that

e−λxa∗
0 =

h0

hc
0 + p

.

Proof of Proposition 2.7

For this proof we use the optimality equations for activity 1 from Propositions 2.5
and 2.6 and rewrite the terms:

(1 + λx∗0)e
−λ(x∗0+x∗1 ) = λxa∗

0 e−λ(xa∗
1 +xa∗

0 )

e−λ(x∗0+x∗1−xa∗
1 −xa∗

0 ) =
λxa∗

0
1 + λx∗0
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x∗1 − xa∗
1 = − 1

λ
ln
(

λxa∗
0

1 + λx∗0

)
+ xa∗

0 − x∗0

From Proposition 2.4 it follows that limh0→∞
{

x∗0 − xa∗
0
}
= 0 and thus we find

lim
h0→∞

{x∗1 − xa∗
1 } = −

1
λ

ln
(

λx∗0
1 + λx∗0

)
.



3
Modeling of Networks Under ‘Pay as

Planned’ Costing Scheme

3.1. Introduction

We consider production systems that manufacture high-value, low-volume, customer-
specific products, such as airplanes and lithography systems. The manufacturing
process of such products is divided into multiple activities, which can only start
when preceding activities are finished. High product complexity implies variability
in activity leadtimes. In turn, random activity leadtimes imply randomness
in the end product completion times and randomness in the customer delivery
date. Several studies considered these production systems with the objective of
determining the planned leadtimes of the activities. They addressed network
structures such as two nodes (Yano, 1987a), serial networks (Elhafsi, 2002) and
converging networks (Axsäter, 2005; Trietsch, 2006; Atan et al., 2016; Jansen et al.,
2019). A common assumption in all these studies is that the network has a single
final node, i.e., there is only one end product.

In this chapter, we aim to generalize the results for the ‘pay as planned’ cost
structure obtained in Chapter 2 to networks that have multiple end nodes. This
generalization is motivated by practice. For capital-intensive expensive products,



50 Chapter 3. Modeling of Networks Under ‘Pay as Planned’ Costing Scheme

(a) A project with intermediate deadlines (b) Aligning one task of multiple projects

Figure 3.1: Examples of diverging networks

customers pay in several installments, where each installment is linked to the
completion of an activity. For example, when building a house, the first installment
is often paid when the foundation is finished. An example of a network
representation for such a situation is depicted in Figure 3.1a. In this example, the
customer pays installments after completion of activities represented by nodes 5, 3

and 1.

It is common practice that products for different customers are produced simultane-
ously. This is another motivation for our study. In fact, it can be beneficial to align
identical activities for different products. For example, if the hull of a new vessel is
built in Asia and the rest of the activities are performed in Europe, it makes sense
to transport multiple hulls on a big vessel from Asia to Europe. Transporting an
extra hull on the same vessel only marginally increases the total cost, while it can
be very expensive and inefficient to transport each hull individually. An example
of a network representation for such a system is depicted in Figure 3.1b. Node 10

is the shared transportation activity. After this activity, each project is completed
separately.

In previous studies, different cost structures have been considered, but they all rely
on the same basic principle: each activity in the network adds value to the final
product. This value is represented by the activity holding costs. If the production
of an end product is finished earlier than planned, a holding cost is incurred until
the due date. If the product is completed later than planned, an extra penalty cost
needs to be paid to the customer. We extend this cost concept to networks with
multiple end nodes. Since an activity can add value to multiple end products, we
define holding cost for each of the end nodes relevant to the activity. Similar to
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networks with a single end node, there is a penalty cost for late completions of each
end node. Our objective is to set the start times of all activities so that the total
expected holding and penalty costs are minimized.

In Chapter 2 we determined a planned leadtime for all nodes in the system. However,
planned leadtime solutions are ambiguous in networks with multiple end nodes.
Therefore, the perspective in this chapter is different: we describe the solution in
terms of a planned start time for each node and a planned finish time for each end node.
This formulation easily applies to networks with single or multiple end nodes.

We also introduce the concept of tardy paths. For a specific realization of activity
leadtimes, a path is tardy if it leads to an end node that is behind schedule. This
is different from the concept of critical paths introduced by Kelley Jr and Walker
(1959). While a critical path is solely based on planned leadtimes, a tardy path
depends on the whole plan, i.e. start and finish times, and also on the realization of
the random leadtimes.

For an assembly system with a single end node, we showed in Chapter 2 that
under the optimal solution the probability of an activity delaying final delivery is
proportional to the value it adds to the end product. In this chapter we extend this
result. For given start and finish times and leadtime distributions, we derive an
expression for the probability of a path being tardy under the optimal solution. We
show that Newsvendor equations hold for specific sets of nodes. The remainder
of this chapter is organized as follows. We formulate the model in Section 3.2. In
Section 3.3, we introduce the concept of tardy paths. Structural results are presented
in Section 3.4. We provide a numerical example in Section 3.5 and conclude in
Section 3.6.

3.2. Model Formulation

Let G = (V , E) be a directed acyclic graph with N nodes. V = {1, 2, ..., N} is the
set of all nodes and E is the set of all directed edges. Each node represents an
activity and each edge represents a precedence relation. The edge from node i to
node j is denoted by 〈i, j〉. We define P(i) := {j ∈ V : 〈j, i〉 ∈ E} and S(i) := {j ∈
V : 〈i, j〉 ∈ E} as the sets of immediate predecessors and immediate successors of
node i, respectively. In addition, R := {i ∈ V : P(i) = ∅} and L := {i ∈ V :
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S(i) = ∅} are the sets of root and leaf nodes, respectively. The set of all nodes
that can reach node i is denoted by Y(i). This set can be recursively defined as
Y(i) := P(i) ∪

(⋃
j∈P(i) Y(j)

)
, where Y(i) = ∅ for all i ∈ R. The set of all nodes

that are reachable from node i is Z(i), which can be also be recursively defined as
Z(i) := S(i)∪

(⋃
j∈S(i) Z(j)

)
, where Z(i) = ∅ for all i ∈ L. We assume that nodes

are numbered such that for any two nodes, if i ∈ Y(j) then i > j. Finally, we define
W(i, j) as the set of all paths from node i ∈ V to j ∈ L. Note that W(i, j) might be
empty.

Activities in the network have uncertain durations. The duration of the activity in
node i is modeled by a random variable Ti that is continuous and exists on the entire
domain (0, ∞). Random variables can be dependent, however, the joint probablity
distribution of all random leadtimes should be continuous and it should exist on
the domain RN

+ . The planned start time of node i is ts
i . An activity can only start

after all its predecessors are finished. If all predecessors of i finish earlier than
ts
i , node i starts at the planned start time. Due to the uncertainty in duration of

predecessors, the actual start times of non-root nodes are uncertain. The random
variable Ai represents this actual start time and is defined as follows:

Ai = max{max
j∈P(i)

{Aj + Tj}, ts
i }, i ∈ V .

For any realization of the activity leadtimes, Ai can be recursively computed for all
nodes, starting from the root node with the highest index. Each leaf node j also has
a planned finish time t f

j . This is the due date communicated to the customer. We
define the actual finish time for each leaf node as:

Bj = max{t f
j , Aj + Tj}, j ∈ L.

Note that if a product is completed before its planned finish time, it is delivered
to the customer at its planned finish time and not earlier. Clearly, the random
variables Ai and Bi depend on the vectors of planned start and finish times ts and
tf, respectively. We do not explicitly indicate this dependence in the notation, except
when it enhances readability.

In this chapter, we use the ‘pay as planned’ cost structure. The motivation behind
this cost structure is that, when an activity is started, investments in resources need
to be made. These investments are earned back when the product is delivered to the
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customer, i.e. after completion of a leaf node. During this period, holding costs are
incurred, representing the interest paid on the investment. These costs are incurred
regardless of whether this activity is actually started, it could also be delayed due
to preceding activities.

We define hi,j as the holding cost per time unit paid from the planned start time ts
i of

node i until the completion of leaf node j. We have hi,j > 0 when j ∈ L∩ (Z(i)∪{i})
and hi,j = 0 otherwise. The unit echelon holding cost for node i is calculated as
he

i = ∑j∈L∩(Z(i)∪{i}) hi,j. The unit local holding cost for leaf node j is defined as

hc
j = ∑i∈Y(j)∪{j} hi,j. If leaf node j is completed later than its planned finish time t f

j ,
a penalty cost pj is incurred per unit time late. This leads to the following expression
for the expected cost of a production plan defined by the vectors of planned start
times ts and finish times tf under the ‘pay as planned’ costing scheme.

C(ts, tf) = ∑
j∈L

 ∑
i∈Y(j)∪{j}

(t f
j − ts

i )hi,j + (hc
j + pj)E[Bj − t f

j ]

 (3.1)

Since holding costs are incurred from the planned start time, there is no uncertainty
in holding cost to be paid until the due date. The only uncertainty is in the actual
completion times of the leaf nodes, which in turn depend on the completion times
of all predecessor nodes. Our objective is to solve the optimization problem (P)
defined as mints ,tf{C(ts, tf)}.

3.3. Tardy Paths

Randomness of the activity leadtimes implies that the actual start and finish times
might differ from the planned start and finish times. A realization of the leadtimes
T1, . . . , TN is indicated by ω = (t1, . . . , tN) ∈ Ω = RN

+ . So Ti(ω) = ti denotes a
realization of Ti. For each realization of leadtimes, we can identify tardy paths. For
a realization ω ∈ Ω, we say that a path from node i to leaf node j is tardy if there is
no waiting time, or ‘slack’ on that path. The formal definition is as follows:

Definition 3.1 For a realization ω ∈ Ω, a path from node i to leaf node j is tardy iff

1. Node i starts at the planned start time: Ai(ω) = ts
i .



54 Chapter 3. Modeling of Networks Under ‘Pay as Planned’ Costing Scheme

Figure 3.2: Production plan (ts, tf) and a realization ω for the network in Figure 3.1a

2. For each edge 〈k, l〉 on that path, the actual finish time of node k equals the
actual start time of node l: Ak(ω) + Tk(ω) = Al(ω).

3. Leaf node j finishes later than planned: Bj(ω) > t f
j .

The definition implies that there exists a tardy path to leaf node j only if node j is
late, and if so, it is unique with probability 1, i.e. there is exactly one tardy path to
node j. To find this path, one starts from node j following the path with no slack,
until a node is found that starts on time. Since there is a tardy path for each leaf
node that is late, networks with multiple leaf nodes can have multiple tardy paths.

To explain the idea of tardy paths further, we consider the networks in Figure 3.1.
For both networks, we show the production plan obtained from a candidate solution
(ts, tf) to the optimization problem (P) together with a realization ω of this plan.
Each start time ts

i is denoted by a ‘flag’ pointing to the right and each finish time
t f
i by a flag pointing to the left. The realization of each random variable Ti(ω) is

denoted by a gray bar.

Figure 3.2 shows the production plan for the network in Figure 3.1a. In this network,
nodes 1, 3 and 5 are leaf nodes and thus have planned finish times. Nodes 5, 6 and
7 start at their planned start times. All other nodes are delayed. Leaf nodes 1 and
5 are late. Although the actual start time of node 3 is later than planned, it makes
up for this lateness and finishes in time. We have two leaf nodes that are late, thus
we have two tardy paths. For node 5, the tardy path simply is {5}, since this node
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Figure 3.3: Production plan (ts, tf) and a realization ω for the network in Figure 3.1b

starts at its planned start time. The tardy path to node 1 is {6, 4, 2, 1} because (i)
node 6 starts at its planned start time, (ii) nodes 4, 2 and 1 start later than planned
and (iii) node 1 finishes later than planned.

A production plan for the network in Figure 3.1b is depicted in Figure 3.3. Leaf
node 1 is in time, while leaf nodes 4 and 7 are late. Critical paths for these nodes
are {5, 4} and {10, 9, 8, 7}, respectively.

Tardy paths are defined for realizations ω ∈ Ω. For each node i and leaf node j,
we now define θi,j as the event that a path from i to j is tardy, i.e., the set of all
realizations ω for which there is a tardy path from i to j.

3.4. Structural Results

In this section, we derive structural results for the optimization problem (P). We
show that (P) is convex and derive optimality equations. The complicated terms in
the cost function (3.1) are E[Bj(ts, tf)− t f

j ], where we now explicitly indicate that Bj

is a function of ts and tf. Below we show that the first order partial derivatives with
respect to ts

i and t f
i can be expressed as (a sum of) probabilities P(θi,j):
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Lemma 3.1 For all leaf nodes j ∈ L,

∂

∂t f
k

E[Bj(ts, tf)− t f
j ] =

−∑i∈Y(j)∪{j} P(θi,j), if k = j

0, otherwise
(3.2)

∂

∂ts
i
E[Bj(ts, tf)]− t f

j ] =

P(θi,j), if i ∈ Y(j) ∪ {j}

0, otherwise
(3.3)

Proof. First we show that

∂E[Bj(ts, tf)− t f
j ]

∂ts
i

=
∂E[Bj(ts, tf)]

∂ts
i

= E

[
∂Bj(ts, tf)

∂ts
i

]

or equivalently, that for every sequence g1, g2, ... converging to 0,

lim
n→∞

E[Bj(ts + gnei, tf)]−E[Bj(ts, tf)]

gn
= E

[
∂Bj(ts, tf)

∂ts
i

]
(3.4)

where ei is the unit vector with 1 at position i. To find the derivative, we rewrite
Bj(ts, tf) as follows. For every realization ω = (t1, . . . , tN) we have

Bj(ts, tf)(ω) = max

t f
j , max

k∈Y(j)∪{j},
w∈W(k,j)

{
ts
k + ∑

l∈w
Tl(ω)

} (3.5)

Hence the derivative
∂Bj(ts ,tf)(ω)

∂ts
i

exists for almost all ω and

∂Bj(ts, tf)(ω)

∂ts
i

=

1, if Bj(ts, tf)(ω) = ts
i + ∑l∈w Tl(ω),

0, otherwise.

For all ω, ∣∣∣∣∣Bj(ts + gnei, tf)(ω)− Bj(ts, tf)(ω)

gn

∣∣∣∣∣ ≤ 1,

so by bounded convergence we can conclude that (3.4) holds. Since the derivative
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with respect to ts
i is 1 if a path from i to j is tardy and 0 otherwise, we get

∂E[Bj(ts, tf)− t f
j ]

∂ts
i

= E

[
∂Bj(ts, tf)

∂ts
i

]
= P(θi,j),

which proves (3.3). The proof of (3.2) proceeds along the same lines. 2

Observe that the derivative is only a function of planned start and finish times of
nodes that share the same leaf node.

Lemma 3.2 The cost function C(ts, tf) is jointly convex in (ts, tf).

Proof. Convexity of (3.1) immediately follows from convexity of (3.5) in (ts, tf) for
every ω. 2

This property guarantees that any local optimal production plan (ts, tf) is also a
global optimum. For the optimal production plan in an assembly network with a
single leaf node we showed in Chapter 2 that the probability that a tardy path starts
in node i ∈ V is proportional to the value this activity adds to the final product
(Theorem 2.1). We show that this result also holds for specific nodes in production
networks with multiple leaf nodes, depending on their location in the network.
Before stating the optimality equations for the production plan, we define U as the
set of nodes, which have the property that they can reach exactly one leaf node:
U = {i : |L ∩ (Z(i) ∪ {i})| = 1}. According to this definition, U = {1, 2, 3, 5} and
U = {1, 2, 3, 4, 5, 6, 7, 8, 9} for the networks in Figures 3.1a and 3.1b, respectively. A
more complicated network and its corresponding set U are shown in Figure 3.4.
So far, the networks studied in literature have only one leaf node, for which it
immediately follows that U = V . We denote the optimal solution to (P) as (ts∗, tf∗).
Under the optimal solution the probability of a path being tardy is denoted by
P(θ∗i,j). The optimality equations for (ts∗, tf∗) are formulated in Theorem 3.1.

Theorem 3.1 The optimal production plan (ts∗, tf∗) of (P) satisfies the following equa-
tions:

∑
i∈Y(j)∪{j}

P(θ∗i,j) =
hc

j

hc
j + pj

, j ∈ L (3.6)
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Figure 3.4: Example of set U for a network of 14 nodes

∑
j∈(Z(i)∪{i})∩L)

(hc
j + pj)P(θ∗i,j) = he

i , i ∈ V (3.7)

P(θ∗i,j) =
hi,j

hc
j + pj

, i ∈ U , j ∈ L (3.8)

Proof. To prove (3.6) we take the partial derivative of (3.1) with respect to t f
j . By

Lemma 3.1,

∂C(ts, tf)

∂t f
j

=− ∑
i∈Y(j)∪{j}

hi,j + (hc
j + pj) ∑

i∈Y(j)∪{j}
P(θi,j), j ∈ L

At optimality this derivative should vanish, so

∑
i∈Y(j)∪{j}

P(θ∗i,j) =
hc

j

hc
j + pj

.

To prove (3.7) and (3.8) we take the derivative of (3.1) with respect to ts
k, yielding

∂C(ts, tf)

∂ts
k

= −he
k + ∑

j∈Z(k)∩L
(hc

j + pj)P(θk,j), k ∈ V .
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Since this derivative vanishes at optimality, we find

∑
j∈(Z(k)∪{k})∩L

(hc
j + pj)P(θ∗k,j) = he

k, k ∈ V .

If k ∈ U , then k can reach only one leaf node. Hence the above equation reduces to

P(θ∗k,j) =
hk

hc
j + pj

, k ∈ U ,

which concludes the proof. 2

The interpretation of Theorem 3.1 is as follows: (3.6) states that the general
Newsvendor equation holds for every leaf node. This equation depends only on
the local holding cost hc

j and penalty cost pj of the corresponding leaf node and is
independent from the local holding and penalty costs of other leaf nodes. The left-
hand side of (3.7) is a summation over all leaf nodes reachable from i. Each term
in the summation denotes the probability that a path from i to j is tardy, multiplied
by the sum of holding and penalty costs at that leaf node. This summation equals
the echelon holding cost he

i . If i ∈ U the summation of (3.7) reduces to only one
term and thus the the equation can be simplified to (3.8) which is a closed form
expression for the probability of a tardy path. This equation states that under the
optimal solution, the probability that a path from i to j is tardy, is proportional to
the value node i adds to leaf node j, i.e., hi,j. A special case in which it is possible
to derive a closed-form expression for P(θ∗i,j) in case i /∈ U is stated in the following
lemma.

