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1. INTRODUCTION

There are other things to fear... apart from death,
old age and madness. For example, apoplexy, that
lightning bolt which strikes you down without
destroying you, yet after which all is finished. You
are still yourself but you are no longer yourself:
from a near angel like Ariel, you have become a
dull mass which, like Caliban, is close to the
beasts.

Alexandre Dumas, The Count of Monte Cristo.
p.478

Stroke is defined as an acute neurological deficit that stems from injury to the

central nervous system that is caused by an interruption of the circulatory

system [13; 59]. The brain, with its high metabolic activity, is especially vul-

nerable to injury due to ischemia [15; 47]. Ischemic large vessel stroke, which

is caused by an occluding thrombus in one of the large vessels of the brain,

accounts for up to 46 percent of all cases of stroke in adult patients [40; 62].

Hence, ischemic large vessel stroke in adult patients has a poor prognosis,

with only 33 percent of patients reaching functional independence 90 days

after the stroke incident [8]. This has lead to stroke in adults being associated

with a high financial cost. The global financial cost associated with stroke in

adult patients was estimated at US $ 851 Billion [51].

Ischemic stroke occurs not only in adult patients, but also perinatally. Peri-

natal stroke is defined as a stroke that has occurred between 20 weeks of

gestation up until 28 days after birth[20]. Perinatal Arterial Ischemic Stroke

(PAIS) has the second highest incidence, after stroke in elderly patients [56].

The incidence rate of PAIS has been estimated to be between 1 per 3500 [1]

and 1 per 7700 live births [25]. PAIS is associated with life time medical issues

such as epilepsy, cerebral palsy, and cognitive and motor impairment [48].

The brain has two pathways that supply blood to it: The anterior and the

posterior circulation. Anterior circulation large vessel ischemic stroke is more

common than posterior circulation large vessel ischemic stroke, with 1 percent

of large vessel ischemic strokes occurring in the posterior circulation. Poste-
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rior circulation large artery stroke involves an occlusion of the basilar artery,

intracranial vertebral arteries or posterior cerebellar arteries. It is associated

with a high risk of mortality and disability [29; 41; 61; 67].

During an ischemic stroke, the area of the brain that is ischemic can be

subdivided into two regions. The first region is named the ischemic core. It

is composed of tissue that has died due to insufficient blood flow and can no

longer be salvaged. The second region is named the penumbra [5]. Due to a

diminished blood supply, the neurons in the penumbra are no longer evoking

action potentials. However, due to alternative routes, some blood can still be

supplied to the penumbra, which can keep the tissue alive for several hours.

Therefore, identifying the ischemic penumbra can help select patients that

have the most salvageable tissue and would benefit the most from treatment

[47].

Treatment

Approved treatments for adult patients suffering from acute ischemic stroke

aim to reperfuse the ischemic area by removal of the occluding thrombus. Two

treatments have proven to be both safe and effective for ischemic stroke. First,

the occlusion can be dissolved by means of thrombolytic therapy. Throm-

bolytic therapy involves the intravenous administration of recombinant Tis-

sue Plasminogen Activator (rTPA). It is effective if administered within 4.5

hours after stroke onset [19]. Second, the occlusion can be removed by means

of mechanical thrombectomy. Mechanical thrombectomy involves navigat-

ing a stent-retriever or an aspiration catheter from a puncture in the femoral

artery to the occluding thrombus in the brain and removing it. Mechanical

thrombectomy in addition to thrombolytic therapy has become the recom-

mended treatment for patients arriving to the hospital within 6 hours of the

time the patient was last known to be well. When the patient arrives be-

tween 6 and 24 hours after the patient was last known to be well, mechanical

thrombectomy can often still be performed. This is the case if there is a

sufficiently large mismatch between the volume of the infarct core and the

penumbra or the infarct core and the clinical deficit [2; 49; 54; 66].

4
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For infant patients suffering from PAIS, there are currently no approved

treatments. Thrombolytics and mechanical thrombectomy are not given due

to a lack of evidence regarding their effectiveness in neonates [57]. All pa-

tients suffering from PAIS should be given neuroprotective measures and

supportive care. Examples of supportive care are controlling seizures, ensur-

ing adequate oxygenation and, correcting any anemia or dehydration, as well

as reducing fever [20; 57].

The current focus of research that focuses on developing therapies for PAIS

are novel stem-cell based neuro-regenerative treatments [68]. This is because

neonates suffering from a PAIS have a greater ability to recover from the

ischemic injury, due to their brains having greater plasticity than adult brains

[10]. Moreover, animal models of the neonatal brain show a greater response

to stem cell therapy than animal models of adult brains [69].

Neuro-imaging

Brain imaging is recommended for patients suspected of suffering from an

acute ischemic stroke [54]. Brain imaging serves multiple purposes during a

workup of acute ischemic stroke [30; 46]. First, to differentiate between hemor-

rhagic and ischaemic stroke. Second, to determine the extent of the ischemic

core. Third, to determine the size of the penumbra. Fourth, to exclude stroke

mimics, such as migraines or tumors as the cause of the symptoms. Fifth, to

assess the large arteries in the head and neck. Sixth, to guide interventions,

such as selecting which patients are eligible for a thrombectomy.

Computed Tomography (CT) is the preferred imaging modality in adult

patients with stroke due to widespread availability, short scan times and high

sensitivity for differentiating hemorrhagic from ischemic stroke. Specifically,

Non-Contrast Computed Tomography (NCCT) is used to detect hemorrhagic

stroke and the presence of hyper-dense artery sign. During Computed Tomog-

raphy Angiography (CTA) a bolus of contrast is administered to the patient to

visualize the arteries and to quantify the vascular disease burden (the degree

of stenosis, thrombus length etc.) caused by the occluding thrombus [17; 34].
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Magnetic Resonance Imaging (MRI) can also aid in the diagnosis of stroke.

MRI is as accurate as NCCT at the detection of acute hemorrhage and more

accurate than CT at detecting chronic intracerebral hemorrhage [21; 32; 53].

Furthermore, diffusion weighted imaging (DWI), an MRI sequence that shows

the diffusion of water, has been shown to be accurate at diagnosing acute is-

chemic stroke [11; 22; 24].