Lemma 3.3 If for i /∈ U and j ∈ L, it holds that {i} = Y(j)\U , then

P(θ∗i,j) =
hi,j

hc
j + pj

(3.9)

Proof. In case {i} = Y(i)\U , the tardy path probability can be written as

P(θi,j) = ∑
k∈Y(j)

P(θk,j)− ∑
k∈Y(j)∩U

P(θk,j)
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Using (3.6) and (3.8) we find that

P(θ∗i,j) =
hc

j

hc
j + p

−
∑k∈U hk,j

hc
j + p

=
hi,j

hc
j + p

2

Lemma 3.3 is useful for the network shown in Figure 3.1b. For this network, nodes
1 to 9 belong to the set U and hence (3.8) holds for these nodes. Node 10 is not part
of U , but the conditions in Lemma 3.3 are satisfied and hence (3.9) holds for this
node.

The optimality equations can only be solved for special network structures. In
general, the solution is complicated, since the expected lateness at each end node
depends on the leadtime distributions of all its parents. The optimality equations
are also useful to validate solutions obtained via approximate methods as the
resulting tardy path probabilities should satisfy these equations (see Section 3.5).
Furthermore, the optimality equations can be used to derive structural properties
of the optimal solution. This is demonstrated below.

A strictly converging network is a network in which each node has exactly one
successor, except for the only leaf node, node 1. Hence U = V , L = {1},
Y(1) ∪ {1} = V and thus (3.8) applies to each node in the network. The following
monotonicity properties hold for the tardy path probabilities in strictly converging
networks.

Lemma 3.4 For each node i ∈ V in a strictly converging network, P(θi,1) is

1. increasing in ts
i ,

2. decreasing in t f
1 ,

3. decreasing in ts
k, for all k ∈ V\{i}.

Proof.

(a) Consider a realization ω ∈ θi,1. Then the path from i to 1 is tardy and it
remains so by increasing ts

i .
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(b-c) Consider a realization ω /∈ θi,1. Then the path from i to 1 is not tardy. It
remains not tardy by increasing t f

1 or by increasing ts
k for any k ∈ V\{i}.

2

We can also look at properties of combinations of the tardy path probabilities.

Lemma 3.5 For any nonempty subset Q ⊆ V in a strictly converging network,

∑k∈Q P(θk,1) is increasing in each ts
i , i ∈ Q.

Proof. Let i ∈ Q. We need to show that the event
⋃

k∈Q θk,1 increases as ts
i increases.

Consider a realization ω ∈ ⋃k∈Q θk,1. If ω ∈ θi,1, then the path from i to 1 is tardy
and it remains so by increasing ts

i . If ω ∈ θk,1 with k ∈ Q\{i}, then the path from
k to 1 is tardy. By increasing ts

i , either this path stays tardy, or the path from i to 1

becomes tardy. In both cases, the realization stays in θk,1 ∪ θi,1. 2

Using the above properties, we derive monotonicity properties of the optimal
solution with respect to the penalty cost parameter p1.

Lemma 3.6 For each node i ∈ V in a strictly converging network, the planned start time
ts∗
i of the optimal solution ts∗ is decreasing in p1.

Proof.

Let p′1 > p1 and denote the corresponding optimal solutions by ts′ and ts∗.
Increasing p1 decreases the Newsvendor fractile on the right hand side of (3.6)
and (3.8). Hence, to satisfy (3.6) for p′, the probability ∑i∈V P(θi,1) should reduce.
From Lemma 3.5 it follows that this probability is increasing in any ts

i . Hence ts′

contains at least one start time ts′
i < ts∗

i . Let Q be the set of all nodes k for which
ts′
k < ts∗

k . We now show that Q = V . Lemmas 3.4(c) and 3.5 imply that the sum
of tardy probabilities ∑k∈V\Q P(θk,1) for ts′ is greater than the one for ts∗. Hence,
there is at least one node k ∈ V\Q for which P(θk,1) for ts′ is greater than the one
for ts∗. But then it is impossible that for ts′, optimality equation (3.8) is satisfied for
this node k. Hence, we conclude that V\Q = ∅. 2
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An increase in the penalty cost leads to a higher optimal service level, i.e. more
on-time completions. To achieve this level, each individual node is planned to start
earlier. This clearly shows the trade-off between planned leadtimes and service
level.

3.5. Numerical Example

In this section, we provide a numerical example for the network in Figure 3.4. As
stated by Elhafsi (2002), an exact calculation of C(ts, tf) is computationally intensive
for networks with many nodes, specifically if nodes are in series. This is due
to multi-dimensional integrals that need to be computed to obtain the expected
lateness of each leaf node.

To overcome this problem, we use samples of the stochastic leadtime distributions.
We generate a (large) number of samples ω1, . . . , ωn and estimate C(ts, tf) by its
sample average. Computing the cost for each sample is relatively easy, since it only
involves maximum, summation and multiplication operations. After computing
the cost for each sample we take the average to find the cost. Note that this sample
average is also jointly convex (see the proof of Lemma 3.2).

The set-up of our experiment is as follows. For each activity we use a Gamma
distribution with shape parameter k = 3 and scale parameter θ = 4. For the holding
costs we have hi,j = 1 if j ∈ Y(i) ∪ {i} and 0 otherwise. For the penalty costs, we
have pj = 10 for all j ∈ L. The sample size for the leadtime distributions is set
to n = 106. This means that for each activity we have 106 samples of its leadtime
distribution. Without loss of generality we set t f

1 = 0. Since the problem is convex,
we use a standard function available in Matlab called fmincon1. This is a function
that finds the minimum of constrained nonlinear multivariable function using an
interior point algorithm as described by Byrd et al. (2000).

The results are presented in Figure 3.5. It seems counter-intuitive that the start
times of nodes with the same predecessor are not necessarily equal. For example,
nodes 12 and 13 have the same predecessor (node 14), but have different start times.
These nodes have different network locations and therefore the parameters in the
optimality equations for their planned start times are different. In specific cases,

1https://nl.mathworks.com/help/optim/ug/fmincon.html

https://nl.mathworks.com/help/optim/ug/fmincon.html
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Figure 3.5: Production plan for the network in Figure 3.4.

start times are equal, for example for nodes 4 and 5, which is due to symmetry.

To validate the obtained solution we simulate the production plan using 106 new
samples of the activity lead times. We compute the tardy path probabilities P(θi,j)

and verify whether these probabilities satisfy the derived optimality equations.
The results are shown in Tables 3.1, 3.2 and 3.3. The tables show the numerical
results for equations (3.6), (3.7) and (3.8) respectively. In each table, the first column
denotes the right-hand side (RHS) of an optimality equation, which can be directly
computed from the cost parameters. The second column denotes the simulated,
left-hand side (LHS) of an equation. At optimality LHS and RHS should be equal,
so the closer the LHS (simulated) is to the RHS (target value), the better the better
the obtained solution is. The third column denotes the relative gap, defined as
LHS−RHS

RHS · 100%.

Clearly, gaps are all within 3% and thus we conclude that the simulation results are
sufficiently close to optimal. For equation (3.6) the gap is even smaller; it is at most
0.58%. For this example we use 106 samples, which allows us to obtain a solution
within seconds. The solution can be improved by increasing the number of samples
used in the simulation.
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j
hc

j
hc

j+p ∑i∈Y(j)∪{j} P(θi,j) Relative Gap (%)

1 0.3750 0.3772 0.58

2 0.3333 0.3337 0.12

3 0.4737 0.4753 0.34

13 0.1667 0.1655 -0.68

Table 3.1: Validation of (3.6) for nodes 1, 2, 3 and 13 of the network in Figure 3.4.

i he
i ∑j∈(Z(i)∪{i})∩L)(h

c
j + pj)P(θ∗i,j) Relative Gap (%)

6 2 2.0235 1.17

11 3 3.0537 1.79

12 3 2.9598 -1.34

14 4 3.9899 -0.25

Table 3.2: Validation of (3.7) for nodes 6, 11, 12 and 14 of the network in Figure 3.4.

3.6. Conclusion & Future Research Directions

In this chapter, we generalize the results derived in Chapter 2 for the problem
of setting planned leadtimes in assembly and serial production systems under
a ‘pay as planned’ costing structure. For a large class of networks, we prove
optimality equations, which have a Newsvendor structure for specific networks.
For these results, independence of leadtimes is not necessary, which increases the
applicability of the ‘pay as planned’ cost function over the ‘pay as realized’ cost
function.

The derivation of structural results for the ‘pay as planned’ cost function raises the
question whether it is possible to derive structural results for the ‘pay as realized’
cost function. In the current literature only structural results are available for
specific networks structures. The next chapter in this thesis addresses this question.
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i, j hi
hc

j+pj
P(θi,j) Relative Gap (%)

1,1 .0625 .0617 -1.23

2,2 .0667 .0667 0.09

3,3 .0526 .0531 0.87

4,1 .0625 .0643 2.80

5,1 .0625 .0637 1.97

7,3 .0526 .0519 -1.48

8,3 .0526 .0529 0.47

9,3 .0526 .0538 2.14

10,3 .0526 .0516 -2.04

13,13 .0833 .0829 -0.51

14,13 .0833 .0826 -0.86

Table 3.3: Validation of (3.8) for all nodes in U and (3.9) for node 14 of the network in
Figure 3.4.
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4
Modeling of Networks Under ‘Pay as

Realized’ Costing Scheme

4.1. Introduction

Over the years, many papers addressed variations of the planned leadtime problem
under the ‘pay as realized’costing scheme. For special network structures and
special types of leadtime distributions, optimality equations for planned leadtimes
have been derived. For more complicated systems, researchers rely on simulations
and heuristics to obtain solutions for the planned leadtime problem. Recently
Atan et al. (2016) conjectured optimality equations that have a Newsvendor form
for multistage assembly systems. The authors came up with a stochastic event
distinction, where each realization of the leadtimes that results in a late delivery is
assigned to a specific node. At optimality, the probability of this event should equal
a Newsvendor fractile. The authors were able to prove the equations for a two stage
assembly system.

In this chapter we generalize results of previous works that focus on specific
network structures. We consider the class of strictly converging networks. A strictly
converging network is a network where each activity has either no or exactly one
successor. This allows us to model networks with multiple assembly points, a
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structure that is very common in the production of complicated products. We model
these networks by directed acyclic graphs, where each node represents an activity
and each edge a precedence relation.

To describe the production plan, we borrow the concept of planned start and finish
times of Chapter 3. These planned start and finish times describe the planned
starting time (a time point). By using planned start times, the solution of the
optimization problem directly shows when to start a specific activity. It simplifies
notation for mathematical results and proofs in the paper and more importantly, it
is essential for proving structural results for larger networks.

Because leadtimes are uncertain, realizations always deviate from the production
plan. Some deadlines in the plan are met, others are exceeded. To study the impact
of these deviations, we introduce the concept of tardy paths. Using planned start
times and leadtime distributions, we define stochastic events which we refer to as
tardy paths. A tardy path is a sequence of activities executed back to back, with
no waiting time in between. All activities on this path finish behind schedule. This
definition is similar to Definition 3.1 used in Chapter 2 for the ‘pay as planned’
cost function. The difference in this chapter is that we define tardy paths by only
considering subsystems of the original subsystem. Via these subsystems, we derive
an optimal production plan for the original system.

The optimal production plan is a production plan that minimizes the expected cost
for deviations of the plan. The expected costs consist of holding costs and penalty
costs, which increase linearly in time. Holding costs are charged per activity, from
the moment the activity starts until the final product is delivered to the customer.
Penalty costs are charged for late delivery of the final product. We prove that
the optimal solution to this optimization problem satisfies a set of Newsvendor
equations. In these equations we relate the probability of a specific tardy path to a
Newsvendor fractile.

For specific network structures the equations are decoupled and can be solved
recursively, leading to a unique solution. For other networks, it is complicated
to solve the system of optimality equations exactly. However, the equations are
extremely useful for the validation of a given solution. This gives us a tool to
validate the performance of known heuristics in literature.
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4.2. Problem Description

We consider the production planning problem of a single product. The product is
ordered by a customer, who requests a certain configuration with a delivery due
date. Examples of such products are airplanes, lithography machines, container
vessels, etc. Orders for these products are placed in advance, since each customer
might have specific requirements. For example, airplanes can differ in terms of
painting, engine power and cabin interior. When an airline places an order at an
airplane manufacturer, a due date is agreed upon. Late deliveries can be costly
since the airline might have scheduled flights. These need to be cancelled and/or
other costly alternative measures need to be taken. Early deliveries might not be
possible due to transportation requirements. Even if it is possible, it is costly to keep
these capital-intensive products idle. Therefore, it is crucial for the manufacturer to
deliver the airplane exactly at the agreed due date.

Manufacturing processes of these products consist of many tasks. Multiple tasks
can be executed in parallel, but the execution of some tasks can only start after
completion of others. All required tasks and the precedence relations among them
are known to the manufacturers.

The duration of each task is uncertain. Historical data and expert estimations
can provide information about this uncertainty. Due to the uncertainty, on time
completions of tasks can not be guaranteed. A guaranteed delivery would mean
that the manufacturer plans for the worst case scenario, which is the longest
possible duration for each task. This would result in an unacceptably long leadtime
for the product.

The product manufacturer incurs penalty and holding costs. Penalty cost is paid if
the product is delivered after the due date and is linear in the difference between
delivery date and due date. Holding cost is paid if the product is completed earlier
than the agreed delivery date. During this period of idle time, cost for stocking
the product and cost for invested capital is incurred. In addition, holding costs are
paid when there is idle time between two succeeding tasks. This can be due to other
tasks that are not yet finished. Holding costs are linear in idle times.

The manufacturer aims to plan the production of the product such that the expected
total cost is minimized. An idea could be to start with all tasks that have no
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predecessors and proceed with other tasks as soon as all their predecessors are
finished. This plan can result in long waiting times between tasks since tasks that
have the same successor are not planned such that they finish at (roughly) the
same time. In addition, when the due date is far in advance, the product will be
completed very early. It is easy to verify that such a plan minimizes the throughput
time of the product, but it is not guaranteed that such a solution also minimizes the
expected total cost.

In this study, we develop a production plan that minimizes the expected total cost.
This plan consists of a planned start time for each task. According to this plan, if all
predecessors of a task are completed before the task’s planned start time, the task
starts at its planned start time. If there are predecessors that are not completed at
the planned start of the task, it starts as soon as the latest predecessor finishes. The
finish time of the task is solely determined by its actual start time and its stochastic
leadtime. Note that the actual start time is a result of the planned start times and
leadtime realizations of all predecessors.

In the rest of this section, we initially define the production network, the task
leadtimes and the production plan.

4.2.1 Network Formulation

We represent the production process as a graph G = (V , E). V is the set of nodes
and E is the set of edges. The graph is directed, acyclic and strictly converging.
There are N ≥ 1 nodes in V , numbered as i = 1, ..., N. For the final node, we have
i = 1. To ease notation, we introduce an artificial node 0 to denote the completion
of the project, but this node is not part of V . The set P(i) contains the direct
predecessors of node i ∈ V . Since G is strictly converging, each node, except node
1, has a single successor, which we denote as s(i) for i ∈ V . Nodes are numbered
such that s(i) < i, i ∈ V . We define R := {i ∈ V : P(i) = ∅} as the set of root
nodes. The set of all nodes that can reach node i is denoted by Y(i). This set can
be recursively defined as Y(i) := P(i) ∪

(⋃
j∈P(i) Y(j)

)
, where Y(i) = ∅ for i ∈ R.

Finally, we define wi,j as a path from node i to node j. It is the set of nodes that
connects node i to node j, including nodes i and j.



4.2 Problem Description 71

4.2.2 Stochastic Leadtimes and Production Plan

A node in the network represents a task that needs to be executed. The duration
of task i is the leadtime of node i. This leadtime is stochastic and modeled
by the random variable Ti, i ∈ V , contained in the vector of random variables
T = (T1, T2, ..., TN). The support of Ti is (0, ∞) and Ti has a continuous distribution
with finite expectation. The leadtimes T1, T2, ...TN are independent. The leadtime
distributions are given and cannot be changed by our planning. For example,
historical data can be retrieved from the manufacturer’s SAP system to compute
the leadtime distributions. If no data is available, the distribution can be estimated
using existing techniques as described in Keefer and Verdini (1993).

A realization of the random vector T is indicated by ω = (t1, t2, ..., tN) ∈ Ω = RN
+ ,

where Ω is the sample space. In particular, Ti(ω) is a realization of Ti.

The variable t represents the time dimension. Without loss of generality the due
date that is agreed upon with the customer is set to ts

0 = 0. In order to meet
this due date, we control the production system by setting a planned start time ts

i
for all nodes i ∈ V . The vector ts = (ts

1, ..., ts
N) contains all planned start times

and describes the production plan. The vectors T and ts completely determine the
realization of the production plan.

4.2.3 Example

We illustrate the definitions through an example. Consider the network in Figure
4.1. The same network is used as running example in the rest of the paper to clarify
definitions and concepts.

6 3

5 4 2 1

Figure 4.1: Example network

The example network consists of 6 nodes, i.e., there are 6 tasks. Nodes 6, 5 and 3
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are root nodes. Node 4 can only start after node 5 is finished. The first assembly
point is at node 2. Nodes 4 and 6 are the direct predecessors of it. The second
assembly point is at node 1. Nodes 2 and 3 are direct predecessors of node 1. The
network contains 2 assembly points and this makes it more complicated to analyze
and optimize than an assembly system with only one assembly point.

An example of a production plan and a realization are shown in a Gantt chart in
Figure 4.2.