For neonatal patients with PAIS, MRI is preferred over CT. This is due to the

low sensitivity of CT at detecting small or posterior circulation infarcts, the rar-

ity of hyper-dense artery signs in neonatal stroke patients, and the radiation

produced by CT scanners [9]. A radiological workup of PAIS patients consists

of several MRI sequences. These sequences include Diffusion Weighted Imag-

ing (DWI) and apparent diffusion coefficient, susceptibility weighted imag-

ing, and magnetic resonance angiography. T2- and T1-weighted sequences

are optionally added [9; 20; 33]. To evaluate the treatment efficacy of novel

neuro-regenerative treatments information from images can be used, such as

final lesion volume on follow-up MRI. [7].

Brain imaging data collected from stroke patients also has an important

role in stroke research. Features extracted from these images, can be used

as an alternative outcome measure to assess treatment efficacy. Examples

are ischemic lesion volume on baseline and follow-up scans in adult patients

[12; 70] in perinatal arterial ischemic stroke [7]. Image features, such as

ischemic lesion volume, rely on its accurate segmentation. However, its

manual segmentation is a time consuming task. Therefore, automated deep

learning based segmentation methods have the potential to reduce the time

required to create segmentations.

Machine Learning and Deep Learning

Machine learning is the study and development of computer algorithms that

are capable of learning. In this definition, learning is defined as the ability

of the algorithm to improve its performance at tasks with experience [43].

6
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For example, an algorithm that learns how to play chess would have its per-

formance measured by its ability to win at the group of tasks that involve

playing chess games and by gaining experience through playing games of

chess against itself or others.

Deep learning is a sub-field of machine learning that utilizes layers of non-

linear processing of information, also known as Artificial Neural Network

(ANN), to solve learning problems [18]. The most basic neural network has

five key components; weights, biases, an activation function, an output func-

tion, a loss function, and an optimizer. The goal of training a neural network

is to minimize the loss function given the input data. The process by which

the neural network is taught how to minimize the loss function is referred to

as training. Before training, the weights and biases are initialized by assigning

them random numbers. The input data is transformed by multiplication of

the data with the weights and addition of the biases. Next, the result is trans-

formed by applying the activation function. The resulting matrix of numbers

is referred to as the features. This process is repeated a pre-specified number

of times. When the final layer is reached, the output function is applied. The

output function varies per image analysis task, for example classification uses

the softmax output function and regression uses the linear activation function.

Next, the value of the loss function is computed on the basis of the output. By

using the optimizer the weights and biases are updated to reduce the value

of the loss function. This process continues until the loss value has reached a

stable value. See figure 1.1 for a schematic representation of this process.

In recent years, deep learning has been applied to solve multiple medical

image analysis tasks [36]. Specifically, the network architecture that is com-

monly used to create solutions for medical image analysis are Convolutional

Neural Networks (CNN) [27]. CNNs have their weights organised in con-

volutional kernels, which are slid over and multiplied with the underlying

input data as opposed to matrices that are multiplied with the input data. A

graphical representation of how convolutions work in a neural network can

be found in figure 1.2. This allows local correlations between for example

pixels in images to be more easily used. Examples of medical image analysis

7
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Figure 1.1: Forward (top) and backward pass (bottom) of a simple two-layered
artificial neural network(ANN). The neural network consists of an input layer which
is composed of three neurons. The input layer is followed by an activation function,
which is followed by the output layer consisting of one neuron. Finally, the output
layer is followed by a sigmoid activation function and the cross-entropy loss. During
the forward pass the neural network is given the input data and the input label. (A)
Each neuron in the input layer multiplies one of its weights (wl,n) with one of the input
values(xn), sums the result and adds a bias value (bn) to calculate the features (an).
The features are normalized and passed to the output layer. The output layer repeats
the process and normalizes the result as is required for the specific task. The loss
value is calculated using the input label and network result. During the backward
pass the optimizer (B) is used to calculate the gradient updates to minimize the loss
function. To achieve this the gradients are passed through the network such that all
of the weights and biases are updated (C).

tasks are segmentation of brain tissue on MRI [44], image registration [16]

and lung nodule detection [28].

8
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Figure 1.2: Example of how the convolution operation is used in a convolutional
neural network (CNN). Shown in each of the four panels from left to right is the input
data (green and white), the kernel that is parameterized by weights (red), and the
resulting features (blue). The kernel is multiplied element-wise with the part of the
input data that is shaded green. The formula below shows the resulting calculation
for each feature. Steps 1 through four show how the kernel is moved over the input
data to calculate all of the features. The weights in the kernel are updated such that
spatial correlations in an image are captured by the network.

CNNs have been applied to image analysis tasks related to stroke in adult

patients. Prior work has developed deep learning-based algorithms to iden-

tify patients with a large-vessel occlusion stroke in CTA images [4; 42; 60; 63]

and to detect or segment thrombi in the anterior circulation on NCCT scans

[35; 45; 64]. Other work has focused on developing algorithms to segment dif-

fusion abnormalities during an acute ischemic stroke on DWI [37; 72]. Zhang

et al. used a 3D DenseNet to segment the ischemic region on DWI [72]. In

addition, Zhang et al. evaluated their method on data from the open-source

Ischemic Stroke LEsion Segmentation (ISLES) challenge[39], making their

method easily comparable to other existing methods. Liu et al. developed

a method that outperformed existing methods, specifically on small lesions.

Algorithms have also been developed to segment chronic stroke lesions on

T1-weighted MRI scans by using variations of U-Net [58]. Tomita et al. used

9
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a UNet which was trained by using zoomed-in sub volumes, the zoom factor

was decreased as training progressed. They speculated that their training

strategy improved performance due to improved regularization [65]. Qi et

al. replaced the standard U-Net convolutional blocks with feature-similarity

modules that more effectively utilize dependencies between distantly placed

voxels [55]. Finally, Zhou et al. used a specific convolutional block to fuse

2D and 3D features and they used a novel mixing loss to more effectively

address the class imbalance between foreground and background voxels [73].

Algorithms have also been developed to segment ischemic lesions due to an

anterior circulation stroke on follow-up NCCT [6] and baseline CTA [50]. All

previously mentioned studies have focused on segmentation of lesions on the

same scan that was used to create the ground truth annotation. However, Yu

et al. developed a method that predicts the follow-up lesion segmentation

from baseline multi-sequence MRI [71]. Their method achieved a moderate

overlap and a good volumetric agreement between the ground truth and

predicted segmentation.