1

3

4

5

6

2

1
st2

st 3
st4

st5
st 6

st 0t =

Figure 4.2: A candidate plan ts and a random realization ω of the leadtime vector T

Figure 4.2 shows a timeline with a planned start time and a realization of the
leadtime for each node. In this example, the vector of planned start times
is ts = (−4,−15,−10,−21,−29,−25) and realizations of random leadtimes are
ω = (3.75, 11.875, 8.75, 5, 10.25, 8.75). The start times are not in decreasing order,
but if node i is a (direct) predecessor of node j, then ts

i < ts
j . The grey bars denote

realizations of the random variables in T. Node 5 is the first node to start and since
it is a root node, it starts at its planned start time. It finishes later than the planned
start time of node 4. Node 4 is a successor of node 5 and hence node 4 starts
immediately after node 5 finishes. Meanwhile node 6, another root node, starts at
its planned start time. Node 2 has two predecessors: nodes 6 and 4. In this example,
node 4 is the latest and node 2 starts immediately after it. Node 6 finishes earlier
than 4 and hence there is a waiting time between the finish times of nodes 6 and 2.
Node 3 is a root node and starts at its planned start time and finishes later than ts

1.
For node 1, node 2 and 3 must be finished and hence node 1 starts immediately after
node 3 finishes. Node 1 finishes later than t = 0 and hence the product is delivered
after the due date. This situation is undesired, but this is only one realization of the
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leadtime distributions. Exceeding intermediate deadlines, which in this example
happens with nodes 1, 2 and 4 is also undesired. Therefore, we need to develop a
production plan that meets intermediate deadlines and the final deadline as much
as possible. Due to the uncertainty in the leadtimes it is impossible to always meet
all deadlines. However, a plan that results in a minimum expected total cost can be
developed. Such a plan finds the right balance between holding and penalty costs.

4.3. Tardy Paths

When a deadline in the production plan is exceeded, the start of any succeeding
task is delayed. These delays can propagate throughout the network, causing even
more delays further in the network. In the worst case, delays cause the final node
to be late. On the other hand, succeeding nodes might be able to make up for
delays. To relate a delay at a specific node to the cause of that delay, we introduce
the concept of tardy paths. A tardy path can be seen as a sequence of deadlines that
are exceeded. On this path, there is no waiting time between any adjacent tasks,
i.e., tasks are executed back to back. The tardy path depends on the realization of
the random leadtimes and the production plan. Thus, a path can be tardy in one
realization, while it is not tardy in another realization. Whether a path is tardy or
not can only be determined after all tasks on this path have been completed.

4.3.1 Actual Start and Finish Times

To simplify the definition of tardy paths, we introduce additional random variables
that describe the actual start and finish times of a task. We define Ai(ω) and Bi(ω)

as the actual start and finish times of task i ∈ V under the realization ω ∈ Ω. We
have

Ai(ω) = ts
i , i ∈ R, (4.1)

Bi(ω) = Ai(ω) + Ti(ω), i ∈ V , (4.2)

Ai(ω) = max

{
max
j∈P(i)

{Bj(ω)}, ts
i

}
, i ∈ V ∪ {0}\R. (4.3)
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Although Ai and Bi depend on T and ts, we do not denote this explicitly for ease of
notation. In (4.1), each realization Ai(ω) equals ts

i because i is a root node. In that
case we could treat Ai as a deterministic variable, but for consistency amongst start
times, we assume it is a random variable. The actual finish time of a node is the
sum of its actual start time and its random leadtime (4.2). The actual start of a node
with at least one predecessor depends on its own planned start time and the actual
finish time of its predecessors (4.3). The start time A0(ω) represents the completion
time of the project, which is either the due date t0 or later.

For the example network in Figure 4.1 and the realization in Figure 4.2, we have
the following actual start times: A6(ω) = ts

6, A5(ω) = ts
5, A4(ω) = ts

5 + T5(ω),
A3(ω) = ts

3, A2(ω) = ts
5 + T5(ω) + T4(ω), A1(ω) = ts

3 + T3(ω) and A0(ω) = ts
3 +

T3(ω)+ T1(ω). The actual finish times are B6(ω) = ts
6 + T6(ω), B5(ω) = ts

5 + T5(ω),
B4(ω) = ts

5 + T5(ω) + T4(ω), B3(ω) = ts
3 + T3(ω), B2(ω) = ts

5 + T5(ω) + T4(ω) +

T2(ω) and B1(ω) = ts
3 + T3(ω) + T1(ω). Because this realization is an example of a

late completion, it holds that A0(ω) = B1(ω).

From equations (4.1)-(4.3) it is clear that the actual start time of a node depends
only on the planned start times and random leadtimes of all nodes that can reach
that node, and the planned start time of the node itself. This result is formalized in
Lemma 4.1.

Lemma 4.1 For i ∈ V , the actual start time Ai only depends on the leadtimes Tj, j ∈ Y(i)
and the planned start times ts

j , j ∈ Y(i) ∪ {i}.

For the proofs of all lemmas and theorems in this paper, we refer to Appendix 4.A.
Note that this lemma also implies that the actual start time Ai does not depend on
the leadtimes Tj, j ∈ V\ Y(i) and the planned start times ts

j , j ∈ V\(Y(i) ∪ {i}).

Similar to the actual start times we can formulate dependence and independence
properties for the actual finish times. The only difference is that the actual finish
time of an activity also depends on the leadtime realization of that activity, while
the actual start time does not.

Lemma 4.2 For all i ∈ V the actual finish time Bi only depends on the leadtimes Tj,
j ∈ Y(i) ∪ {i} and the planned start times ts

j , j ∈ Y(i) ∪ {i}.

Note that this lemma also implies that the actual finish time Bi does not depend
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on the leadtimes Tj, j ∈ V\( Y(i) ∪ {i}) and the planned start times ts
j , j ∈

V\(Y(i) ∪ {i}). Before defining tardy paths, we first introduce subgraphs and the
corresponding actual start and finish times.

4.3.2 Subgraphs

Besides the original graph G, we can also consider so-called subgraphs. The idea is
that we analyze part of the system as if it is a standalone system. We consider the
subgraphs G(i) = (V (i), E (i)), i ∈ V . Subgraph G(i) is obtained from G by removing
the set of nodes Y(i). So V (i) = V\Y(i). If i ∈ R, then G(i) = G. In the example we
have V (1) = {1},V (2) = {1, 2, 3} and V (4) = {1, 2, 3, 4, 6}. For the remaining nodes
we have G(3) = G(5) = G(6) = G.

For the subgraphs we use similar notation as for the original graph, but we add
a superscript (i) to refer to the subgraph G(i). For example, R(i) contains the
root nodes of subgraph G(i). We compute the actual start and finish times of the
activities, similar to (4.1)-(4.3):

A(i)
k (ω) = ts

k, k ∈ R(i), (4.4)

B(i)
k (ω) = A(i)

k (ω) + Tk(ω), k ∈ V (i), (4.5)

A(i)
k (ω) = max

{
max

j∈P(k)
{B(i)

j (ω)}, ts
k

}
, k ∈

(
V (i) ∪ {0}

)
\R(i). (4.6)

Compared to the original graph, the planned start time ts
k and the duration Tk(ω)

of all nodes remain unchanged. Also for all nodes k not on path wi,1 it holds that
A(i)

k (ω) = Ak(ω) and B(i)
k (ω) = Bk(ω). Only start and finish times of nodes on the

path wi,1 can be shifted: A(i)
k (ω) ≤ Ak(ω) and B(i)

k (ω) ≤ Bk(ω). Using the start
and finish times of subgraphs we can now define tardy paths.

Definition 4.1 Let i ∈ V . For ω ∈ Ω, path wk,j in graph G(i) is called tardy if

(a) node k starts at its planned start time, A(i)
k (ω) = ts

k,

(b) the successor of each node on path wk,j, if there is one, starts immediately

after that node is finished, A(i)
s(l)(ω) = B(i)

l (ω) for all l ∈ wk,j.
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For nodes i ∈ R it holds that G(i) = G and thus a path wk,j is tardy in the original
graph G. For any other subgraphs this is not necessarily the case. For example if
i = k, then k is a root node in G(i) and thus by definition condition (a) holds. In the
original graph G however, this condition is not satisfied if the predecessors of node
i are late. Using the definition of a tardy path, we can define the event θ

(i)
k,j . Event

θ
(i)
k,j is the set of all realizations ω for which the path wk,j is tardy in subgraph G(i).

Definition 4.2 Let i ∈ V . For path wk,j in G(i) the event θ
(i)
k,j is defined as

θ
(i)
k,j =

{
ω : A(i)

k = ts
k, A(i)

s(l)(ω) = B(i)
l (ω), l ∈ wk,j

}
.

For root nodes it holds that G(i) = G and thus we omit the superscript and
define θ

(i)
k,j = θk,j, i ∈ R. In the rest of the paper, we mainly focus on events

θ
(i)
i,j , corresponding to tardy paths starting in root node i. In subgraph G(i), the

actual finish time of each node on a path wi,j must equal the actual start time of its
successor. In other words, there can be no waiting time between two consecutive
nodes on path. In case j = 1, we require that A(i)

0 > ts
0, implying that the

final due date is exceeded. By considering the subgraph G(i) we ignore possible
delays occurring before i. From a theoretical perspective, this definition helps us in
shortening notation of events in the sample space Ω, which is especially useful in
the analysis of systems with a large number of nodes. Writing this event in terms
of T and ts would be cumbersome.

4.3.3 Example

Next, we clarify the concept of tardy paths through an example. We refer to Figure
4.2 and start with the root nodes, 6,5 and 3. Node 6 finishes earlier than the actual
start time of its successor, node 2: A2(ω) > B6(ω). Hence, the realization ω is
not included in the events θ6,6, θ6,2 or θ6,1. Next we consider node 5. Its successor,
node 4, starts immediately after node 5 finishes. There is also no waiting time
between nodes 5 and 2, but there is waiting time between nodes 2 and 1. Hence, the
realization ω is included in the events θ5,5 and θ5,4, but not included in the events
θ5,2 and θ5,1. The final root node is node 3. Since there is no waiting time between
node 3 and node 1 and node 1 finishes after t = 0, the realization ω is included in
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both events θ3,3 and θ3,1.

Node 4 is not a root node and hence we consider the subgraph G(4) in which node
5, the only predecessor of node 4 is excluded. We consider the same realization
ω. In G A4(ω) = ts

5 + T5(ω) = −18.25 but in the subgraph G(4) the start time is
shifted and we have A(4)

4 (ω) = ts
4 = −21. Thus, activity 4 is shifted in time, but the

duration itself remains unchanged. We can do this for each activity until the actual
finish time of its latest predecessor or its own actual start time is reached. The
Gantt chart for subsystem G(4) with shifted realizations and start and finish times
A(4)

i (ω), B(4)
i , i ∈ V\Y(4) is shown in Figure 4.3a. Due to the shifts, waiting times

between nodes can change. For example, there was no waiting time between node
4 and its successor, node 2, in the original system, but there is waiting time between
nodes 4 and 2 in the subsystem G(4). Hence, the realization ω is not included in the
events θ

(4)
4,4 , θ

(4)
4,2 and θ

(4)
4,1 .

In Figure 4.3b the Gantt chart for subsystem G(2) with shifted leadtimes is shown.
In this subsystem, all predecessors of 2, i.e., nodes 4,5 and 6, are excluded. Shifting
the actual start time of node 2 back to its planned start time results in even more
waiting time between nodes 2 and 1. Due to this waiting time, (which is caused by
node 3) the realization ω is not included in the events θ

(1)
2,2 and θ

(1)
2,1 .

Finally in Figure 4.3c all predecessors of node 1 are excluded, which makes it the
only node. Due to the shift to its planned start time, node 1 now finishes in time
and thus the realization ω is not included in the event θ

(1)
1,1 .

4.3.4 Properties of Tardy Paths

The events θ
(i)
k,j are defined on the sample space Ω, ut only depend on a subset of

the random leadtimes in T. For i = k, Lemma 4.3 indicates which leadtimes affect
event θ

(i)
i,j and which not.

Lemma 4.3 Event θ
(i)
i,j depends on Tl , l ∈ Y(s(j))\Y(i) and is independent of Tl , l ∈

Y(i) ∪ V\Y(s(j)).

Figure 4.4 provides a schematic representation of the relations in Lemma 4.3. This
figure shows a converging network and two arbitrarily chosen nodes i and j. We
indicate the nodes of which the leadtimes affect the event θ

(i)
i,j and those who do
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Figure 4.3: Realization ω for different subsystems of the system in Figure 4.1



4.3 Tardy Paths 79

Figure 4.4: Schematic overview showing dependency of event θ
(i)
i,j on random leadtimes

of different nodes.

not. Since event θ
(i)
i,j is defined on subgraph G(i), the event is independent of the

leadtimes of nodes that can reach node i, i.e., all nodes in Y(i). For each node on
path wi,j we require that A(i)

s(k)(ω) = B(i)
k (ω). As a consequence, we require that all

other predecessors of s(k) finish earlier: B(i)
l (ω) < B(i)

k (ω)∀l ∈ P(s(k))\{k}. Hence

event θ
(i)
i,j depends on the leadtimes of all nodes k ∈ Y(s(j))\Y(i). Finally, event

θ
(i)
i,j does not depend on the leadtimes of nodes that are not predecessors of s(j).

For a given realization, there can be multiple tardy paths. However, the most
interesting paths are tardy paths that end at node 1. If there is a tardy path ending
at node 1, this means that the final deadline, which is the most important deadline,
is exceeded. When a product is delivered late, it is important to look for the cause of
this lateness.The tardy path concept helps identifying the nodes that cause lateness
at the final deadline. From Definition 4.1 it directly follows that in a graph, there
can be only one tardy path ending at node 1. For the realization shown in Figure
4.2 path w3,1 is the tardy path ending at node 1. Also for the subgraphs it holds
that there can be at most 1 tardy path. In the subgraphs G(4) and G(2) the path w3,1

is also tardy, but in the subgraph G(1) there is no tardy path.

The events θ
(i)
i,j are not necessarily mutually exclusive. There can be multiple tardy

paths starting at node i. For example, in Figure 4.1, if the path w4,1 is a tardy path,
paths w4,2 and w4,4 are also tardy. This property is formalized in Lemma 4.4.

Lemma 4.4 If wi,j is a tardy path in G(i) then there is also a tardy path from node i to any
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other node on path wi,j in the subgraph G(i), i.e.,

θ
(i)
i,k ⊂ θ

(i)
i,j k ∈ wi,j.

This Lemma also implies that if a path from i to j is not tardy, then none of the
paths from i to any other node on the path wi,j is tardy either.

The events θ
(i)
k,j are defined on the sample space Ω. We obtain the following

connection between the original system and a subsystem i.

P(θi,j) = P(Ai = ts
i , θ

(i)
i,j )

P(θi,j) = P(Ai = ts
i )P(θ(i)i,j ) (4.7)

P(θ(i)i,j ) = P(θi,j|Ai = ts
i )

These probabilities are useful from a practitioner’s perspective. Given a production
plan with planned start times ts, these probabilities indicate which parts of the
system are time critical and where delays are expected.

4.4. Cost Structure and Optimization Problem

In the previous sections, we introduce a stochastic network model and the concept
of tardy paths. In this section we use this model to introduce a cost structure for
the network and define the optimization problem.

4.4.1 Derivation of the Total Expected Cost

The objective of this study is to develop a production plan for a manufacturer such
that the expected total cost is minimized. Before starting with producing the prod-
uct, the manufacturer needs to purchase raw materials, parts and subassemblies
from external suppliers. In addition, labor and special equipment might also be
needed. We consider the costs for all these resources as constant. Although the
costs are constant, the point in time these costs are paid might vary. These expenses
are usually paid by the customer before the final product is completed.

Since we aim to optimize the production plan, we consider the costs that can be
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affected by our planning. For example, companies aim to reduce the amount of
working capital. Capital usage does not necessarily increase linearly over time but
it heavily depends on the production planning. Postponing the assembly of an
expensive part reduces the cost of working capital, but might delay the project. On
the other hand, having cheap parts available early avoids delays in the production
process.

In our model, we refer to the cost of working capital as holding cost. We assume
that each node in the network incurs holding cost from the actual start time of this
node. The system incurs a marginal holding cost hi > 0 from the actual start time
Ai of node i until the final product is delivered to the customer. The marginal
holding cost hi represents the value added by node i. We define total holding cost
added by all nodes as hc

1 = ∑i∈V hi, which is the total cost incurred during the
execution of node 1. In addition to the holding costs, the manufacturer incurs a
penalty cost p per unit time late for delivery to the customer. The value of p can be
agreed with a customer as a penalty that is actually paid or it can be derived from
a predetermined service level. The total cost C(ts) is the sum of the holding costs
for all nodes and the expected penalty cost for late deliveries.

C(ts) = ∑
i∈V

hi (A0 − Ai) + p(A0 − ts
0). (4.8)

The first term is the summation of the holding cost that is incurred at each node
from the actual start time of the node until the delivery of the end product. The
delivery time is A0 = max{B1, ts

0}. If the product is finished earlier than planned,
it is delivered at ts

0, otherwise it is delivered at B1. The second term denotes the
penalty cost, which is incurred only if A0 > ts

0. Note that Ai are stochastic variables
and, although not explicitly stated, they depend on T and ts.

A similar cost structure is commonly considered in the literature (Atan et al.,
2017; Elhafsi, 2002; Yano, 1987a; Axsäter, 2005). However, most studies use a
different approach for calculating the holding cost. Instead of incurring holding cost
throughout the complete production, it is incurred only when a node is waiting, i.e.
when As(i) > Bi for some node i. This waiting time is either due to the fact that
i finishes before the planned start time of s(i) or due to the fact that other direct
predecessors of s(i) are not yet finished. If the holding costs are charged only when
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nodes are waiting, the total cost becomes

C′(ts) = ∑
i∈V\{1}

(As(i) − Bi) ∑
k∈Y(i)

hk

+ (A0 − B1) ∑
i∈V

hi + (A0 − ts
0)p. (4.9)

Subtracting (4.9) from (4.8) yields

∑
i∈V

Ti

 ∑
j∈Y(i)

hj

 . (4.10)

This term denotes the duration per node, multiplied by the holding cost incurred by
that node and all its preceding nodes. Since this term does not depend on planned
start times, the optimal production plans are the same independent of whether (4.8)
or (4.9) is chosen as the total cost.

4.4.2 Optimization Problem

Given the leadtime distributions for all nodes, we want to choose ts such that the
expected cost E[C(ts)] is minimized. Hence, our optimization problem is:

min
ts

E[C(ts)]. (4.11)

Since any solution in RN is feasible, a solution where ts
i > ts

s(i) is valid. In that
case, due to the precedence relations, the successor of node i can never start at its
planned start time, since node i has not even started yet. We refer to these pairs of
start times as reversed pairs. We define the set of solutions that do not contain any
reversed pairs as

D = {ts : ts
i < ts(i), i ∈ V}.

D is an open set. We define the closed version of D as

D′ = {ts : ts
i ≤ ts(i), i ∈ V}.

This set also contains the solutions where planned start times of consecutive nodes
can be equal.
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Solutions that contain reversed pairs are not desired in practice, but are mathe-
matically valid. Therefore, we need to consider them in our optimization problem.
However, in the case of a reversed pair planned start times ts

i > ts
s(i), the variable

ts
s(i) does not have any effect on the actual start times Ai and As(i). In this case the

expected costs do not change when we change ts
s(i). We can modify the solution in

such a way that we find another solution leading to the same cost that is in D′ but
not in D

Lemma 4.5 For each solution ts /∈ D′ there exists a solution ts′ ∈ D′ such that C(ts) =

C(ts′).

This lemma helps us to find a solution to (4.11), since we only need to consider
solutions in D′. A solution that is optimal within D′, is also a global optimum:

min
ts

E[C(ts)] = min
ts∈D′

E[C(ts)].

In the next section we further analyze the optimization problem and identify
necessary and sufficient conditions for the optimal solution.

4.5. Optimal Solution and Critical Tardy Paths

In Section 4.4.2 we introduced our optimization problem and in Section 4.3 we
introduced the concept of tardy paths. In this section, we use the tardy path concept
to derive optimality equations for the optimization problem and define critical tardy
paths.

4.5.1 General Newsvendor Equation

The optimization problem (4.11) balances holding cost incurred after the start of
each node and penalty costs incurred after ts

0. The problem is unconstrained and
hence any solution ts ∈ RN is feasible. In order to find the optimal solution of
this problem we derive a necessary condition for an optimum. This condition is the
general Newsvendor equation, which equals the probability of exceeding the final
deadline to the total holding cost divided by the total holding and penalty cost.
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Lemma 4.6 Any solution ts ∈ RN that is an optimal solution to (4.11) satisfies

P(A0 > 0) =
hc

1
hc

1 + p
. (4.12)

4.5.2 Optimality Equations

We take the partial derivatives of (4.8). The leadtime distributions are continuous
and differentiable. Hence, E[C(ts)] is differentiable as well. A necessary condition
for optimality is ∂

∂ts
i
E[C(ts)] = 0, i ∈ V . In this way, we obtain a system of equations

that should be satisfied by the optimal solution. This set of equations is formalized
as follows.

Theorem 4.1 An optimal solution ts ∈ D to (4.11) satisfies the following set of equations.

P(θ(i)i,1 ) =
hi

hc
1 + p

+ ∑
j∈wi,1\{1}

hs(j)P(θ
(i)
i,j )

hc
1 + p

, i ∈ V (4.13)

The theorem states that under the optimal solution the probability that the path wi,1

is tardy equals to a sum of Newsvendor fractiles. The first fractile is the holding
costs of node i divided by the total holding and penalty cost of the final product.
The summation term consists of similar Newsvendor fractiles, one for each node on
the path from i to node 1. Each term depends on the holding cost of its successor
s(j) and on the probability that a tardy path exists from i to j. Note that j = i is also
part of the summation. In that case P(θ(i)i,i ) = P(A(i)

s(i) = B(i)
i ).

For a network with only one node the theorem reduces to the classical Newsvendor
problem. Since N = 1, i = 1 and w1,1\{1} = ∅, the summation term vanishes.
The total holding cost equals the holding costs of node 1 h1 = hc

1 and the event θ1,1

covers all cases in which the product is delivered late. Hence, we find the result of
Lemma 4.6.

It is important to note that Theorem 4.1 and its proof heavily benefit from the
definition of θ

(i)
i,j . This definition enables having a Newsvendor-type of a solution.

The usage of these events makes the optimality equations compact and easy to
understand/interpret. It might also be possible to have the expressions in terms of
T and ts but especially for networks with multiple assembly points, the expressions



4.5 Optimal Solution and Critical Tardy Paths 85

would be extremely long and difficult to interpret.

4.5.3 Critical Tardy Paths

For a given realization of leadtimes ω there can be multiple tardy paths. This is
the case for the realization in Figure 4.3. We are especially interested in tardy paths
that have node 1 as their final node. If such a path is tardy, the final product
is delivered late. Following the nodes in a tardy path backwards can provide an
indication on the cause of the late delivery. In fact, for each late delivery we can
identify a sequence of activities that are executed back to back, i.e., nodes for which
B(i)

k (ω) = A(i)
s(k)(ω). Given that the leadtimes are continuous random variables,

if we move backwards on a tardy path, we can find exactly one node for which
A(i)

k (ω) = ts
k. Once we find such a node, we know that the tardy path starts at node

k, i.e, the path wk,1 is tardy. This directly implies that there is no other tardy path
that ends at node 1. We formalize this result in Lemma 4.7.

Lemma 4.7 If ω ∈ θ
(i)
k,1 then ω /∈ ⋃l∈V (i) θ

(i)
l,1 .

Next, using the definition of θ
(i)
i,j , we define new sets of events αi. If a realization ω

is part of the event αi, then it is the first node for which it holds that when analyzing
the subgraph G(i) the path wi,1 is tardy. We formalize the definition of these events
as follows:

Definition 4.3 For i ∈ V , the event αi is defined as

αi = {ω : ω ∈ θ
(i)
i,1 , ω /∈ θ

(k)
k,1 , k < i}.

Definition 4.4 For a realization ω, the path wi,1 is called a critical tardy path if
ω ∈ αi.

If the event αi realizes, we know that the subsystem is late due to node i. If a
subystem is late, also the original system is late. In the original system, node i is at
least one of the nodes causing the exceedance of the due date. The definition of αi

doesn’t require node i to start at its planned start time in the original system G. But
if the event αi realizes, node i is the first node (starting from the node 1) for which
its corresponding subsystem is also late. In other words, in the subsystem G(i),
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changing the planned start time of node i, ts
i , by an infinitesimal amount δ would

result in a change δ in A(i)
0 (ω). For all other nodes in the subsystem, changing the

planned start time by an infinitesimal amount δ would have no effect on the finish
time of node 1. Applying the definition of αi, we find that the realization in Figure
4.2 is only part of θ

(3)
3,1 and not of any other θ

(j)
j,1 . It then follows automatically that

this realization is part of α3 and the path w3,1 is a critical tardy path in the original
system.

In Corollary 4.1, we summarize the properties of events αi. These properties help
us in proving one of the main results of this study (see Theorem 4.2).

Corollary 4.1 The sets αi satisfy the following properties:

1. The sets αi, i ∈ V are mutually exclusive.

2. The set
⋃

i∈V αi covers all the events in which the system is late.

From this corollary it follows directly that ∑i∈V P(αi) = P(A0 > 0), i.e. the
probability of exceeding the final due date.

When changing one or more planned start times, the probabilities of the critical
tardy paths can change as well. We formulate these monotonictiy properties in the
following lemma.

Lemma 4.8 The probability of a critical tardy path P(αi) is

1. not depending on ts
k, k /∈ V(i),

2. strictly increasing in ts
i ,

3. decreasing in ts
j , j ∈ V(i)\{i}.

The first observation is that start times of preceding nodes have no effect on the
critical tardy path probability of node i. This can be seen directly from the definition
of αi. Since αi is defined on the subgraph G(i) it can not be a function of start times
of nodes preceding i. Secondly, increasing ts

i means that the planned start of node
i is postponed and that the system will be late more often due to this node, i.e.
the probability of a critical tardy path αi increases. Finally, increasing another start
time ts

j also has an effect on the tardy path probability of αi. When increasing j, the
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probability P(αj) increases, but due to mutual exclusivity of the events, this increase
is partly at the expense of other events such as αi.

The lemma shows the consequences of changing one start time for only one tardy
path probability. However, we are also interested the effect of changing a start time
on summations of tardy path probabilities. In particular, we are interested in the
sum of all tardy path probabilities since this equals the probability that the final
deadline is met.

Lemma 4.9 Let U ⊆ V . The sum of critical tardy path probabilities ∑i∈U P(αi) is

1. increasing in ts
i , i ∈ U ,

2. strictly increasing in ts
i , i = maxU ,

3. decreasing in ts
j , j /∈ U .

From Lemma 4.8 it follows that when increasing ts
i some tardy path probabilities

decrease, while P(αi) increases. Lemma 4.9 gives us an insight in the magnitude
of these changes. In any chosen set U the increase of P(αi) is always higher than
the combined decrease of the rest of the tardy path probabilities. When U = V it
then follows that an increase in ts

i leads an increase in the probability that a system
is late. This is an intuitive result, since increasing a start time means that there is
overall less time to complete the project, resulting in more delays at the end. Besides
providing these insights, the lemmas also help in deriving the optimality equations
in the next section.

4.5.4 Newsvendor Equations

Using the definitions of events αi and critical tardy paths, we can formulate the
following system of Newsvendor equations.

P(αi) =
hi

hc
1 + p

, i ∈ V . (4.14)

Each equation consists of a tardy path probability and a Newsvendor fractile. Under
a solution that satisfies this system of equations the probability of a critical tardy
path starting in a node i is proportional to the value that is added by that node.
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Each event αi is a subset of the corresponding event θ
(i)
i,1 and therefore only depends

on the planned start times of nodes in V (i). This means that for all nodes until
the first assembly point the equations can be solved recursively. For node one, one
needs to to solve

P(T1 > ts
0 − ts

1) =
h1

hc
1 + p

.

In this equation ts
1 is the only decision variable and because T1 has a continuous

distribution, it is easy to see that solving this equation leads a unique solution. We
can derive a similar result for the system of equations by using the monotonicity
results of Lemmas 4.8 and 4.9.

Lemma 4.10 A solution ts that satisfies (4.14) is unique.

This result can be combined with the result of Theorem 4.1. The equations of
this theorem can under the assumption that ts ∈ D be rewritten to (4.14). Since
this solution is unique, the equations are a necessary and sufficient condition for a
global optimum.

Theorem 4.2 A solution ts ∈ D is an optimal solution to (4.11) if and only if it satisfies
(4.14).

According to Theorem 4.2, under the optimal solution, the more value a node adds
to the final product, the higher the probability of a critical tardy path starting at
that node. In practice this means that once an activity that adds a lot of value to the
product is started, there should be no waiting time between this time point and the
completion of the final product.

A solution ts ∈ D satisfying Theorem 4.2 does not always exist. A simple counter
example is the two stage serial system discussed in Section 2.6.2. This example
shows an optimal planned leadtime solution containing negative optimal planned
leadtimes. Converting this solution to a planned start time solution yields a solution
which is outside the domain D′, but does satisfy (4.14). According to Lemma
4.5 there exists a corresponding solution in D′ yielding the same expected cost.
However, this solution does violate (4.14).

The problem with a solution ts /∈ D′ is that there is at least one node that never
starts at its planned start time, i.e. P(Ai = ts

i ) = 0. In the proofs of Theorem 4.1 and
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4.2 we divide by this probability, assuming that it is nonzero. Therefore, we cannot
claim that a solution ts /∈ D′ that satisfies (4.14) is an optimum. However, our
numerical experiments indicate that also in this case the solution is an optimum.
We formulate this as a conjecture:

Conjecture 4.1 A solution ts /∈ D′ that satisfies the set of equations (4.14) is a global
optimum to (4.11).

These properties can be used to develop accurate and efficient algorithms to solve
real life problems. For example, in Atan et al. (2016) already a fast and accurate
algorithm is developed for a system with 1 assembly point, using a bisection
algorithm. One could further extend this algorithm to solve for the optimal start
times of activities in general converging networks. The structural results in this
study can be exploited to develop the algorithm, but also to verify the generated
solutions.

4.6. Numerical Analysis

In this section, we will illustrate the structural results by numerical examples. We
use an production network introduced by Axsäter (2005). The network consists
of 8 activities and is shown in Figure 4.5. To obtain the production plans we use
simulation based optimization. To analyze the performance of the obtained plans
we simulate them using a different sample set. For the details of this procedure we
refer to Section 3.5.

4.6.1 Service Level and Planned Leadtime

We are interested in how under the optimal solution, time is allocated to an activity
depending on its location in the network. For ea activity in the network we assume
a stochastic leadtime that is exponentially distributed with λ = 1. Furthermore, we
assume that each node adds equal value to the final product, hi = 1, i ∈ V . Since the
allocated time heavily depends on the desired service level, we change the penalty
cost p in such a way that the optimal service level p

hc
1+p is changed between 0.6 and

0.95.
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Figure 4.5: Production network modified from Axsäter (2005).

60% 70% 80% 90% 95%
i tsi P(αi ) gap tsi P(αi ) gap tsi P(αi ) gap tsi P(αi ) gap tsi P(αi ) gap
1 -2.99 0.050 0.1% -3.28 0.037 -0.2% -3.69 0.025 0.2% -4.38 0.013 0.5% -5.10 0.006 -2.7%
2 -4.10 0.050 -0.8% -4.46 0.038 1.6% -4.98 0.025 1.4% -5.84 0.013 1.0% -6.71 0.006 1.5%
3 -4.79 0.051 1.3% -5.31 0.038 0.2% -5.98 0.025 0.7% -7.06 0.012 -1.1% -8.04 0.006 2.8%
4 -4.81 0.049 -1.2% -5.31 0.037 -1.0% -5.98 0.025 0.3% -7.07 0.012 -1.6% -8.06 0.006 0.3%
5 -5.59 0.050 -0.1% -6.21 0.037 -0.4% -7.02 0.025 -1.5% -8.24 0.012 -0.2% -9.34 0.006 2.9%
6 -5.60 0.050 -0.5% -6.22 0.038 0.2% -7.00 0.025 0.1% -8.25 0.012 -2.6% -9.35 0.006 0.6%
7 -5.59 0.051 1.0% -6.22 0.037 -0.6% -7.01 0.025 0.7% -8.25 0.012 -1.1% -9.36 0.006 -1.2%
8 -5.59 0.050 0.4% -6.21 0.038 0.1% -7.01 0.025 0.9% -8.24 0.012 -0.3% -9.36 0.006 -0.3%

Table 4.1: Results service level experiment

To obtain the optimal production plan under the ‘pay as realized’ cost function we
solve the minimization problem (4.11) The results are presented in Table 4.1. The
table shows the optimal production plans to achieve a service level of 60%, 70%,
80%, 90% and 95%. For each service level we show the planned start time ts

i for
each node. Furthermore, we show the probability of a critical tardy path P(αi)

which is obtained via simulation. For each node, this probability should equal the
Newsvendor fractile. For example, for the 70% service level the probability should
equal hi

hc
1+p = 1

8+18.667 = 0.0375. We compute for each node the relative gap as

P(αi)− hi
hc

1+p
hi

hc
1+p

· 100%.

The first observation is that due to identical distributions, equal holding costs and
the symmetric network structure, the results for nodes 3 and 4 and the results for
nodes 5,6,7 and 8 are equal. Furthermore, all planned start times are in the right
order, i.e. the solution is in D. The optimization method is quite accurate with
relative gaps of the critical tardy path probabilities all below 3%. This gap could
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Figure 4.6: Optimal planned leadtimes under ‘pay as realized’ cost function for the
network of Figure 4.5

be further decreased when increasing the sample sizes of the optimization problem
and the subsequent simulation.

When looking at the planned start times one can clearly see the trade-off between
throughput time and service level. The higher the desired service level, the longer
the planned duration. For example, for a service level of 60%, the first nodes (5-8)
start at t = −5.6, while for a 95% these nodes should start at t = −9.36.

Besides the planned start times, we can also look at the planned leadtime for each
node. The planned leadtime is defined as ts

S(i) − ts
i . In Figure 4.6 we show the

planned leadtimes for all nodes. Because of the symmetry, we combine the results
of nodes 3 and 4 and nodes 5− 8. The figure shows for each node how the planned
leadtime changes as function of the service level. For each node in the network, the
planned leadtime increases as function of the service level. This also results in the
fact that intermediate deadlines are met more often. However, the expected cost of
the system increase too.

Although the activities have the same leadtime distribution and add the same value
to the final product there is a big difference in the planned leadtime per node. For
the 60% service level, node 1 has a planned leadtime of 2.99, almost 3 times its
average duration. Nodes 5− 8 are allocated only 0.78, 22% less than their average
duration. The reason for this is that nodes 5-8 always start on time and a late
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pay as realized pay as planned
ts
i ts

S(i) − ts
i P(Ai = ts

i ) ts
i ts

S(i) − ts
i P(Ai = ts

i )

1 -4.38 4.38 0.410 -3.77 3.77 0.544

2 -5.84 1.46 0.254 -5.22 1.45 0.474

3 -7.06 1.22 0.482 -6.83 1.62 0.679

4 -7.07 1.22 0.482 -6.83 1.62 0.676

5 -8.24 1.18 1.000 -8.57 1.74 1.000

6 -8.25 1.19 1.000 -8.57 1.74 1.000

7 -8.25 1.19 1.000 -8.58 1.75 1.000

8 -8.24 1.18 1.000 -8.57 1.74 1.000

Table 4.2: Details of optimal production plans under ‘pay as planned’ and ‘pay as
realized’ costing schemes.

completion of these nodes can be recovered later in the network. Node 1 is the final
node, which is not guaranteed to start at its planned start time, due to the preceding
stochastic activities. Furthermore, delays in node 1 cannot be recovered anymore
by any succeeding nodes. Therefore it is assigned a longer planned leadtime. To
some extend this also holds for node 2. In general one could say that the closer a
node is to the final deadline the higher the optimal planned leadtime for that node.

4.6.2 Comparison with ‘Pay as Planned’ Solution

In Section 2.6 we already compared the ‘pay as planned’ and the ‘pay as realized’
cost function for an assembly system. We showed that the optimal planning
solutions differ significantly. We can do a similar analysis for the network in
Figure 4.5. We again use an exponential distribution with λ = 1 and holding cost
hi = 1 for each node. We use p = 72 leading a 90% service level.

For both cost functions the results are shown in Table 4.2. This table shows the
planned start times, the planned leadtimes ts

S(i) − ts
i and the probability that a node

starts at its planned start time P(Ai = ts
i ). The results are graphically shown in

Figure 4.7. This figure shows a timeline ending at t = 0, the planned finish time
of both nodes. Each vertical line denotes a planned start time. Horizontal lines
connect the start times according to the precedence relations of the network. Red
lines show the optimal plan under the ‘pay as planned’ cost function while the blue
lines indicate the optimal plan under the ‘pay as realized’ cost function.