Transfer Learning

A limitation of CNNs is that they require large amounts of annotated data to

learn how to accurately segment objects in images. However, creating large

amounts of annotations is a time-consuming task. Moreover, large amounts

of scan data may not always be available for uncommon diseases. Hence,

reducing the amount of annotated data that is required for the development

of CNN based algorithms is an active area of research.

Transfer learning is a method that can be used to improve CNN perfor-

mance in settings where available annotated data is scarce [52]. Transfer

learning aims to re-use a CNN that has been pre-trained on a different source

task with a large amount of available data on a new target task [36]. The task

of a neural network refers to the specific application such as segmentation,

classification or regression. In addition to the task, another relevant aspect of

transfer learning is the source and target domain [52]. The domain refers to

the type of data on which the neural network is trained or to which the neural

network is applied.

10
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Prior studies on transfer learning have evaluated the effect of different

source tasks and domains on target medical MRI segmentation tasks in a

limited manner. On the natural image source domain, studies have only

assessed the source tasks classification [3; 26] and segmentation [31], but not

self-supervised tasks. On the medical image source domain the only source

tasks that were evaluated, were segmentation [14; 23; 38] and self-supervised

tasks [74]. Classification source tasks were not yet evaluated. Moreover,

all the studies evaluated the the effect the source tasks and domains had on

target task performance on different data-sets, which makes a fair comparison

difficult. Hence, a fair evaluation of the effect that the source task and domain

have on the target medical segmentation tasks could allow for a effective

application of transfer learning.

Aim of this thesis

Both posterior circulation large vessel and perinatal arterial ischemic stroke

are uncommon types of stroke. Hence, few data is available to train algo-

rithms to perform complex segmentation tasks. The aim of this thesis is to

investigate, develop, and evaluate deep learning-based algorithms for auto-

matic segmentation of images of these types of stroke.

Thesis outline

In chapter 2, we evaluate transfer learning for medical image analysis tasks.

Specifically, we focus on evaluating the overlap and detection accuracy of

source-tasks and domain combinations for target segmentation tasks on MR

scans. We apply transfer learning to two segmentation tasks related to pos-

terior circulation large vessel ischemic stroke in chapter 3 and chapter 4. In

chapter 3, we develop and evaluate algorithms for automated segmentation

of posterior circulation stroke lesions on follow-up scans. In chapter 4, we

develop and evaluate an automatic method for localization and segmentation

of thrombi in the posterior circulation stroke on baseline scans. In chapter

5 a method is developed that automatically segments brain tissues and the

11
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ischemic lesion per hemisphere on baseline and follow-up MR brain scans of

patients suffering from a perinatal arterial ischemic stroke. Finally, in chapter

6 we discuss the results.
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2. DOMAIN- AND TASK-SPECIFIC TRANSFER LEARNING

Abstract

Background and objectives: Transfer learning is a valuable approach to
perform medical image segmentation in settings with limited cases avail-
able for training convolutional neural networks (CNN). Both the source
task and the source domain influence transfer learning performance on
a given target medical image segmentation task. This study aims to
assess transfer learning-based medical segmentation task performance
for various source task and domain combinations.

Methods: CNNs were pre-trained on classification, segmentation, and
self-supervised tasks on two domains: natural images and T1 brain MRI.
Next, these CNNs were fine-tuned on three target T1 brain MRI segmen-
tation tasks: stroke lesion, MS lesions, and brain anatomy segmentation.
In all experiments, the CNN architecture and transfer learning strategy
were the same. The segmentation accuracy on all target tasks was eval-
uated using the mIOU or Dice coefficients. The detection accuracy was
evaluated for the stroke and MS lesion target tasks only.

Results: CNNs pre-trained on a segmentation task on the same domain
as the target tasks resulted in higher or similar segmentation accuracy
compared to other source task and domain combinations. Pre-training a
CNN on ImageNet resulted in a comparable, but not consistently higher
lesion detection rate, despite the amount of training data used being 10
times larger.

Conclusions: This study suggests that optimal transfer learning for
medical segmentation is achieved with a similar task and domain for
pre-training. As a result, CNNs can be effectively pre-trained on smaller
datasets by selecting a source domain and task similar to the target
domain and task.
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2.1 Introduction

Convolutional Neural Networks (CNN) have become the standard approach

for medical image segmentation [93]. Accurate CNN-based segmentation

approaches typically require a large amount of manually annotated data for

training. However, manual annotation of medical images is commonly a

time-consuming task, which may require specialized expertise. Reducing the

demand for large annotated datasets is therefore an active area of research.

In this study, we focus on transfer learning, which is a broadly applicable

strategy to reduce the need for annotated data. Transfer learning aims to

reuse a CNN trained on a large dataset rather than directly training a CNN

from scratch [105]. In this approach, the weights that are obtained by pre-

training are subsequently used to initialize a CNN and perform a different

medical image analysis task on a different dataset. The source domain and the

source task during pre-training are two relevant aspects of transfer learning

[114]. The source domain refers to the type of data used, and the source task

refers to the specific application used to pre-train. Analogously, the target

domain and target task refer to the type of data and specific application of

the main goal. The pre-trained weights can be used on a target task using

two strategies: feature extraction or fine-tuning. In feature extraction, the

transferred weights are fixed when learning the target task. In fine-tuning,

the transferred weights are updated to perform the target task.

Prior studies on transfer learning for medical segmentation target tasks

have mostly used two source domains; natural images and medical images.

Previous studies that used natural images as the source domain have used

two source tasks: ImageNet classification [121] and image segmentation. Two

examples with ImageNet classification as the source task are brain-tumor seg-

mentation [77] and stroke lesion segmentation [91]. An example of a study

that used natural image segmentation as the source task is colorectal polyp

segmentation [98]. The value of pre-training on natural image datasets for

medical image analysis target tasks is not clear enough yet. This is because

natural image datasets differ from medical image datasets in three important

ways. Firstly, medical classification and segmentation tasks often contain a

few classes [76; 109] whereas natural image classification and segmentation
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tasks can contain hundreds of different classes [121]. Secondly, natural images

are made in heterogeneous settings, whereas medical images are acquired in

controlled settings. Hence, the variation in terms of object orientation is

larger in natural images than in medical images. Thirdly, natural color im-

ages commonly have three channels representing the colors red, green and

blue. Whereas scans in medical datasets often do not consist of three chan-

nels. This is for example the case if the medical dataset consists of Magnetic

Resonance (MR) or CT scans. Recent work already showed that pre-training

on a gray scale version of ImageNet improves transfer learning performance

[131]. Transfer learning with medical images as the source domain include

segmentation and self-supervised tasks as the source tasks. For example,

segmentation source tasks have been used to improve white matter lesions

segmentation [87], neonatal brain tissue type segmentation [136], and lung

nodule and liver tumor segmentation [80]. Self-supervised source tasks have

been used to improve lung nodule segmentation [140].

The choice of the source task has been shown to influence the target task

performance. On natural images as the target domain, it has been shown

that selecting source tasks that were more similar to their target tasks resulted

in better performance on the target task [135]. However, for medical image

segmentation target tasks, this has not been established.

If we categorize imaging tasks as self-supervised, classification and seg-

mentation tasks, for the natural image source domain, studies have used

classification [77; 91] and segmentation [98], but not self-supervised source

tasks. Differently, for the medical image source domain, studies have used seg-

mentation [80; 87; 136] and self-supervised [140], but not classification source

tasks. It can therefore be concluded that the effect of the source domain and

tasks on the target medical segmentation accuracy has not yet extensively

been evaluated.

In the current study, we empirically investigate the effect of the choice of

source task and domain on the performance of multiple medical segmentation

target tasks: stroke lesion, MS lesion, and brain anatomy segmentation on T1

MR. Furthermore, we aim to compare the optimal source-target task/domain

combination with a common benchmark in transfer learning research: pre-

training on ImageNet.
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2.2 Related Work

2.2.1 Transfer Learning

The goal of transfer learning is to pre-train a model on a source task and reuse

the information the model has learned to improve performance on a target

task [115]. Transfer learning was first shown to work in neural networks by

[117] and was subsequently applied to problems in computer vision [133] and

medical image analysis [105].

A commonly used approach to apply transfer learning is to pre-train the

CNN on a task and domain and to (partially) fine-tune the CNN on a target

task and domain. In computer vision, the CNN is often pre-trained on the

ILSVRC'12 (ImageNet) dataset [121]. Work on medical image analysis has

used CNNs pre-trained on ImageNet classification [111] as well. Recently,

the use of CNNs pre-trained on ImageNet for medical image analysis has

been questioned. Recent work has found that the transfer learning benefits

gained from pre-training on ImageNet classification were inconsistent on

diabetic retinopathy grade classification on fundus photographs and thoracic

pathology classification on chest X-Ray scans [118]. As a result, other data sets

and tasks have been investigated as alternatives to ImageNet classification for

transfer learning in medical image analysis [80; 140].

Other research has developed alternative methodologies to the pre-training

and fine-tuning procedure that is widely used [90; 134]. Spot Tune is a method

that adaptively decides to freeze or fine-tune specific layers in the CNN for

each input image [90]. Co-Tuning is a method that fully re-uses the pre-trained

CNN by learning a mapping from the target classes to the source classes and

uses these labels as an additional supervision signal during fine-tuning.

2.2.2 Domain Adaptation

Domain adaptation (or transductive transfer learning) is a special case of trans-

fer learning in which the source and target task are the same but the data

distribution of the source and target domains differ[114]. The goal of domain

adaptation is to build domain invariant models that learn similar features

from the source and target domains. Techniques are based on minimizing
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the difference between the feature distributions acquired from the source and

target domain [86; 106; 122; 128; 129; 138]. For example, prior work has pro-

posed a method by which statistical dependence was preserved by using a

reproducing kernel Hilbert space [129]. Other work has proposed a mani-

fold criterion to create an intermediate domain, which is related to the target

domain, using source data [138].

Research in medical image analysis has also made use of domain adaptation

[87; 89; 97]. Prior research on MR has applied domain adaptation to generalize

automated segmentation of white matter hyper intensities to follow-up scans

using fine-tuning [87]. Another method has used adversarial learning to

generalize segmentation of abnormalities on brain MR scans after traumatic

brain injury [97].

2.2.3 Task Transfer Learning

Task transfer learning (or inductive transfer learning) is a special case of transfer

learning in which the source and target task differ but the data distribution

of the source and target domains is the same [114]. In computer vision,

several studies have investigated the relationship between different tasks

[75; 126; 135]. One study investigated the relationship between individual

source and target tasks to create a taxonomy of the degree to which tasks

transfer to each other by fine-tuning each target task on each source task

[135]. This study also investigated the performance gain achieved when

features from models pre-trained on different source tasks were combined to

learn a target task. Developing a practical method to decide which source

tasks are the most important in decision making support when computational

resources are limited has consequently been investigated [79]. Other research

has focused avoiding having to fine-tune networks by finding the affinity

between various classification tasks [75].

2.2.4 Few Shot Learning

Few-shot learning is a machine learning sub-field that aims to learn from a

few training examples (for example five cases) per individual class [130]. In

computer vision, much research has been dedicated to developing few-shot
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learning methods [84; 100; 137]. For medical image analysis, few-shot learning

has also been adopted for organ segmentation [113; 120].

2.3 Materials

This section describes the used datasets, the pre-processing, and the CNN

architectures.

2.3.1 Datasets

Two natural image datasets were used to pre-train the CNNs: the taskonomy

dataset [135], consisting of 4.6 million images of indoor scenes with multi-

ple annotations per image, and the ImageNet dataset [121] consisting of 1.2

million images of 1000 different objects.

Four medical datasets that consist of T1 brain MRIs were used in our

study. Firstly, we have used the Brain Age Healthy Cohort (BAHC) [82] to

pre-train the CNNs. The BAHC is a dataset compiled of 2001 scans from

14 different data sources. Ground truth annotations were created using a

combination of Nipype [88], FSL [125] and ITK [132]. Additional information

about participants and the scan acquisition parameters can be found in table

2.3, in appendix 2.9.1. Secondly, we have used the Anatomical Tracings of

Lesions After Stroke (ATLAS) R1.2 (Stroke lesion dataset) [104], which is

a manually annotated T1 MRI dataset of lesions after ischemic stroke and

consists of scans from 304 patients. Each scan contains at least one lesion. The

annotations consist of a primary lesion and secondary non-contiguous lesions.