Under the ‘pay as planned’ costing scheme production is started earlier (ts
8 =
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Figure 4.7: Comparison of ‘pay as planned’ and ‘pay as realized’ production plan

−8.54). than under the ‘pay as realized’ costing scheme (ts
8 = −8.24). This is in

line with the result of Proposition 2.3. This proposition states that under a ‘pay
as planned‘ costing scheme production is started earlier than under the ‘pay as
realized’ costing scheme. The proposition only concerns the assembly systems
of Chapter 2 but this numerical result indicates that this structural result can be
extended to more general network structures discussed in this chapter.

When looking at activities 5-8, their planned start time is earlier, but the planned
finish time (or the planned start time of their successors) is also later, meaning that
their is more time available for these tasks. Thus, under the pay as planned cost
function, nodes 3 and 4 will start at their planned start time more often. For each
planned start time, we show in the figure the probability that a node starts at its
planned start time. Thus in this example node 3 and 4 start at their planned start
time with probability 0.48 under the ‘pay as realized’ plan and with probability 0.68
under the ‘pay as planned’ plan. Nodes 3 and 4 get more time under the ‘pay as
planned’ plan : ts

S(3) − ts
3 = 1.57 vs 1.22 under the ‘pay as realized’ plan. Because

of this, and the higher the probability starts at its planned start time the planned
start time of node 2 is more often met. The probability that this node starts at its
planned start time increased from 0.25 to 0.47.
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Due to the fact that node 2 can start on time more often, it needs less time to
compensate for delays of predecessors and therefore the planned start time of node
1 is met more often as well. Finally both cost functions have the same probability
that the final deadline is met, P(A0 = 0) = 0.900, a necessary requirement for an
optimal plan for both cost functions.

In general, under the ‘pay as planned’ cost function the intermediate deadlines are
more often met. On the other hand, this also means that the total planned leadtime
(ts

0 −mini∈R ts
i ) increases compared to the ‘pay as realized’ cost function. Thus, the

‘pay as planned’ costing scheme should be used when intermediate deadlines are
important, rather than a short total planned leadtime. The ‘pay as realized costing
scheme’ should be used when intermediate deadlines are flexible and a short total
planned leadtime is preferred.

4.6.3 Variance of Stochastic Leadtimes

In the final numerical experiment, we study the effect of the variance of the
leadtime distributions on the optimal production plan. Instead of using exponential
distributions we now use Gamma distributions. The reason to do this is that by
using the gamma distributions we can change the variance while keeping the mean
constant. Gamma distributions have two parameters, a and b, which together define
the mean µ and variance σ2 as follows:

µ =ab

σ2 =ab2

We choose the values of a and b such that the mean is kept constant at µ = 1 and
the variance is changed: 0.1 ≤ σ2 ≤ 10. The results are shown in Figure 4.8.

Figure 4.8a shows the total planned leadtime, defined as 0 − ts
8. For both cost

functions the total planned leadtime increases when the variance of stochastic
leadtimes increases. In line with Proposition 2.3 the total planned leadtime under
the ‘pay as planned’ cost function is always higher than under the ‘pay as realized’
cost function. The only exception is the case when the variance σ2 = 0. This is a
deterministic leadtime of 1 for each node. This results in a total leadtime of 4 for
the system, since the longest paths consists of 4 nodes.
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(a) Total planned leadtime (b) Expected Cost

Figure 4.8: Expected cost and planned leadtime when increasing the variance of leadtime
distributions.

In Figure 4.8b the expected cost are shown for both cost functions. Besides the
stochastic leadtimes, we also add the case of deterministic leadtimes with σ2 = 0.
The cost of such a system are computed via (4.10) and equal 25. The cost of the
system are increasing in a similar way as the planned leadtimes. When the variance
reaches 10, the cost are roughly 8 times as high compared to the deterministic case.
We also see that the ‘pay as planned’ costing scheme always leads to slightly higher
cost. This is in line with Proposition 2.2.

4.7. Conclusions & Future Research Directions

In this paper, we performed an exact analysis of the planned leadtime problem
for a general class of networks. This problem is present during the production
of capital intensive, customer specific and complicated products. Production is
split up in multiple activities that each add value to the final product and have a
stochastic duration. We model the network as a directed acyclic graph with one end
node. Compared to previous work, this is the most general class of networks, most
papers available in literature study only a sub-class. We develop production plans
that consist of planned start times for each node. We don’t prescribe a finish time,
except for the final deadline. Using planned start times allows us to formulate
the expected cost of the system in a tractable way. Furthermore, we introduce
a concept called critical tardy paths, which gives insight which activities in the
network cause lateness. For this general class of systems, we formulate optimality
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equations and show that at optimality, the probability of a critical path from a
certain node is proportional to the value it adds to the final product. Furthermore,
we prove properties of the optimal solution that can be used to develop efficient
approximation algorithms to solve this problem.

4.A. Proofs

Proof of Lemma 4.1

Since G is a directed acyclic graph we can unfold the recursive definitions of (4.1),
(4.2) and (4.3). Then Ai(ω) can be written as

Ai(ω) = max

ts
i , max

l∈Y(i)

ts
l + ∑

m∈wl,i\{i}
Tm(ω)


 .

Since leadtimes are independent, it follows directly that Ai only depends on Tj, j ∈
Y(i) and ts

j , j ∈ Y(i) ∪ {i}.

Proof of Lemma 4.2

Since G is a directed acyclic graph we can unfold the recursive definitions of (4.1),
(4.2) and (4.3). Then Bi(ω) can be written as

Bi(ω) = max
l∈Y(i)∪{i}

{
ts
l + ∑

m∈wl,i

Tm(ω)

}
.

Since leadtimes are independent, it follows directly that Bi only depends on Tj, j ∈
Y(i) ∪ {i} and ts

j , j ∈ Y(i) ∪ {i}.

Proof of Lemma 4.3

According to Definition 4.2, the event θ
(i)
i,j depends on A(i)

k , k ∈ wi,j ∪ {s(j)} and

B(i)
k , k ∈ wi,j. Applying Lemmas 4.1 and 4.2 on the subgraph and using the
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assumption that leadtimes are independent, it follows that θ
(i)
i,j only depends on

Tk, k ∈ Y(s(j)) ∩ V (i).

Proof of Lemma 4.4

Suppose ω ∈ θ
(i)
i,j . Consider a node k on the path wi,j. From Definition 4.2 it then

follows that A(i)
i = ts

i , A(i)
s(l)(ω) = B(i)

l (ω), l ∈ wi,k. Hence, ω ∈ θ
(i)
i,k as well.

Proof of Lemma 4.5

Suppose we have a solution ts containing a reversed pair ts
i > ts

s(i). In such a
solution, node i will always start after ts

s(i) and hence (4.3) reduces to

As(i)(ω) = max
j∈P(s(i))

{Bj(ω)}, ω ∈ Ω. (4.15)

Due to the recursive definition of actual start times, actual start times of nodes on
the path ws(i),1 also do not depend on ts

s(i). We now define the solution ts′:

ts′
s(i) = ts

i

ts′
k = ts

k k ∈ V\{s(i)}

Note that ts′ ∈ D. By definition Ti(ω) > 0 and hence it follows that A′s(i) = As(i).
Because the actual start times do not change, the cost also do not change and hence
we find C(ts) = C(ts′).

Proof of Lemma 4.6

The proof is a standard Newsvendor proof. We start by taking the partial derivative
of (4.8) w.r.t. ts

0. From Lemma 4.1 it follows that besides ts
0, A0 is the only term in

this cost function that depends on ts
0 and can be written as A0 = max{B1, ts

1}. This
term has the following derivatives:
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∂

∂ts
0

A0 =

1 if B1 < ts
0

0 otherwise.

Then, the derivative of the cost function becomes

∂

∂ts
0

C(ts) = (hc
1 + p)1{B1<ts

0} − p.

Taking the expectation and equating the derivative to 0 yields

(hc
1 + p)P(B1 < ts

0)− p = 0.

Since we defined t0 = 0 this equation can be rewritten to

P(A0 > 0) =
hc

1
hc

1 + p
.

This concludes the proof.

Proof of Lemma 4.7

From Definition 4.2 it follows that for an event θ
(i)
i,1 it is required that A(i)

s(k)(ω) =

B(i)
k (ω) for all nodes on the path wi,1. This also implies that A(i)

s(k)(ω) > B(i)
l (ω) for

all l ∈ P(s(k))\{k}. This violates the definition of θ
(i)
m,1 for all m ∈ V (i)\{i}.

Proof of Theorem 4.1

We prove Theorem 4.1 by taking the partial derivative of E[C(ts)] w.r.t. planned
start time ts

i . At optimality this derivative should equal zero. To find the derivative
we first show that

∂

∂ts
i
E[C(ts)] = E

[
∂

∂ts
i
C(ts)

]
or equivalently, that for every sequence g1, g2, ... converging to 0,

lim
n→∞

E[C(ts + gnei)]−E[C(ts)]

gn
= E

[
∂C(ts)

∂ts
i

]
(4.16)



4.A Proofs 99

where ei is the unit vector with 1 at position i. To find the derivative, we rewrite
(4.8) as follows:

C(ts) = ∑
k∈V

hk(A0 − Ak) + pA0. (4.17)

Now consider the stochastic terms Ak, k = 0, 1, ..., N which are all functions of ts.
For every realization ω = (t1, . . . , tN) we have

Ak(ω) = max

ts
k, max

l∈Y(k)

ts
l + ∑

m∈wl,k\{k}
Tm(ω)


 . (4.18)

Hence for k ∈ wi,1\{i} the derivative ∂Ak(ts)(ω)
∂ts

i
exists for almost all ω and

∂Ak(ts)(ω)

∂ts
i

=

1, if ω ∈ θi,P(k)∩{wi,k}

0, otherwise

If k = i, then

∂Ai(ts)(ω)

∂ts
i

=

1, if Ai(ω) = ts
i ,

0, otherwise.

From Lemma 4.1 it follows that Ak does not depend ts
i if k /∈ wi,1. Hence ∂

∂ts
i
Ak(ω) =

0 for all k /∈ wi,1. We have now determined the partial derivatives w.r.t. ts
i of all

actual start times Ak in (4.17). In this equation we multiply these start times by the
cost parameters hi and p. Hence, for almost all ω,∣∣∣∣C(ts + gnei)(ω)− C(ts)(ω)

gn

∣∣∣∣ ≤ hc
1 + p,

so by bounded convergence we can conclude that (4.16) holds. Combining the
results we find that

∂E[C(ts)]

∂ts
i

= E

[
∂C(ts)

∂ts
i

]
=

(hc
1 + p)P(θi,1)− hiP(Ai = ts

i )− ∑
k∈wi,1\{i}

hkP(θi,P(k)∩wi,k
)



100 Chapter 4. Modeling of Networks Under ‘Pay as Realized’ Costing Scheme

At optimality, ∂E[C(ts)]
∂ts

i
= 0. Also, we can use (4.7) to rewrite P(θi,1) as P(θ(i)i,1 )P(Ai =

ts
i ). This yields

(hc
1 + p)P(θ(i)i,1 )P(Ai = ts

i )− hiP(Ai = ts
i )− ∑

k∈wi,1\{1}
hs(k)P(θ

(i)
i,k )P(Ai = ts

i ) = 0.

(4.19)

Note that we changed the summation range from wi,1\{i} to wi,1\{1}. Replacing
k by s(k) and P(k) ∩ wi,k by k then yields the same term. In the domain D we
know that ts

s(i) > ts
i and thus it holds that P(Ai = ts

i ) > 0. Thus, we can divide by
P(Ai = ts

i ) and find

(hc
1 + p)P(θ(i)i,1 )− hi − ∑

k∈wi,1\{1}
hs(k)P(θ

(i)
i,j ) = 0.

Finally, we rewrite the equation to

P(θ(i)i,1 ) =
hi

hc
1 + p

+ ∑
k∈wi,1\{1}

hs(k)P(θ
(i)
i,j )

(hc
1 + p)

, i ∈ V .

This concludes the proof.

Proof of Lemma 4.8

1. The event θ
(i)
i,1 is defined on the subgraph V(i), which excludes the nodes in

Y(i). Hence, the probability P(θ(i)i,1 ) does not depend on ts
k. By definition,

αi ⊆ θ
(i)
i,1 and thus P(αi) does not depend on ts

k either.

2. P(θ(i)i,1 ) is strictly increasing in ts
i , because in the subsystem i is a root node. In

the case of an event θ
(i)
i,1 , from Definition 4.3 it follows that there is exactly one

critical tardy path, starting at a node on the path wi,1. In other words, θ
(i)
i,1 ⊆⋃

j∈wi,1
αj. However in case 1 of the lemma we showed that the probabilities

P(αj), j ∈ wi,1\{i} do not depend on ts
i because i /∈ V(j). Thus, P(αi) is strictly

increasing in ts
i .

3. When ts
j < maxl∈P(j){ts

l }, ts
j does not have an effect on θ

(i)
i,1 . When ts

j >

maxl∈P(j){ts
l} ts

j there will be some ω that were first in θ
(i)
i,1 that now become
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part of θ
(j)
j,1 .

Proof of Lemma 4.10

Consider an alternative solution ts′ ∈ RN , ts′ 6= ts∗. We define a set that contains
all nodes for which the planned start time in the alternative solution is increased
compared to their planned start time in the solution ts∗:

J = {j : ts′
j > ts∗

j }.

Similarly, we define a set for all nodes that have a decreased planned start time:
start time:

K = {k : ts′
k < ts∗

k } :

Since ts′ 6= ts∗, J and/or K is/are nonempty. Suppose J is nonempty. Then, from
Lemma 4.9 it follows that

∑
j∈J

P(α′j) > ∑
j∈J

P(α∗j ). (4.20)

This is due to the fact that all planned start times of nodes in the summation have
increased, leading to an increase of the summed probability. All planned start
times of nodes not in the sum remained unchanged or decreased. The nodes that
decreased can cause another increase in the sum of tardy path probabilities. As ts∗

satisfied Theorem 4.2, it holds that

∑
j∈J

P(α∗j ) = ∑
j∈J

hj

hc
1 + p

. (4.21)

Combining (4.20) and (4.21) yields

∑
j∈J

P(α′j) > ∑
j∈J

hj

hc
1 + p

.

Similarly, if K is nonempty, it follows that

∑
k∈K

P(α′K) < ∑
k∈K

hk
hc

1 + p
.
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We conclude that ts′ does not satisfy the system of Newsvendor equations and that
ts∗ is a unique solution.

Proof of Theorem 4.2

By induction. We have to show for all i ∈ V that

P(αi) =
hi

hc
1 + p

.

In the case i = 1 in (4.13) the summation term vanishes and it directly follows that

P(α1) =
h1

hc
1 + p

Now suppose we have shown for all nodes k < i that

P(αk) =
hk

hc
1 + p

.

By inserting the induction hypothesis, we rewrite (4.13) for node i to

P(θ(i)i,1 ) =
hi

hc
1 + p

+ ∑
j∈wi,1\{1}

P(αs(j))P(θ(i)i,j ).

By definition αs(j) is a subset of θ
(i)
s(j),1. From Lemma 4.4 it follows θ

(i)
s(j),1 ∩ θ

(i)
i,j = ∅.

Hence αs(j) ∩ θ
(i)
i,j = ∅ as well. Using the assumption that stochastic leadtimes of

different nodes are independent it follows that P(αs(j))P(θ(i)i,j ) = P(αs(j), θ
(i)
i,j ). Hence

we can write
P(θ(i)i,1 ) =

hi
hc

1 + p
+ ∑

j∈wi,1\{1}
P(αs(j), θ

(i)
i,j ).

Next, using Definition 4.3 and Corollary 4.1 we can separate the term P(θ(i)i,1 ) on the
left-hand side into a sum of mutual exclusive probabilities. Furthermore, on the
right-hand side we change the notation of the summation over nodes on the path
wi,1. Instead of having a summation over the set of nodes wi,1\{1}, we sum over
the set of nodes wi,1\{i}. By also changing αs(j) to αj, we still have a summation
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over the same nodes.

P(αi) + ∑
j∈wi,1\{i}

P(αj, θ
(i)
i,1 ) =

hi
hc

1 + p
+ ∑

j∈wi,1\{i}
P(αj, θ

(i)
i,1 )

Finally the summation terms cancel out and we find the following Newsvendor
equation for node i:

P(αi) =
hi

hc
1 + p

.

By induction we now conclude that

P(αi) =
hi

hc
1 + p

, i ∈ V .

This completes the proof.
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5
Capacity-constrained Project Portfolio

Selection

5.1. Introduction

Innovation in healthcare is crucial for ensuring a healthy population in the future
(Dai and Tayur, 2018). The development of new drugs is such an innovation.
Pharmaceutical companies, universities and governments have the task to discover
new compounds and develop them into drugs that are both efficacious and safe to
use for humans. Drug development is a long and costly process with an uncertain
outcome. The cost of drug development has been increasing in recent years (DiMasi
et al., 2016). However, only a few drugs are developed successfully, resulting in
market approval. The vast majority of drug development projects is terminated
early in the process, due to test results indicating insufficient efficacy or serious side
effects. In recent years, the percentage of compounds reaching market approval has
decreased (Pammolli et al., 2011).

Pharmaceutical companies aim for a portfolio of projects that maintains long term
profits of the company. Managing the drug development portfolio is a core task.
A constraint that affects the portfolio management decisions is the pharmaceutical
companies’ research capacity. Research capacity can, for example, be lab facilities,



106 Chapter 5. Capacity-constrained Project Portfolio Selection

scientists, doctors or test patients. Capacity decisions are long term decisions, which
are made under uncertainty. Given its importance and uncertainty surrounding it,
researchers have developed several models to assist the pharmaceutical companies
with their capacity decisions (Huchzermeier and Loch, 2001; Girotra et al., 2007).

To be able to deal with the uncertain nature of the drug development process,
outsourcing is an option that is widely used. Instead of carrying out the complete
process in house, pharmaceutical companies use Contract Research Organizations
(CROs) to execute parts of the drug development (Mirowski and Van Horn, 2005).
Examples of services provided by CROs include the recruitment of test patients,
setting up clinical trials and dealing with regulatory bodies. CROs execute clinical
trials on a contract basis. In general, they get paid for the work they do, regardless
of the outcome of it. To cope with increasing uncertainties and to reduce costs,
pharmaceutical companies increasingly rely on outsourcing. Howells et al. (2008)
observe that outsourcing is especially useful for standardized non-core activities.
The execution of clinical trials is an example of such an activity. This results in
CRO market growth (Zion Market Research, 2015).

CROs have a large world-wide network of resources, such as patients, doctors,
nurses and medical facilities. These resources are used to offer services to
pharmaceutical companies. The resources together form the capacity for a CRO
to do research. Since CROs work with many different pharmaceutical companies,
they try to utilize this capacity as best as possible.

Although there are many types of collaborations between pharmaceutical compa-
nies and CROs, CROs typically work on a fee-for-service contract. According to this
contract a CRO receives a reward for the service it delivers. The reward is agreed on
beforehand and does not depend on the results of the service. If a CRO conducts a
study that results in a the drug development process being terminated, the CRO still
receives its rewards. The fee-for-service type of contracts imply different tradeoffs
for CROs compared to pharmaceutical companies. First of all, for a pharmaceutical
company the cost of developing a drug includes the payments for a CRO, while for
a CRO this is the main source of income. A failed drug development project, i.e., a
project that does not result in market approval, is still a source of income for CRO.
Secondly, the revenue for the pharmaceutical company depends on the potential
sales an approved drug can generate. Therefore, this is an important factor to be
considered when making development decisions. For a CRO potential sales are
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irrelevant, i.e., the payment received from the pharmaceutical company does not
depend on the sales. Finally, the pharmaceutical company is the project owner and,
hence, takes go/no go decisions, which for a CRO are exogenous decisions.

Several studies consider the capacity problem of pharmaceutical companies and
develop models to plan the drug development process (Colvin and Maravelias,
2008, 2010). These models do not apply to the CROs’ capacity problems since CROs
face different tradeoffs. In this chapter, we develop models from the CROs’ point
of view. We formulate mathematical models that assist CROs with two capacity
related decisions. The first decision considers the amount of research capacity a CRO
should have. Research capacity is very specific and cannot easily be scaled up or
down. On one hand it is key to have sufficient capacity to be able to execute large
research projects, but on the other hand, if capacity is not utilized it directly affects
the CROs profits. The second decision we aim to model is the project acceptance
decision. Pharmaceutical companies can have projects with different characteristics
in terms of capacity requirements, success probabilities and rewards. In order to
best utilize its research capacity, a CRO selects projects that are profitable and fit
within the available capacity.

The CROs decisions on the amount of research capacity and project selection are not
straightforward due to uncertainties around the drug development process. Projects
consist of multiple phases. When a CRO accepts a project, it aims to execute all the
phases. However, the project might be terminated by a pharmaceutical company.
This outcome is not desired by either of the CRO or the pharmaceutical company.
For the CRO it is useful to complete the project since this can establish a better
relationship with the pharmaceutical company. For the pharmaceutical company, it
is useful to complete the project since switching between CROs for different phases
of the project is costly and results in delays in development. Although not desired,
there is a possibility that the project is terminated after a certain number of phases.
This is an uncertainty that the CROs should take into consideration when making
decisions on research capacity and project selection.

Projects and their phases can have different characteristics. Each phase might
have a different capacity requirement, which depends on the duration and other
aspects of the project. In addition, phases might have different success likelihoods.
These differences imply another uncertainty for the CRO, since the decision on
project selection should take the capacity requirements and success probabilities
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into account. The CRO has to make this decision without knowing what project
offers it will receive in the future.

In this chapter, we consider a CRO and propose a Markov Decision Process (MDP)
formulation to assist the CRO with its research capacity and project selection
decisions. Our model aims to maximize the CRO’s average periodic profit by
optimizing its research capacity and project acceptance/rejection decision. The
state of the MDP is determined by the projects that are currently executed and the
available projects that can be selected by the CRO. The optimal policy prescribes for
each state whether a new project should be accepted or not.

We analyze the structure of the MDP and solve it for different parameters. We
consider a simplified setting with homogeneous project types and determined the
set of potential optimal policies for the acceptance decisions. We identify the
parameter settings under which each potential acceptance policy is optimal. For
a more complex setup with nonhomogeneous project types, we show that instead
of focusing on one project type, the CRO should apply a policy where it accepts
project types in such a way that projects complement each other and that capacity
is highly utilized, but not over-utilized. For the capacity decision, we show that
it is not always optimal to choose a capacity such that all arriving projects can be
accepted.

The remainder of this chapter is organized as follows. In Section 5.2 we review
the relevant literature. In Section 5.3 we develop the general model to analyze the
CRO’s capacity management problem. To get an insight in the dynamics of the
model, we analyze a simplified version in Section 5.4, where we consider a CRO
executes only one type of projects. In Section 5.5 we extend these results to a
CRO that execute multiple project types. In both these sections, we assume a fixed
capacity and analyze the project selection decision. In Section 5.6 we include the
capacity as a decision variable. Finally, conclusions and recommendations can be
found in Section 5.7.

5.2. Literature Review

The CRO’s capacity problem fits into the wide literature stream of new drug
development. The viewpoint of most papers in this stream is the viewpoint of
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a pharmaceutical company. Although our viewpoint fundamentally differs from
the drug development literature, we benefit from it by defining similar modeling
assumptions and using similar modeling techniques.

Most of the drug development literature acknowledges the uncertain outcome of
a project and the possibility of an early termination as a key issue. It is vital
to quantify these uncertainties as they are an important driver for the value of a
project. Jacob and Kwak (2003) discuss existing techniques and develop a new
method to determine the value of a drug development project using a real options
approach. Girotra et al. (2007) take a different approach and analyze the value
a drug has within the drug portfolio of a pharmaceutical company. Hence, they
consider the fact that the value can depend on the status of the other drugs in the
portfolio.

Multiple studies address the project selection decision. Huchzermeier and Loch
(2001) focus on mitigating risks in the portfolio by postponing or expediting critical
activities in a project. Yu and Gittins (2008) study the optimization of long-term
profitability of the project selection decisions. In a follow up paper Charalambous
and Gittins (2008) model the same problem as an MDP and derive optimal policies.
Their main focus is on the pre-clinical trial stage, where multiple variants of drug
compounds are investigated simultaneously. The value of one variant might depend
on whether other variants are also under development and this can affect the
optimal selection decision.

In the clinical trial phase the drug is tested in large scale experiments involving
human test subjects. Especially in this phase, a large of amount of resources
is needed, while these resources are usually scarce. This limited capacity is an
important aspect in the project selection problem. Gatica et al. (2003) study the
project selection process by taking this capacity constraint into account. In order
to cope with the failure probabilities of projects, they generate different scenarios
and then formulate a mixed integer linear program to find the optimal selection.
Colvin and Maravelias (2008) and Colvin and Maravelias (2010) develop stochastic
programming formulations to model the failure probabilities at different project
phases. In Christian and Cremaschi (2015) heuristics are developed for the planning
of clinical trials. All of these studies consider the discounted potential revenue of a
drug and this results in a planning that gives priority to the most profitable drugs.

While all of these studies consider the selection problem from a pharmaceutical
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company’s perspective, Kouvelis et al. (2017) consider the problem from a CRO’s
point of view. This study focuses on the planning of clinical trials for a single drug.
It addresses operational aspects such as as the number of facilities to open and the
number of patients to enroll.

Besides literature that focuses on the application area of new drug development,
there are also studies on project scheduling considering failure probabilities of
activities. Henig and Simchi-Levi (1990) and De Reyck and Leus (2008) consider
the option of executing activities in parallel to reduce the duration of a project.
Since discounted rewards are only collected at the end, this can be a profitable
option (assuming capacity is available). On the other hand, this also expedites costs
of development, which can lead to higher losses in case of a failure.

We contribute to the literature on drug development by developing models from
the CROs’ point of view. We formulate mathematical models to assist CROs with
their research capacity and project acceptance decisions.

5.3. Problem Formulation

In this section, we define the system parameters (Section 5.3.1) and introduce our
Markov Decision Process formulation (Section 5.3.2).

5.3.1 Problem Definition

We consider a CRO that receives requests for drug development projects with
different characteristics. We use index n ∈ {1, 2, . . . , N} to represent a project type.
There exist N different project types. We consider an infinite horizon discrete time
model, i.e., time is divided into periods and use index t to represent a period.
The project arrival process is random. In each time period t either no project or
one project arrives. The probability that a project of type n arrives is qn. Since,
in a period, at most one project arrives it holds that ∑N

n=1 qn + q0 = 1, where q0

denotes the probability that no project arrives. We assume that this arrival process
is stationary over time.

Projects consist of a certain number of phases. These phases are executed
sequentially. We use m to represent the phase number. Each project consists of
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M phases, i.e., m ∈ {1, 2, . . . , M}. A phase denotes a part of the project that takes
exactly one period. At the end of a phase a go/no go decision is taken. This decision
is taken by the customer, i.e., pharmaceutical company, based on the results of the
already executed phases. Besides the test results, the customer also takes other
factors into account such as other drugs in the portfolio of the customer, market
potential and cost of future development when making this go/no go decision. For
the CRO this is an exogenous decision. We model the customer’s go/no go decision
by defining the parameter pn,m, which denotes the probability that the go decision
is taken after completing phase m of a project type n. This is the probability that
the project continues to the next phase, i.e., phase m + 1. With probability 1− pn,m

the project is terminated after phase m. By definition pn,M is 0, since phase M is the
last phase of each project.

If the customer decides to continue to the next phase, we assume this phase should
be executed immediately in the next period. The motivation for this is that drug
development projects are time critical, i.e., it is essential to get FDA approval as
soon as possible, such that the drug can enter the market.

Each phase of the project requires a certain capacity. With capacity, we denote
the resources that CROs posses. These resources can for example be laboratory
facilities, hospitals, patients, nurses and doctors. For this high level model we
assume that this capacity is homogeneous and can be used for all phases of all
project types. We use cn,m to represent the capacity requirement of phase m of
project type n. The CRO has a limited capacity of C per period. In each period,
this capacity costs α per unit, regardless of whether it is utilized. As this is a long
term decision, we assume C cannot be changed from period to period. Due to the
uncertainty of go/no go decisions and arrival of new projects, the total capacity
requirement for future periods of all projects in the system is uncertain. Due to
this uncertainty, it is possible that in some periods the CRO needs more capacity
than C. For these periods, the CRO can rely on external options and decide to buy
extra capacity, for example from another CRO at cost β per unit. We have α < β,
otherwise it would be optimal to always use the external option. In fact the value
of β is relatively high, due the specific expertise that is needed at high flexibility.

For each completed phase of a project a CRO receives a reward. rn,m represents the
reward that the CRO receives after completion of phase m of project type n. This
reward is received for the service the CRO delivers in a period and is independent
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Figure 5.1: Steps in a drug development of 3 phases executed by a CRO.

of the go/no go decision that follows at the end of the period.

An overview of the phase characteristics and the CRO’s acceptance decision is given
in Figure 5.1.

5.3.2 Markov Decision Process Formulation

We model the behavior of the system as a Markov Decision Process. The state of the
system at the beginning of a period is denoted by the vector ~x = [x0, x1, x2, ..., xM].
The first element of the vector gives information on the project arrival process at
the beginning of the period. This element indicates whether a project arrives and if
it arrives, the type of it. If x0 = 0, there is no project arrival and if x0 = n, a
project of type n ∈ {1, 2, . . . , N} arrives. If a project arrives and it is accepted, its
first phase starts in the next period. Note that there is at most one project arrival
at the beginning of every period and each phase takes exactly one period. These
assumptions imply that there can be at most one project in each phase. The element
xm indicates the project type in phase m. If xm = 0, there is no project in phase m.
As an example, assume that the system is in state ~x = [1, 2, 0, 1] at the beginning of
a period. This state indicates that a project of type 1 has arrived, a project of type 2

is in phase 1, there is no project in phase 2 and a project of type 1 is in phase 3.

In each period the CRO collects rewards for the project phases it executes. The total
reward in a given period is given by

M

∑
m=1

N

∑
n=1

rn,m1{xm=n}.
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Here, 1{xm=n} is an indicator function and denotes whether a project type n is
present in phase m. Given that there can be at most one project per phase, the sum

∑n=1 1{xm=n} equals either 0 or 1. If the total capacity requirement is above C, extra
capacity is needed. The required extra capacity is given by:(

M

∑
m=1

N

∑
n=1

cn,m1{xm=n} − C

)+

,

where (x)+ = max{x, 0}.

Combining the rewards for executing projects, the capacity usage and the per unit
capacity costs α and β, we can write the expression for the net reward when the
system is in state ~x = [x0, x1, x2, ..., xM] at the beginning of the period. We represent
this reward as R(~x) and express it as

R(~x) =
M

∑
m=1

N

∑
n=1

rn,m1{xm=n} − αC− β

(
M

∑
m=1

N

∑
n=1

cn,m1{xm=n} − C

)+

. (5.1)

Note that R(~x) does not depend on the first element of the state ~x since the
acceptance decision for the arriving project affects the state of the system starting
from the beginning of the next period. Depending on the parameters and the state
of the system R(~x) can be negative. For example, when there is no projects executed,
the net reward is −αC.

We define ~R as the vector containing the rewards for all states. By accepting and
rejecting projects at the right moments, the CRO can affect the states that can be
reached. In this way, the CRO can maximize its average net reward per period. We
describe this decision of accepting and rejecting the projects by a policy a ∈ A. For
each state, the policy a prescribes whether to accept or reject the project that arrives
at the beginning of the period. A is the set of all possible policies. We define Π(a)
as the vector of steady state probabilities when policy a is executed. By multiplying
the steady state vector, we can write the average net reward per period as

V(a) = Π(a)T~R, a ∈ A. (5.2)

Π(a)T is the transpose of the vector Π(a). In order to maximize its profit, the CRO
needs to find the optimal total capacity C∗ and the corresponding optimal policy
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a∗, which maximizes the average value per period. The optimal policy for a given
total capacity C is given by

a∗ = argmax
a∈A

{V(a)} . (5.3)

5.4. Homogeneous Projects

The state space of the MDP model and the number of policies increase exponentially
with the number of project types and the number of phases per project. To
get insights on the optimal decisions, we initially solve our model with several
simplifying assumptions. First of all, we consider a deterministic arrival process
with only one project type with 3 phases. In each period a project arrives with
probability q1 = 1. Since this is the only project type, we omit the index n for the
project characteristics. Our simplifying assumptions results in a state space with
23 = 8 phases. We have 3 phases and each phase has either 1 project or no project.
The state vector ~x has 4 entries with x(1) = 1 for all states, since q1 = 1. For example
the state ~x = [1, 0, 0, 0] is the state where a new project arrived, but no projects are
executed. As an example, this state space is shown in Figure 5.2. The transition
probabilities in this figure correspond to a policy we define as always accept. When
the CRO uses this policy it always accepts the arriving projects. Since arrivals are
deterministic, transition probabilities only depend on the success probabilities of
phase 1 and 2. Phase 3 is the last phase of a project and hence transition probabilities
do not depend on p3. For example, when the system is in state [1, 0, 0, 1] there is
only one project in the system and it is in phase 3. The next state is [1, 1, 0, 0] with
probability 1 since a new project is accepted, the project accepted in the previous
period moves to phase 1 and the project in phase 3 project leaves the system.

In each state of the model, we can either accept or reject a new customer. With
a total of 8 states, this leads to 28 = 256 different policies. Before determining
the optimal policy, we show that in order to find the optimal policy it suffices to
consider only a subset of these 256 policies.

Lemma 5.1 A policy a∗ ∈ A that maximizes (5.3) is a policy that has the same action for
each pair of states [1, i, j, 0] and [1, i, j, 1] with i, j ∈ {0, 1}.
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Figure 5.2: State space of homogeneous customer model under ’always accept’ policy.

This lemma states that, for the optimal action, it does not matter whether there
is currently a project in phase 3. The lemma can be easily proved by verifying
that each pair of states have the same outgoing transition probabilities to the same
states. As a result of Lemma 5.1, to characterize the optimal policy, we only need to
consider 24 = 16 different policies. Out of these 16 policies, we can limit ourselves
to the 6 policies shown in Table 5.1. The reason for this is that the other 10 policies
lead to a steady state distribution that is identical to one of the policies in Table 5.1.

Lemma 5.2 The optimal policy to (5.3) is one of the policies in Table 5.1.

Lemma 5.2 does not require any restrictions on cost and capacity parameters. It
provides an important result since we know that, without any information on cost
parameters, capacity parameters and success rates, a policy in Table 5.1 is optimal.
Furthermore, the result helps to derive useful analytic bounds. The first bound
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State a = 1 a = 2 a = 3 a = 4 a = 5 a = 6
[1,0,0,0],[1,0,0,1] 0 1 1 1 1 1

[1,1,0,0],[1,1,0,1] 0 0 1 0 1 1

[1,0,1,0],[1,0,1,1] 0 0 0 1 1 1

[1,1,1,0],[1,1,1,1] 0 0 0 0 0 1

Table 5.1: Candidate optimal policies. Each column represents a policy with id a. A 0
represents a reject and 1 an accept action.

relates to the required parameter setting for a CRO to be profitable. For the CRO
it should be possible to attain an average profit, otherwise it is better to quit the
business. In order to achieve this it should be more profitable to accept 1 project
at the time instead of accepting no projects at all. In Table 5.1, a = 1 is the policy
that accepts no projects at all and a = 2 is the policy that ensures there is at most
1 project in the system. To achieve this, it only accepts when the system is empty
or when there is only a project in phase 3. It is straightforward to verify that
V(1) = −αC, which is a loss for the CRO. For the CRO to be profitable it should
hold that V(2) > 0. In Lemma 5.3 we provide the condition that needs to be
satisfied to ensure a positive net reward.

Lemma 5.3 The CRO can attain a positive net reward only if

r1 − β(c1 − C)+ + p1(r2 − β(c2 − C)+) + p1 p2(r3 − β(c3 − C)+)
p1 + 2

− αC ≥ 0.