Additional information about the scans is included in table 2.4, appendix 2.9.1.

Thirdly, we have included 30 scans of the Multiple Sclerosis (MS) lesion

dataset [102]. The scans were acquired using a 3T Siemens Magnetom Trio.

The resulting scans had a resolution of 0.57 × 0.57 × 3.003.30 mm. Fourthly,

we included the Brain Anatomy (BA) dataset which consists of 35 scans from

the OASIS project [108]. Manual annotations were combined into six classes

[110]. The images were acquired on a Siemens Vision 1.5T scanner and had a

resolution of 1.0 × 1.0 × 1.25 mm.
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2.3.2 Pre-processing

All scans were reoriented and resampled to the MNI-ICBM 152 template [85],

axially zero padded to the taskonomy dataset dimensions. Empty axial slices

were discarded, being 61, 29, 11 and 11 slices starting from the top of the scan

volume for the BAHC, stroke lesion, MS lesion, and BA dataset respectively.

For the MS lesion and BA dataset also 50 slices from the bottom were discarded.

Voxel intensities above the 99th and below the 1st percentile were clipped, and

intensities were then normalized using min-max normalization.

2.3.3 CNN Architectures

This study uses CNNs developed in earlier work [135]. The CNN architectures

consist of an encoder (figure 2.1A) along with only a decoder (figure 2.1B), an

encoder along with a decoder and a discriminator, (figure 2.1C) or an encoder

along with a fully connected layer (figure 2.1D). The CNNs were pre-trained

on the source tasks.

The Encoder

The encoder is based on the ResNet-50 [92] architecture. To ensure that the

encoder has a latent space of 16 × 16 × 4, the fully connected layers of the

ResNet-50 are replaced by a transposed convolution with a stride of two. The

encoder uses the ReLU activation function [107].

The Decoder

The decoder consists of convolutions and transposed convolutions. It up-

samples the features from 16 × 16 × 4 to an image of 256 × 256 with the

number of channels required for the task. Each convolution layer had a stride

of one and each transposed convolution had a stride of two. The kernel

size was 3 × 3. The first two layers were convolutional layers, the eight

subsequent layers alternated between a transposed convolutional layer and

regular convolutional layer, ending with the latter. The decoder used a leaky

ReLU activation function [107] with alpha set to 0.2.
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Figure 2.1: Components of the CNN architectures. A CNN architecture consists of
an encoder (A) followed by either a decoder (B), a decoder and a discriminator (C),
or a fully connected layer (D).

The Discriminator

The image and the decoder output were used as input of the discriminator[96].

The first convolutions had a stride of one and a kernel size of five. Next, two

convolutional layers followed with a stride of four. The final two layers had

a kernel size of four and a stride of one. The discriminator used a leaky ReLU

activation function [107] with alpha set to 0.2.

The Fully Connected Block

The fully connected block consisted of two fully connected layers. The first

layer had a hidden size of 2048, the second layer a size of 16. The first fully

connected layer [95] uses a ReLU activation function[107] and the second fully

connected layer uses a softmax activation function.
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Figure 2.2: Schematic representation of the source tasks for the equal (T1 MRI) (left)
and unequal (natural images) (right) domain. For each task, an example is given of
the input (left column), the label (middle column), and the task name (right column).
The source tasks are; self-supervised, segmentation, and classification.

2.4 Methods: Source and Target Tasks

The source and target domains have been addressed in section 2.3. In the

current section, the source and target tasks are addressed.

2.4.1 Source Tasks

A schematic representation of the source tasks of the equal (T1 MRI) and un-

equal (natural image) domain is shown in figure 2.2. The hyper-parameters

used to pre-train the CNNs on the equal domain as the target tasks are de-

scribed in appendix 2.9.2. The CNNs were pre-trained on axial slices from

the scans. The hyperparameters used to pre-train the CNNs on the unequal

domain are described in appendix 2.9.3.
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Segmentation Source Tasks

The segmentation source tasks were brain tissue and indoor object segmenta-

tion for the equal and unequal domain, respectively. The brain tissue ground

truth for three classes was generated using the FAST algorithm [139] from the

FSL toolkit. The indoor object ground truth was available for 17 classes [103] &

[135]. The segmentation CNN architecture consisted of the encoder, followed

by the decoder. The loss function used was the weighted cross-entropy and

used class weights calculated by [78].

Self-Supervised Source Task

For both source domains, auto-encoding was the self-supervised source task

[94]. The auto-encoding CNN architecture consisted of an encoder, a decoder

and a discriminator. The loss consisted of the weighed sum of the L1 norm

and the GAN loss. The weights used were 0.996 for the L1 norm and 0.004 for

the Generative Adversarial Network (GAN) loss.

Classification Source Tasks

The equal domain classification source task was brain and sub-cortical struc-

ture classification, which was a multi-label classification task. Each axial slice

contained annotations indicating whether the brain and specific sub-cortical

structures were present. Ground truth segmentations of these structures were

generated using the FIRST [116] and BET [124] algorithm from the FLS toolkit.

The classification of a subset of 100 ImageNet classes of indoor scenes was

used as the unequal domain object classification task[135]. The binary cross

entropy was used as the loss function class-wise. The used CNN architecture

was the encoder followed by a fully connected block.

2.4.2 Comparison to pre-training on the full-extent of

ImageNet

The previously described transfer learning experiments include source tasks

with a similar amount of data to pre-train for a fair comparison. The most

commonly used source task, ImageNet classification [121], uses at least ten
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times more data than the models described above. To compare the other

approaches to the the most commonly used benchmark, a CNN pre-trained

on the full-extent of the ImageNet classification dataset was included as a

source task.

2.4.3 Target Tasks

For all experiments, the encoder was initialized using one of the source tasks,

and the decoder was initialized randomly. The CNNS were fine-tuned with

multiple sub-sample sizes, which will be referred to as the fine-tuning set

size. The CNNs were fine-tuned on axial slices obtained from the included

scans.

All CNNs used a batch size of 32, a learning rate of 10−4 and a weight

decay of 2 · 10−4. The number of epochs varied per task and are discussed per

experiment. After half the training epochs were completed, the learning rate

was decayed by 10. For the segmentation tasks, the weighted cross entropy

was calculated voxel wise.

Stroke Lesion Segmentation

The stroke lesion segmentation target task consisted of segmenting stroke

lesions from non affected tissue and background.

The data was split randomly into a training and testing set of 200 and

104 scans, respectively. The fine-tuning set size was incremented from 10 to

100 scans with steps of 10. For each fine-tuning set size, ten fine-tuning sets

were randomly sampled from the training set. CNNs were fine-tuned for 30

epochs.

Multiple Sclerosis Lesion Segmentation

The MS lesion segmentation task consisted of segmenting MS lesions from

non affected tissue and background. The MS lesion data was split randomly

into a fine-tuning set of 20 scans and a testing set of 10 scans, respectively.

CNNs were fine-tuned for 60 epochs.
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Brain Anatomy Segmentation

The brain anatomy segmentation task consisted of segmenting seven anatom-

ical regions. The BA dataset was divided into 15 scans for fine-tuning and 20

for testing [110]. CNNs were fine-tuned for 300 epochs.

2.4.4 Evaluation Metrics

The Dice coefficient and the mean Intersection Over Union (mIOU) were used

to assess the spatial accuracy for single and multi-class segmentation tasks,

respectively. Both measures were calculated per axial slice and averaged over

the entire test set.

For the MS and stroke lesion segmentation tasks, the lesion detection ac-

curacy was assessed. A connected component analysis was performed on

the ground truth segmentation mask to separate all individual lesions in the

mask. Voxels were considered to be part of a common lesion if they were

8-connected in the mask. A lesion was considered detected if the percentage

of accurately automatically quantified voxels exceeded a pre-set threshold.

This threshold is referred to as the voxel overlap cutoff. We used voxel overlap

cutoff values of 0% and 20%. The higher the voxel overlap cutoff, the more

difficult it is for a lesion to be detected by the model. In addition, we wanted

to assess the lesion detection accuracy for different lesion volumes. To this

end, we progressively excluded lesions below a pre-set volume. We refer

to this parameter as the lesion volume cutoff, and we used pre-set values of 0

mL (including all lesions), 1 mL and 2 mL. For stroke lesion detection, this

analysis was conducted on one of the CNNs fine-tuned with a fine-tuning set

size of 100.

2.5 Experiments & Results

2.5.1 Stroke Lesion Segmentation

The Dice coefficient and lesion detection accuracy for the stroke lesion seg-

mentation models are shown in figure 2.3. For the equal domain experiments

(figure 2.3a), the segmentation source task transfer learning model resulted
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in the largest Dice coefficient. If the voxel overlap cutoff was set to zero, the

lesion detection accuracy was similar for models pre-trained on each source

task. When the voxel overlap cutoff was set to 20%, the lesion detection ac-

curacy dropped overall. However, the segmentation source task resulted in

models with a higher lesion detection accuracy than the other models.

For unequal source domains, shown in figure 2.3b, the self-supervised

source task resulted models with the highest Dice coefficient. No single

source task resulted in a model with a higher lesion detection accuracy than

models pre-trained on the other source tasks.

Comparing equal and unequal domains, the best equal domain source task

(segmentation) resulted in models with a higher Dice coefficient than the other

source tasks. Models pre-trained on the classification source tasks consistently

yielded a low Dice coefficient. Results for the lesion detection accuracy were

more ambiguous. With a voxel overlap cutoff greater than 20%, the model

pre-trained on the best equal domain source task resulted in a higher lesions

detection accuracy. However, a voxel overlap cutoff greater than 0% resulted

in the model pre-trained on the unequal domain source tasks achieving a

higher lesion detection accuracy.

In comparison to the full-extent ImageNet pre-trained model, the equal

source domain and task model obtained the highest Dice coefficient (figure

2.3c). The lesion detection accuracy is similar for both approaches (figure

2.3c). However, when the voxel overlap cutoff was set to 20%, the ImageNet

pre-trained model detected more lesions.

2.5.2 Brain Anatomy Segmentation

Spatial agreement results for the BA segmentation target task are shown in

table 2.1. For the equal domain, the results show that the model pre-trained on

the segmentation source task resulted in the highest mIOU. For the unequal

domain, all models had lower accuracy than the model pre-trained on the best

equal domain source task. Even the full-extent ImageNet pre-trained model

was outperformed by the best performing equal domain transfer learning

model.
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Stroke Lesion Segmentation and Detection Accuracy Assessment

(a) Equal Domain (b) Unequal Domain (c) ImageNet

Figure 2.3: Spatial agreement (top) and lesion detection accuracy (bottom) for the
stroke lesion segmentation task. The spatial agreement is assessed using the Dice co-
efficient as a function of the fine-tuning set size. The lesion detection accuracy is given
as a function of the lesion volume cutoff, which is the minimal volume for which
lesions are considered detected. The lesion detection accuracy is calculated with
0% and 20% overlap cutoffs (bottom). (a) Equal domain (T1-MRI) pre-training. In-
cluded source tasks are self-supervised, segmentation, and classification. (b) Unequal
domain (natural images) pre-training. Included source tasks are self-supervised, clas-
sification, and segmentation. (c) Comparison of full-extent ImageNet classification
pre-training and pre-training on equal domain and task: brain tissue segmentation.

2.5.3 Multiple Sclerosis Lesion Segmentation

The results for the MS lesion segmentation show that the Dice coefficient was

generally low, with segmentation and the self-supervised source task resulting

in the highest Dice coefficient for equal and unequal domain, respectively. In

addition, the classification source task on the equal and unequal domain

consistently results in a low Dice coefficient. The results are shown in table

2.2.

The MS lesion detection results are shown in figure 2.4. For the equal

domain, the self-supervised source task resulted in models with the highest

lesion detection accuracy, regardless of the voxel overlap or lesion volume

40



222

2.5. EXPERIMENTS & RESULTS

Brain Anatomy Segmentation

Equal Domain: T1 MR

Segmentation 0.62
Self-Supervised 0.58
Classification 0.59

Unequal Domain: Natural Images

Segmentation 0.56
Self-Supervised 0.57
Classification 0.55
ImageNet Classification 0.52

Table 2.1: mIOU of the brain anatomy multi-class segmentation task for various
source domains (T1 MRI vs natural images) and source tasks. The self-supervised
task is autoencoding. The highest mIOU is underlined.