Another simple policy is to always accept all projects. This is policy a = 6 in Table
5.1. Under this policy, the CRO on average receives a reward of r1 + p2r2 + r3 p1 p2

per period. It is easily verified that when c1 + c2 + c3 ≤ C it is optimal to always
accept. However, it is possible to find a bound that is tighter. To find this bound
we compare policy a = 6 with policy a = 5. Under this policy, the CRO almost
always accepts, except for when it is in state [1, 1, 1, 0]. By doing this, it is ensured
that the state [1, 1, 1, 1] is never reached. This state contains 3 projects, which can
lead to high cost of outsourcing when there is not enough fixed capacity. When
V(6) > V(5) it is optimal to always accept new projects. Rewriting this inequality
leads to the following bound.
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Lemma 5.4 For a CRO it is optimal to accept all projects when

R(5)(−p2 p2
1 + p2 p1)+R(3)(−p2 p2

1 + p1)−R(1)(p1 + p1 p2− p2
1 p2− 1)+ p2

1 p2R(7)+

R(1)(p2 p2
1 − 1)

2p1 + 1
−

R(4)(−p2 p2
1 + p2 p1)

2p1 + 1
− p1R(3)

2 ∗ p1 + 1
−

p2
1 p2R(5)
2p1 + 1

−

p2
1 p2R(6)
2p1 + 1

+
p2

1R(2)(p2 − 1)
2p1 + 1

− αC ≥ 0 (5.4)

Here, ~R = [R(i)]6i=1 denotes the net reward (rewards minus outsourcing cost) in
each state:

~R =



r1 − β(c1 − C)+

r2 − β(c2 − C)+

r1 + r2 − β(c1 + c2 − C)+

r3 − β(c3 − C)+

r1 + r3 − β(c1 + c3 − C)+

r2 + r3 − β(c2 + c3 − C)+

r1 + r2 + r3 − β(c1 + c2 + c3 − C)+

0


The two remaining policies are a = 3 and a = 4. Policy a = 3 accepts only new
projects when there is no project in phase 2. As a result, the state where there are
are projects in both phase 1 and phase 3 can not be reached. This policy is typically
useful when c1 + c3 >> C. Policy a = 4 accepts only new projects when phase 1

is empty. As a result, the states where there are projects in phases 1 and 2 and the
states where with projects in phases 2 and 3 cannot be reached. This is typically
useful when phase 2 requires a lot of capacity.

The main factor that prevents the CRO from accepting all projects is the usage of
external capacity. Whether this external capacity is needed heavily depends on the
go/no go probabilities of phase 1 and 2. To show the effect of these probabilities,
we consider an example of a CRO that executes clinical trials for a pharmaceutical
company but has limited capacity. A clinical trial usually consists of 3 phases. In
each phase the required capacity increases. The capacity parameters are c1 = 3,
c2 = 12, c3 = 35, C = 35. Rewards are equal to the required capacity: r1 = c1,
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6. Always accept.

1. Always reject.

2. Accept when empty.

4. Accept when phase I empty.

5.
     Only reject 
              when full

3. Accept when 
   phase II 
     empty.

Figure 5.3: Optimal acceptance policies for project arrivals with different go/no-go
probabilities.

r2 = c2, r3 = c3. The available capacity C = 15 is only enough to execute phases
1 and 2 simultaneously. Execution of phase 3 always requires extra capacity and a
unit of extra capacity costs β = 3. Since in this section we only consider instances
with the same initial capacity, the term αC is a constant. Therefore, we set α = 0.
Figure 5.3 shows the optimal policy for any combination of p1 and p2.

Policy 1 (always reject) is optimal in the right top corner, when both success
probabilities are high. When accepting a project, the probability that it reaches
phase 3 is high, which results in a loss, due to high penalty costs and low fixed
capacity.

The area where policy 1 is optimal is bounded by the area where policy 2 is optimal.
When success probabilities decrease, it becomes profitable to accept projects, but in
such a way that there is at most 1 project at the time in the system. Note that the
area of policy 1 is completely bounded by policy 2 which is the bound in Lemma
5.3.

When reducing the success probabilities further, one can either reach the region
where policy 3 is optimal or the region where policy 4 is optimal. Policy 3 (accept
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when phase 2 is empty) is typically optimal when p2 is high and p1 is low. A high p2

results in a high probability of reaching phase 3 when a project is already in phase
2. By accepting only when phase 2 is empty, the policy avoids having multiple
projects in the system when there is a project in phase 3. Accepting a project in
phase 1 is not a big problem here, since p1 is low and thus the project will most
likely fail after phase 1.

Policy 4 (accept when phase 1 empty) is optimal when p1 is high and p2 medium.
This policy reduces the chance of having 2 projects in phase 1 and 2 or projects
in phase 2 and 3 simultaneously. Having projects in phases 2 and 3 is very costly
and hence undesired. Having projects both in phase 1 and 2 with a high p1 and a
medium p2 results in a high probability of having phase 2 and 3 occupied in the
next period.

Policy 5 only rejects when both phase 1 and phase 2 are occupied and accepts
everywhere else. This is optimal for low p2, since low p2 ensures that a state where
both phases 2 and 3 are occupied is rarely reached.

Policy 6 (always accept) is optimal for low values of both p1 and p2. When p2 is
low, it is still optimal to always accept even when p1 is high. Only states with an
occupied phase 3 are costly, but due to the low p2 these states are never reached.
Note that the region where policy 6 is optimal is completely bounded by the region
where policy 5 is optimal and the corresponding expression for the bound is in
Lemma 5.4.

Figure 5.3 shows the optimal policy for each combination of success probabilities.
It does not tell what the expected reward is under the optimal policy. In Figure 5.4
we show the expected reward under the optimal policy. We show the reward as
function of p1. The consider very low success probability and a very high success
probability for phase 2, i.e., p2 = 0.1 and p2 = 0.8, respectively. Note that both lines
start at V = 3 when p1 = 0, since the value of p2 does not matter when all projects
fail after phase 1.

When increasing p1, the expected reward decreases when p2 is high, but increases
when p2 is low. The CRO benefits from the increase in p1, since it means it can
also execute phase 2. When p2 is low, it does not need to execute phase 3, which is
very costly. However, when it has to execute phase 3, the profit decreases. Here, we
see a clear difference in incentives for the pharmaceutical company and the CRO.
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Figure 5.4: Expected reward under optimal policy for different go/no go probabilities

The pharmaceutical company prefers high p1 and p2 since these imply a successful
outcome of the project, while a CRO, due to its limited capacity, prefers projects
with a high p1 and a low p2. The CRO could increase its capacity C bu this is not
easily done and it increases the risk of under-utilization.

5.5. Nonhomogeneous Projects

In the previous section, we considered a model with only one project type, which
arrives with probability 1 in each period. In this section, we extend the model by
allowing two project types and uncertain project arrivals. To keep the state space
tractable, we consider projects that have at most two phases. For the MDP, we can
do a similar analysis as in Section 5.4. The MDP now consists of 33 = 27 states.

One of the policies is always reject. This policy’s state space is shown in Figure 5.5.
For this policy, transition probabilities are a function of arrival probabilities q1 and
q2 only.

In each state, we have the possibility to accept or reject a project, if it is available.
When there is no project, there is no action possible. In exactly 1/3 of the states,
there is no project, which means that in theory we have 218 different policies. For
similar reasons as in Section 5.4, the number of policies can be reduced to 37. The
policies are similar to those in Table 5.1, but now also differentiated in terms of
project types. For example, a CRO might focus on one project type and always
reject the other type.



5.5 Nonhomogeneous Projects 121

[0, 0, 0]

[1, 0, 0] [2, 0, 0]

1 − q1 − q2

q1

q2

q1

1 − q1 − q2

q2

q2

1 − q1 − q2

q1

Figure 5.5: State space under ‘always reject’ policy for a model with two customer types.

cn,1 cn,2 rn,1 rn,2 pn,1 r̄n c̄n
Type 1 3 3 3 3 1 6 6

Type 2 2 5 4 2.5 0.8 6 6

Table 5.2: Two project types with different characteristics but equal expected reward and
capacity

To compare the project types, we introduce the expected reward and capacity of a
project. These variables are defined as r̄n = rn,1 + ∑M

m=2 pn,m−1rn,m and c̄n = cn,1 +

∑M
m=2 pn,m−1cn,m and denote the total capacity and reward of a project, respectively.

For example, when for two projects it holds that q1
r̄1
c̄1

>> q2
c̄1
c̄1

>> the CRO might
focus on type 1 projects as the average reward per unit of capacity is higher. By
rejecting all type 2 projects, the CRO spares capacity for type 1 projects which are
likely to arrive in the future periods.

When two projects have equal expected capacities and rewards, it is not obvious
what a good policy for the CRO looks like. Consider the two project types in Table
5.2. Both projects have equal expected rewards and capacities. Type 2 projects have
more uncertainty than type 1 projects. Type 2 requires more capacity in phase 2

then in phase 1, but in phase 1 it pays a higher reward per unit of capacity. Type 1

projects require equal capacity over all phases and phase 2 is always executed since
p1 = 1. The other parameters in the experiment are fixed at C = 5 and β = 3.

What is changed during the experiment is the mix of project types. More
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Figure 5.6: Optimal expected reward per period for different mixes of arriving projects

specifically, we change q1 and q2 but keep the sum q1 + q2 constant. In this way,
the total value of incoming projects stays the same and we can see the effect of the
customer types on the expected reward of the CRO. The results are shown in Figure
5.6. The lines indicate the expected reward under the optimal policy for two arrival
processes. Blue line is for the process with a probability of a new project arrival of
0.8, while the red line denotes experiments where this probability is 1. Hence, when
q1 = 0, we have q2 = 0.8 for the blue line and q2 = 1 for the red line. As in the latter
case, more projects arrive, the expected reward is higher for all combinations of
projects. Although the total incoming value of projects remains unchanged for both
lines, the actual reward obtained by the CRO changes based on the customer mix.
First, we observe that the blue line at q1 = 0.8 has a higher reward than at q1 = 0.
The same is valid for the red line; the reward at q1 = 1 is higher than the reward at
q1 = 0. This implies that the CRO prefers Type 1 projects over only Type 2 projects.
However, the maximum reward is attained when the arrival process is a mix of both
project types. At the point where the maximum reward is attained two project types
complement each other. If the CRO has a project of type 1 in phase 2 and a project
of type 2 in phase 1 it exactly fills its capacity since c1,2 + c2,1 = 3 + 2 = 5 = C. The
maximum reward is attained when q1 = 0.6 (blue line) and q1 = 0.7 (red line). The
optimal policy for both points is to always accept projects when available, except
for when there is a type 2 project in phase 1. In this way, it is avoided that there is
another project in phase 1 when there is type 2 project in phase 2. These states are
very costly because extra capacity is required.
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5.6. Capacity Decision

In the previous section, we focused on project selection decisions at each period. We
assumed that the available capacity in each period, C could not be changed. The
capacity of a CRO can be changed and it is a long term decision. In this section,
we consider C as a decision variable. We have two decisions to optimize; the long
term capacity decision and the project acceptance decision. We write the average
net reward per period as

V(a, C) = Π(a)T~R(C). (5.5)

To maximize V(a, C), we can choose a policy a ∈ A and a capacity C such that

0 < C ≤ max
~x

{
M

∑
m=1

N

∑
n=1

cn,m1{xm=n}.

}
. (5.6)

The upper bound for capacity follows from the state ~x that requires the most
capacity. We then know that the reward in each state as defined in (5.1) is decreasing
in C.

To give an idea of the effect of the capacity parameter, we consider an example
similar to the one in Section 5.5; an example with two project types with two phases.
The parameters for the project types are shown in Table 5.3. The cost per unit of
fixed capacity is set to α = 1. In this example, both project types have equal capacity
requirements for phases 1 and 2. The projects differ in the go/no go probabilities of
phase 1 and the rewards of phase 2. Type 1 has a very high probability of reaching
phase 2, but the reward is the same as phase 1. A type 2 customer has a very low
probability of reaching phase 2, but if it does, the reward is very high. For such
an arrival process, it is on beforehand unclear whether the CRO should focus on
a specific customer type or not. Furthermore, it is unclear how much capacity the
CRO should install. The capacity question is answered in Figure 5.7.

Figure 5.7a shows the expected net reward under the optimal policy for a given
value of C. According to (5.6), we have 0 < C ≤ 10. Two lines indicate the
results for different cost for external capacity β. Similarly, Figure 5.7b shows the
average utilization of the fixed capacity. When C = 10, the CRO can simply accept
all projects because external capacity is never needed. Hence the lines for β = 2
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cn,1 cn,2 rn,1 rn,2 pn,1 r̄n c̄n qn

Type 1 5 5 7.5 7.5 0.9 14.25 9.5 0.4
Type 2 5 5 7.5 35 0.2 14.5 6 0.4

Table 5.3: Two project types with different characteristics but equal expected reward and
capacity

(a) Value (b) Utilization

Figure 5.7: Expected net reward and utilization per period for different values of fixed
capacity

and β = 3 congregate at this point. Due to the uncertainty in arrival (q < 1)
and the go/no go probabilities, the utilization at this point is around 0.7. From
Figure 5.7a we can conclude that the highest profit for the CRO is attained at C = 5,
for both values of β. For β = 3, to achieve this result, a policy with the following
characteristics is applied:

Always accept new projects, except for when there is a project of type 1 in phase I.

When there is a type 1 project in phase 1 with probability p1,1 = 0.9 it continues
to phase 2 in the next period and consumes all the available capacity. A type 2

project in phase 1 most likely does not go to phase 2 (p2,1 = 0.2) and therefore it
is safe to accept new projects. There is a risk that external capacity is needed, but
not accepting new projects when there is a type 2 project in phase 1 results in the
risk of an empty system if the pharmaceutical company decides not to continue the
project.

For β = 2, the maximum reward at C = 5 is higher. This due to the lower cost for
external capacity, but also due to a change in the policy. For these parameters, the
optimal policy is
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Always accept new projects, except for when there is a project of type 1 in phase I. Then,
only accept projects of type 2 and reject projects of type 1.

This policy differentiates between both project types. The reason for this is that
project type 2 has a higher expected reward per unit of capacity: r̄2

c̄2
> r̄1

c̄1
. As cost

for external capacity are lower, the CRO can accept more projects, but only the most
profitable ones.

Although in this example it is optimal to use a capacity of C = 5 and not
accept all projects, there can be other motivations for a CRO to accept all projects.
For example, to establish and maintain relations with pharmaceutical companies.
Therefore, it is interesting to know at which capacity this becomes an optimal policy.
For the case of homogeneous project types, this bound is stated in Lemma 5.4.
However, for the nonhomogeneous projects obtaining such a bound is difficult if
not impossible. From our numerical experiment it follows that for β = 2 it is
optimal to always accept when C ≥ 6. For β = 3 this is the case for C ≥ 8. Under
the always accept policy, the net reward is in this example linear in C on the domain
5 ≤ C ≤ 10 and can be expressed as

V = 11.5 + (0.352β− 1)C− 3.52β.

which is decreasing in C.

The numerical results in this section indicate that finding the best combination of
the capacity decision and the acceptance decision is not a straightforward task even
when we consider a small number of projects with a few phases. The difficulty
increases when the number of project types and the number of phases per project
type increase.

5.7. Conclusions

In this chapter we studied the CRO’s problem of managing research capacity for
multiple drug development projects. The difficulty of drug development projects is
that after each project phase a go/no go decision is taken. If the project is continued,
research capacity is needed immediately, to reduce the time to market. To achieve
this, one can already reserve research capacity, but if the project is discontinued, the
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capacity is not used.

While most studies approach this problem from the perspective of a pharmaceutical
company, we addressed the problem from the perspective of a contract research
organization (CRO). Although in essence the problem is the same, the profitability
of a CRO depends on different factors than the pharmaceutical company. For
the pharmaceutical company, the result of the research project is essential for
profitability, while for a CRO the contract with the pharmaceutical company and the
utilization of its capacity are the most important factors that determine profitability.
To manage its capacity, a key decision for a CRO is to the accept the right projects
at the right time. We modeled this problem using an MDP. For the problem of
homogeneous projects we determined a set of 6 policies that can be optimal. For
each policy, we describe under which parameters it is optimal.

We also consider the problem of multiple project types. Projects differ in go/no
go probabilities between phases, capacity requirements and rewards received per
unit of capacity. We show that instead of focusing on one project type, the CRO
should apply a policy where it accepts project types in such a way that projects
complement each other and that capacity is highly utilized, but not over-utilized.

We also investigate how much capacity a CRO should install given the uncertain
project arrivals. We show that it is not always optimal to choose a capacity such that
all arriving projects can be accepted. The optimal policy becomes more complicated
with an increasing number of customers and an increasing number of phases. As
a further research we will focus on the development of heuristics. These heuristics
will provide easy-to-understand and -implement guidelines for the capacity and
project acceptance decisions.



6
Conclusion

In this thesis we develop quantitative models for stochastic project planning. We
focus on two model types. In Chapters 2, 3 and 4 we develop models for planning
individual projects that face uncertainty in task duration. We develop project plans
that minimize total expected cost and guarantee on time completion with a certain
probability. In Chapter 5 we propose a model for planning of multiple projects
under a capacity constraint. Using a Markov Decision Process, we determine the
optimal capacity levels and the corresponding optimal project selection policies.

In Section 6.1 we present the main results of this thesis and discuss their practical
implications. In Section 6.2 we provide recommendations for future research.

6.1. Main Results

In Chapter 2 our research objective is to analyze the ‘pay as planned’ cost structure
and compare it with the ‘pay as realized’ cost structure. We study an assembly
system consisting of multiple parallel sub-assembly activities and one final activity.
We minimize the pay as planned cost function and derive an optimal project plan.
In this plan, each node in the network gets assigned an optimal planned leadtime.
This result is obtained by taking into account the uncertain activity duration, the
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location of the node in the network and the value it adds to the total project. We
introduce a blame policy which identifies for each late completion exactly one node
that caused it. We show that under the optimal solution the probability that a node
is blamed for the lateness of the system equals a Newsvendor fractile. Accordingly,
the more value a node adds to the final product, the more it can cause lateness of
the final product.

The system that we study in Chapter 2 is rather simple with a single assembly
activity. The real-world systems are much more complex but our results and
insights continue to hold and hence, practitioners can rely on them to make
decisions on which accounting scheme to use. We show that the pay as planned
cost accounting scheme has several advantages compared to the pay as realized
cost accounting scheme. First of all, the optimal solution under the former one
leads to a higher probability that intermediate deadlines in the project are met
compared to the latter one. Hence, this scheme should be preferred by companies
where intermediate deadlines are important and costly to exceed. Companies that
produce capital-intensive products are the ones that can benefit the most. These
companies allocate expensive material to production stages and these are ready
at the activity planned start times. If an activity cannot start at the planned start
time, the costs related to keeping the material idle are incurred. Hence, for such a
company relying on the pay as planned accounting scheme is beneficial since the
likelihood of having expensive material and labor waiting for an activity to start is
smaller. Companies in high-tech industry and construction industry are advised to
use the pay as planned accounting scheme.

On the other hand, for companies that can easily allocate their material and labor to
other projects and activities, having intermediate deadlines in addition to a deadline
for delivering the final product is not usually the case. These companies are advised
to use the pay as realized cost accounting scheme. We note that the optimal solution
under the pay as realized cost scheme can advise negative leadtimes. This can be
seen as one of the drawbacks of the pas as realized cost scheme since it might
be difficult to interpret the negative planned leadtimes in practice. Further in the
thesis, we show how to obtain an equivalent solution with non-negative leadtimes
and we advise practitioners to rely on them.

Research objective 2 concerns the extension of structural results obtained for the
assembly system with the pay as planned cost structure. To this end, in Chapter 3
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we formulate the problem in terms of planned start and finish times instead of
planned leadtimes. We use an Activity on Node (AoN) graph to describe the general
network structure. We show that at optimality, for each leaf node, the probability of
exceeding its deadline satisfies a Newsvendor equation. In the case of an exceeded
deadline, it is possible to follow a path of back to back executed activities that
caused the delay. We call this path a tardy path. For specific nodes in the network,
the probability that the path is tardy satisfies a Newsvendor equation. We show
that the Newsvendor equations also hold for when random activity leadtimes are
dependent. This implies the pay as planned cost function can be applied to a wider
range of problems than the pay as realized costing scheme. Although the optimality
equations cannot be solved recursively, we show that the optimization problem is
convex. This result allows for standardized optimization techniques to be used
instead of tailored heuristics. We show that simulation based optimization provides
a quick and accurate solution to the problem.

In Chapter 4 our objective is to provide an exact analysis for the pay as realized cost
function. This cost function is especially useful in environments where intermediate
deadlines are flexible, i.e. the costs of exceeding them are low compared to the costs
incurred when actually starting an activity. The main result of our analysis is a
system of optimality equations which is derived for the class of strictly converging
networks. To interpret these equations we again use the concept of tardy paths.
Instead of focusing on the complete system, we now introduce the concept of
subsystems. Except for some special cases, it is possible to rewrite the equations
into a set of Newsvendor equations which relate the relative added value of an
activity to the probability of a critical tardy path. Using the subsystems, we show
the dependencies among the optimality equations and show that they can be partly
solved with a recursive procedure.

In Chapter 2, we compare the pay as planned and pay as realized accounting
schemes for a rather simple network. In Chapter 3 and Chapter 4, we consider
more realistic assemble-to-order systems with multiple end products and multiple
assembly operations, respectively. In these chapters, we provide multiple important
theoretical results which help us in characterizing the optimal solution. Our
theoretical results generalize, extend and provide a good conclusion to the literature
on planned lead times. Companies with complex network structures can rely on
these results to evaluate and optimize their planned lead times.
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The numerical results show that the optimal planned duration of an activity
depends on 3 factors. First, it depends on the probability distribution of the
stochastic leadtime. The higher the expected leadtime and the higher the variance,
the more time is assigned. Secondly the location in the network is important. The
closer an activity is to the final deadline, the more time is assigned. This time is
also partially needed to mitigate delays caused by preceding activities. Finally the
value a node adds to the final product is important. The more value a node adds,
the more it causes a tardy path. One could say that cheap activities should always
be ready and waiting for expensive activities, while cheap activities should never
cause expensive activities to start later than planned.

In Chapter 5 we consider a capacity planning problem. This chapter concerns
a Contract Research Organization (CRO) that selects project offers from pharma-
ceutical companies. Selecting the right offers is a decision under uncertainty
as it is uncertain whether better project offers will arrive in the future. Our
research objective is develop a mathematical model that supports this selection
decision. Different from the previous chapters, we now assume that projects can be
terminated immediately after completing an activity. This is typical practice when
developing a new drug, for example, when test results demonstrate insufficient
efficacy of the drug. We develop a Markov Decision Process Model and characterize
a set of optimal policies. We determine the parameter combination for which each
policy is optimal. Besides selecting the optimal policy for a given capacity level,
we investigate the effect of the capacity constraint and the option of outsourcing
additional capacity.

The key characteristics of a project that affect the CRO’s decision are the success
probability of each phase and the required capacity per phase. High differences
in the capacity requirements for different phases and low success rates results in a
high variance of the capacity utilization. Over and under-utilizing the capacity is
costly and should be avoided. The cost of under-utilizing (the cost for keeping idle
capacity) and the the cost for over-utilizing (the cost of sourcing capacity externally)
are the most important parameters for determining the optimal capacity.
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6.2. Directions for Future Research

For the pay as planned cost function in Chapter 3 we consider networks with
fork-join structures and multiple end nodes. For the pay as realized cost
function in Chapter 4 we assume strictly converging networks. It is interesting
to investigate whether the results in Chapter 4 can be generalized to the networks
in Chapter 3. However, to derive the optimality equations for the pay as realized
cost function, the concept of subsystems plays a key role. Since we assume strictly
converging networks and independent activity leadtimes, start and finish times in
the subsystems could easily be determined. When the network contains fork-join
structures the analysis of subsystems can be complicated. Any recursive properties
of the optimality equations are lost if the assumption of independent leadtimes
is relaxed. Hence, this extension would require an approach different than the
subsystems analysis.

Another possible future direction is the generalization of results to different cost
functions. A logical extension is a cost function that is a combination of both
pay as planned and pay as realized costs. Then, each node can incur part of its
holding cost from the planned start time and part of its cost from the actual start
time. For such a cost accounting scheme, it can be easily shown that the general
Newsvendor equation always holds (the proof of Lemma 4.6 remains unchanged).
However, deriving the Newsvendor equations for individual nodes is challenging.
Both cost accounting schemes assume holding costs and penalty costs that increase
linearly over time. It could be useful to investigate whether the obtained results
for linear costs can be generalized to nonlinear cost structures. For example,
assuming quadratic penalty cost might reduce the occurrence of excessive delays,
while maintaining the same service level.

The numerical experiments presented in this thesis provide an illustration to the
structural results. To obtain the numerical results, we use standard optimization
tools. These tools give a accurate result in a reasonable amount of time, but do
not exploit specific characteristics of the problem. Future research could focus
on developing heuristics that solve the problem for large networks faster and
more accurate. For example, solving subsystems sequentially could be a candidate
heuristic. Furthermore, for larger networks, one could group activities and compute
a planned start time for the group.
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In this thesis we focus on the theoretical analysis of both pay as realized and the
pay as planned cost accounting schemes. For the pay as realized scheme, Atan et al.
(2016) study a real life example of a lithography machine manufacturer. A future
research direction might be to analyze the pay as planned scheme for the same
industry, but also test it for other industries.

For the capacity planning model in Chapter 5 we derive the optimal project selection
policies. For homogeneous customers and at most 3 phases per project, these
policies are in a form that can be easily communicated to practitioners. When the
number of customer types and the number of phases increase, the model becomes
applicable to more practical cases. However, the number of different policies
increases dramatically and it might be complicated to compute the optimal policy.
Therefore, further research should use the optimal results of the homogeneous
model to develop easy to understand heuristics with small optimality gaps.

Another useful extension is the relaxation of the assumption of a stationary arrival
process. In this thesis we assume an uncertain arrival process, which is identical
for every period. As the drug development market is continuously changing, the
project arrival process can also change. In such an extended model, the arrival
process could be a function of the CRO’s selection decision. An example of such
a dependency could be that accepting a small loss-making project could increase
the probability of a large profitable project offer in the future. In this way, one can
model the close collaboration between pharmaceutical companies and CROs.

Finally, a future research direction could be to combine features of the project plan-
ning model and the capacity constrained model. For example, assuming uncertain
phase durations in the capacity planning model or adding a capacity constraint
to the project planning model would improve the richness and applicability of
the models. Although these are very useful extensions, they would require more
complex models.
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P. Brucker, A. Drexl, R. Möhring, K. Neumann, and E. Pesch. Resource-constrained
project scheduling: Notation, classification, models, and methods. European
journal of operational research, 112(1):3–41, 1999.

J. Buzacott and J. Shanthikumar. Safety stock versus safety time in MRP controlled
production systems. Management Science, 40(5):1678–1689, 1994.

R. H. Byrd, J. C. Gilbert, and J. Nocedal. A trust region method based on interior
point techniques for nonlinear programming. Mathematical programming, 89(1):
149–185, 2000.

C. Charalambous and J. Gittins. Optimal selection policies for a sequence of
candidate drugs. Advances in Applied Probability, 40(2):359–376, 2008.

S. Chauhan, A. Dolgui, and J.-M. Proth. A continuous model for supply planning
of assembly systems with stochastic component procurement times. International
Journal of Production Economics, 120(2):411–417, 2009.

S. Chopra, G. Reinhardt, and M. Dada. The effect of lead time uncertainty on safety
stocks. Decision Sciences, 35(1):1–24, 2004.

B. Christian and S. Cremaschi. Heuristic solution approaches to the pharmaceutical
R&D pipeline management problem. Computers & Chemical Engineering, 74:34 –
47, 2015. ISSN 0098-1354.

A. J. Clark and H. Scarf. Optimal policies for a multi-echelon inventory problem.
Management science, 6(4):475–490, 1960.

M. Colvin and C. T. Maravelias. A stochastic programming approach for clinical
trial planning in new drug development. Computers & Chemical Engineering, 32

(11):2626–2642, 2008.

M. Colvin and C. T. Maravelias. Modeling methods and a branch and cut algorithm
for pharmaceutical clinical trial planning using stochastic programming. European
Journal of Operational Research, 203(1):205–215, 2010.

M. Colvin and C. T. Maravelias. R&D pipeline management: Task
interdependencies and risk management. European Journal of Operational Research,
215(3):616 – 628, 2011. ISSN 0377-2217.

J. F. Cox and J. H. Blackstone. APICS dictionary. American Production & Inventory
Control Society, 2002.



Bibliography 135

T. Dai and S. R. Tayur. Healthcare operations management: A snapshot of emerging
research. Manufacturing & Service Operations Management, Forthcoming, 2018.

T. de Kok and J. C. Fransoo. Planning supply chain operations: definition and
comparison of planning concepts. Handbooks in operations research and management
science, 11:597–675, 2003.

B. De Reyck and R. Leus. R&D project scheduling when activities may fail. IIE
transactions, 40(4):367–384, 2008.

J. A. DiMasi, H. G. Grabowski, and R. W. Hansen. Innovation in the pharmaceutical
industry: New estimates of R&D costs. Journal of Health Economics, 47:20 – 33,
2016. ISSN 0167-6296.

A. Dolgui, O. B. Ammar, F. Hnaien, M.-A. Louly, et al. A state of the art on supply
planning and inventory control under lead time uncertainty. Studies in Informatics
and Control, 22(3):255–268, 2013.

F. Y. Edgeworth. The mathematical theory of banking. Journal of the Royal Statistical
Society, 51(1):113–127, 1888.

M. Elhafsi. Optimal leadtimes planning in serial production systems with earliness
and tardiness costs. IIE Transactions, 34(3):233–243, 2002. ISSN 1573-9724.

M. Ferguson, V. Jayaraman, and G. C. Souza. Note: An application of the eoq model
with nonlinear holding cost to inventory management of perishables. European
Journal of Operational Research, 180(1):485 – 490, 2007. ISSN 0377-2217.

G. Gatica, L. Papageorgiou, and N. Shah. Capacity planning under uncertainty
for the pharmaceutical industry. Chemical Engineering Research and Design, 81(6):
665–678, 2003.

K. Girotra, C. Terwiesch, and K. T. Ulrich. Valuing R&D projects in a portfolio:
Evidence from the pharmaceutical industry. Management Science, 53(9):1452–1466,
2007.

E. M. Goldratt. Critical chain. Technical report, North River Press,, 1997.

E. M. Goldratt and J. Cox. The goal: a process of ongoing improvement. Routledge,
2016.

L. Gong, T. de Kok, and J. Ding. Optimal leadtimes planning in a serial production



136 Bibliography

system. Management Science, 40(5):629–632, 1996.

M. I. Henig and D. Simchi-Levi. Scheduling tasks with failure probabilities to
minimize expected cost. Naval Research Logistics (NRL), 37(1):99–109, 1990.

W. Herroelen and R. Leus. Project scheduling under uncertainty: Survey and
research potentials. European Journal of Operational Research, 165(2):289 – 306, 2005.
ISSN 0377-2217. Project Management and Scheduling.

W. Hopp and M. Spearman. Setting safety leadtimes for purchased components in
assembly systems. IIE Transactions, 25(2):2–11, 1993.

J. Howells, D. Gagliardi, and K. Malik. The growth and management of R&D
outsourcing: evidence from UK pharmaceuticals. R&D Management, 38(2):205–
219, 2008.

A. Huchzermeier and C. H. Loch. Project management under risk: Using the real
options approach to evaluate flexibility in R&D. Management Science, 47(1):85–101,
2001.

W. F. Jacob and Y. H. Kwak. In search of innovative techniques to evaluate
pharmaceutical r&d projects. Technovation, 23(4):291–296, 2003.

S. Jansen, Z. Atan, I. Adan, and T. de Kok. Newsvendor equations for production
networks. Operations Research Letters, 46(6):599 – 604, 2018. ISSN 0167-6377.

S. Jansen, Z. Atan, I. Adan, and T. de Kok. Setting optimal planned leadtimes in
configure-to-order assembly systems. European Journal of Operational Research, 273

(2):585 – 595, 2019. ISSN 0377-2217.

D. L. Keefer and W. A. Verdini. Better estimation of PERT activity time parameters.
Management science, 39(9):1086–1091, 1993.

J. E. Kelley Jr and M. R. Walker. Critical-path planning and scheduling. In Papers
presented at the December 1-3, 1959, eastern joint IRE-AIEE-ACM computer conference,
pages 160–173. ACM, 1959.

P. Kouvelis, J. Milner, and Z. Tian. Clinical trials for new drug development:
Optimal investment and application. Manufacturing & Service Operations
Management, 19(3):437–452, 2017.

D. G. Malcolm, J. H. Roseboom, C. E. Clark, and W. Fazar. Application of a



Bibliography 137

technique for research and development program evaluation. Operations research,
7(5):646–669, 1959.
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Summary
Quantitative Models for Stochastic Project Planning

In this thesis, we focus on projects. We see projects as a collection of tasks that need
to be executed to achieve a specific goal, for example manufacturing a product.
In order to achieve this goal, resources such as capital, workforce and equipment
are required. These resources are typically constrained because they are costly and
other projects also make use of them. In order to achieve the project goal the project
needs to be managed.

The execution of projects is subject to uncertainties. Costs can be higher than
expected, durations can be longer than expected and so on. We can not mitigate
these uncertainties, projects are uncertain in nature. However, in order to help
decision making we can develop mathematical models that take into account these
uncertainties. In this thesis we focus on the development of stochastic models that
take into account several types of uncertainties in project planning.

The thesis is split up in two parts. In the first part we focus on project planning
with uncertain durations of individual tasks. Although there are many application
areas, in these chapters we mainly consider manufacturing systems where low
volume, capital intensive and customer specific products are produced. Examples
are airplanes or lithography machines. Because of these characteristics we consider
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each product as a separate project instead of using a traditional production control
approach. The goal of these project is to deliver the machine on time to the
customer.

We model the projects via activity on nodes (AoN) networks. For each activity
we have information about the uncertainty in durations either from estimations or
from data from previous projects. The goal of the model is to assign each activity
a planned start time in such a way that total cost are minimized and an on time
completion is achieved. Since we take into account the complete network, safety
time is assigned, there where it is most effective.

Since we face stochastic leadtimes, it is possible that a product is completed late. In
order to find the activity that caused this lateness, we introduce the concept of tardy
paths. This set of rules identifies exactly one activity in that is held responsible for
this late completion.

In the minimization problem, we balance holding cost which can be interpreted
as cost for being early for a deadline and penalty cost, the cost for being late
at a deadline. For different cost structures, we derive optimality equations.
These optimality equations have a Newsvendor shape. The equations relate the
probability that an activity is causing a tardy path to a Newsvendor fractile, which
denotes the relative value added by an activity to the final product. We show that
the more value an activity adds, the higher the probability that it causes a tardy
path. Besides the optimality equations, we derive structural results of the optimal
solutions and compare the optimal solutions of different cost functions.

In the second part of the thesis, we consider the uncertainty of go/ no go decisions
in projects. Instead of assuming that the complete project is executed, we assume
that projects can be terminated early. A typical area where this is a relevant problem
is new drug development in the pharmaceutical industry, where development
projects can be terminated when test results show limited efficacy or serious side
effects.

In recent years pharma companies more and more outsourced these development
projects to contract research organizations (CROs). These companies have highly
specialized resources, such as lab facilities, nurses, doctors and test patients. These
resources can be assigned to projects from possibly different pharma companies.
Projects can differ in capacity requirements, go/no go decisions and revenue. For



141

a CRO it is key to utilize the available research capacity by accepting the right
projects at the right moment. The difficulty here is that if a project is terminated
by the pharma company, the CROs capacity utilization drops. Furthermore, there
is uncertainty in new projects that arrive. Once a project arrives the CRO needs
to decide whether to accept or reject the project. When this decision is made, it is
uncertain if projects arrive in the future and what characteristics they will have.

We model this acceptance decision as Markov Decision Process (MDP). The state
describes the projects that are currently executed by the CRO. Each go/no go
decision and each new project arrival are modeled by a state transition. A policy
describes for each possible state whether to accept or reject new projects. For a
given system we can characterize optimal policies for different customer arrival
processes.

Furthermore we assist the long term capacity decision of a CRO. For given arrival
processes we determine how much research capacity a CRO should build and
what projects it should accept. For systems with many different projects, optimal
policies can be quite complicated. Therefore we develop heuristics that are easy to
understand and implement but also result in close to optimal performance.
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