MS Lesion Segmentation

Equal Domain: T1 MR

Segmentation 0.16
Self-Supervised 0.12
Classification 0.14

Unequal Domain: Natural Images

Segmentation 0.14
Self-Supervised 0.16
Classification 0.13
ImageNet Classification 0.17

Table 2.2: Dice coefficient for the MS lesion segmentation for various source do-
mains. The equal domain is T1 MR, and the unequal domain is natural images. The
highest Dice coefficient is underlined. The self-supervised tasks are autoencoding.

cutoff.

For the unequal domain, the classification and segmentation source tasks

resulted in models with a higher lesion detection accuracy regardless of the

lesion volume cutoff. The full-extent ImageNet pre-trained model resulted in

a slightly higher Dice coefficient and lesion detection accuracy relative to the

best performing equal domain source task.
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MS Lesion Detection Accuracy Assessment

(a) Equal Domain (b) Unequal Domain (c) ImageNet

Figure 2.4: MS lesion detection accuracy as a function of the lesion volume cutoff
with 0% and 20% volume overlap cutoffs. (a) Equal domain pre-training (T1 MRI)
for the self-supervised, segmentation, and classification source tasks. (b) Unequal
domain (natural images) pre-training for the source tasks classification, and segmen-
tation. (c) Pre-training with the full-extent ImageNet classification source task vs
medical image segmentation source task.

2.5.4 Qualitative Analysis

We performed a qualitative analysis by visual comparison of the automatically

generated segmentation masks. Examples of these masks are shown in figure

2.5.

Visual inspection resulted in two observations. Firstly, pre-training on the

segmentation task on an equal domain resulted in the largest segmentations.

Secondly, the self-supervised source task pre-trained on the unequal domain

resulted in implausible segmentations. For example, it falsely predicted le-

sions in both hemispheres.

For the BA segmentation, the ImageNet pre-trained model resulted in a

larger number of false positives for white matter segmentation. In addition,

the ImageNet pre-trained model resulted in a larger number of false positives

and negatives of the cerebellum.

2.6 Discussion

Our study provides the first empirical comparison between the most fre-

quently chosen source tasks for medical segmentation target tasks. These

source tasks are self-supervised, classification and segmentation on both nat-
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Figure 2.5: Examples of segmentation results obtained by the different source tasks
on the target tasks stroke lesion (top two rows) and BA (bottom two rows) segmen-
tation. From left to right, the original T1 MR scan, the ground truth segmentation
and different segmentation results are shown after transfer learning using the source
tasks: segmentation, the self-supervised source task, and classification on the same
domain, the self-supervised source task on an unequal domain and full-extent Ima-
geNet pre-training.

ural images and medical images for medical segmentation transfer learning

performance. Previous work gave evidence of the advantage of transfer

learning for medical segmentation target tasks using various source tasks

and domains [80; 87; 136; 140]. We build on top of this work by studying

how transfer learning performance was influenced by the choice of source

task and domain. Our findings corroborate those found in a single source

domain [135]; source tasks that are more similar to the target task result in

higher transfer learning performance.

A possible explanation of our finding, is that higher layers are more spe-

cialized to perform the source task [133]. As such, these layers have a better

initialization to perform tasks that are similar to the source task, which may

result in finding a better optimum after fine-tuning.

43



222

2.6. DISCUSSION

Research comparing the transfer learning performance of various source

tasks in medical image analysis has focused mostly on target classification

tasks. Previous work showed that supervised and self-supervised pre-training

on CT scans yielded a lower transfer learning performance than self-supervised

pre-training on natural images [123]. Another study provided evidence that

pre-training on a large natural image dataset resulted in an equivalent classi-

fication performance using less data, faster convergence, greater robustness

against domain shift, and little influence on the calibration of uncertainty es-

timation [112]. However, other work provided evidence that pre-training on

natural images only resulted in faster convergence of the networks but did

not result in an improvement of classification performance [118].

Studies done on natural images have similar findings to our own; similar

domains and tasks result in optimal transfer learning performance. This

was shown for various classification target tasks [75] and a segmentation

target task [83]. However, a domain shift can cause the most similar source

task to the target segmentation task to result in sub-optimal transfer learning

performance [83]. This result is corroborated by another study, which showed

that increasing the amount of data used for pre-training could adversely

influence transfer learning performance on classification target tasks if the

additional data was not from a similar domain [127]. Our study observes the

same phenomenon in transfer learning for medical image segmentation.

To promote comparability, our work firstly focused on a single target do-

main, allowing us to exploit large amounts of data available to pre-train CNNs

and the existence of open source tools to automatically create segmentation

annotations. Secondly, we only used the ResNet-50 architecture, because pre-

trained weights were available for natural image analysis tasks. The special-

ized U-Net [119] architecture for medical image analysis tasks does not have

weights from pre-training tasks on natural images available. Furthermore,

U-Net does not generalize well to classification tasks in a straightforward

manner because of skip connections. Thirdly, we chose fine-tuning and not

feature extraction by pre-trained weights. Hereby, we limited the influence

of otherwise confounding variables on the accuracy assessments of transfer

learning.

A first limitation of our approach is that we have only tested two source
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domains, natural images and T1 MR brain scans, and one target domain,

T1 MR brain scans. However, there is evidence from other studies that pre-

training a model on an equal domain to the target task results in similar better

results [80; 123]. Hence, it is reasonable to assume this would apply to other

medical image domains as well.

A second limitation of our research is the focus on 2D segmentation. Meth-

ods that use 3D self-supervised source tasks result in better performance

than 2D ImageNet pre-trained models [140]. There is prior evidence show-

ing that transfer learning strategies work well across different architectures

[80; 81; 101] . Therefore, we expect our findings in 2D to generalize to 3D as

well.

A third limitation is that the Dice coefficient was low for all MS lesion seg-

mentation target task regardless of the pre-training approach. In T1-weighed

MRI, MS lesions in white matter appear as slightly hypo-intense, with inten-

sities similar to gray matter. This makes segmenting MS lesions a challenging

task. We found that transfer learning is of limited additional benefit for this

challenging task.

A fourth limitation in our study is that we have used a single CNN ar-

chitecture, i.e. ResNet-50. This architecture was used because pre-trained

weights were available for all necessary natural image tasks. Several stud-

ies have shown that transfer learning strategies work well across different

architectures [80; 81; 101]. Considering the significant amount of additional

computational resources needed to pre-train additional models and fine-tune

them, in our study we focus on an archetypal CNN architecture to derive our

insights.

In this work, we have thoroughly compared the medical segmentation

performance for various target segmentation tasks on brain MR imaging using

transfer learning with various source domains and tasks used for pre-training.

Our results suggest that medical segmentation tasks benefit from transfer

learning with pre-training on segmentation source tasks on the same domain.
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2.7. CONCLUSION

2.7 Conclusion

Our transfer learning experiments targeting brain MRI segmentation tasks

suggest that selecting a similar (segmentation) source task and domain results

in equal or better spatial agreement than other choices of source task and

domain combinations. Even with a source dataset 10 times as large, pre-

training on ImageNet classification did not outperform the equal source and

target task and domain combination in two out of three target tasks: stroke

lesion and brain anatomy segmentation. However, source task and domain

selection have an inconsistent effect on the lesion detection accuracy.
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2.9 Supplementary Material

2.9.1 Participant and Scan Characteristics

Study N
Age

Mean(SD)

Sex

Male/Female

Scanner

(Field Strength)
Scan Sequence Voxel Dimensions

OASIS (Open

Access Series of

imaging studies)
288 44.1 (23) 106/188 Siemens Vision (1.5T) MPRAGE 1.0 × 1.0 × 1.25 mm

IXI (Information

eXtraction

from Images)
561 48.6 (16.5) 250/311

Philips Intera(3T);
Phillips Gyeroscan
Intera (1.5T;GE
Signa (1.5T);

T1-FFE;
MPRAGE

0.94 × 0.94 × 1.2 mm

ICBM (International

Consortium for Brain

Mapping)
322 24.8 (5.1) 177/145

Siemens Magnetom
(1.5T)

MPRAGE 1.0 × 1.0 × 1.0 mm

ABIDE (Autism Brain

Imaging Data

Exchange)
184 16.9 (6.7) 161/23 Various (all 3T) MPRAGE Various

Beijing Normal

University
179 21.3 (1.9) 72/107 Siemens(3T) MPRAGE 1.33 × 1.0 × 1.0mm

Nathan Kline Institute

(NKI)/ Rockland
160 41.5 (18.1) 96/64

Siemens Tim Trio
(3T)

MPRAGE 1.0 × 1.0 × 1.0mm

MCIC (Mind Clinical

Imaging Consortium)
93 32.5 (12) 64/29

Siemens Sonata/Trio
(1.5/3T); GE Signa
(1.5T)

MPRAGE;
SPGR

0.63 × 0.63 × 1.5mm

Berlin School of

Brain & Mind
49 31 (7.1) 24/25

Siemens Tim Trio
(3T)

MPRAGE 1.0 × 1.0 × 1.0mm

NEO2012 39 29.6 (8.4) 18/21 Siemens Allegra(3T) MPRAGE 1.0 × 1.0 × 1.0mm
TRAIN-39 36 22.7 (2.6) 11/25 Siemens Allegra (3T) MPRAGE 1.33 × 1.33 × 1.3mm

Cleveland Clinic 31 43.6 (11.1) 11/20
Siemens Tim Trio
(3T)

MPRAGE 1.0 × 1.0 × 1.2mm

WUSL 24 23 (1.4) 4/20
Siemens Tim Trio
(3T)

MPRAGE 1.0 × 1.0 × 1.0mm

MIRIAD (Minimal

Interval Resonance

Imaging in

Alzheimer’s Disease)

23 69.7 (7.2) 12/11 GE Signa (1.5T)
3D IR-
FSPGR

0.94 × 0.94 × 1.5mm

CADDementia 12 62.3 (6.3) 9/3 GE Signa (3T)
3D IR-
FSPGR

0.9 × 0.9 × 1.0mm

Dataset Total 2001 37 (18.1) 1016/985 - - -

Table 2.3: Additional scan and participant information of the Brain Age Healthy
Cohort dataset [82].

Vascular Territory

Scanner Brand Field Strength Resolution N MCA ACA Lacunar Other
GE 750 Discovery 3T 1.0 x 1.0 x 1.0 mm 76 12 0 46 18

GE Signa 1.5 T 0.9 x 0.9 x 0.9 mm 31 14 2 11 4
GE Signa Excite 3T 1.0 x 1.0 x 1.0 mm 34 10 0 18 6
GE Signa HD-X 3T 1.0 x 1.0 x 1.0 mm 26 1 0 24 1
Phillips Achieva 3T 1.0 x 1.0 x 1.0 mm 36 15 0 18 3

Siemens Trio 3T 1.0 x 1.0 x 1.0 mm 101 56 1 32 12

Table 2.4: Additional information about the patients scans of the stroke lesion
Data-set (ATLAS R1.2).
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2.9.2 Equal Domain Source Task Hyper-parameters

The CNNs were pre-trained for 30 epochs using a batch size of 32 and batch

normalization [95] before the activation function. The encoder and decoder

used a learning rate of 10−4, a weight decay rate of 2 · 10−6 and an Adam opti-

mizer [99]. If a discriminator was used, it was turned on after 26000 iterations.

The discriminator used a learning rate of 10−5 and an SGD optimizer. The

encoder and a fully connected block used the same hyper-parameters as the

encoder and decoder.

To ensure that the CNNs pre-trained equal and unequal source domain

used a similar amount of data, 870 scans from the BAHC dataset were ran-

domly selected. These scans were randomly split into 670 training scans, 100

validation scans and 100 testing scans.

2.9.3 Unequal domain Source Task Hyper-parameters

The CNNs were pre-trained as described in the Taskonomy study [135]. The

CNNs were pre-trained for 30 epochs using a batch size of 32 and batch nor-

malization [95] before the activation function. The encoder and decoder used

a learning rate of 10−4, a weight decay rate of 2 · 10−6 and an Adam optimizer

[99]. If a discriminator was used, it was turned on after 25000 iterations. The

discriminator used a learning rate of 10−5 and an SGD optimizer. The learning

rate was annealed by a factor of 10 after 80000 iterations.

The CNNs were trained on 120000, validated on 16000 and tested on 17000

images.
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3. POSTERIOR STROKE LESION SEGMENTATION

Abstract

Final lesion volume (FLV) is a surrogate outcome measure in anterior cir-
culation stroke (ACS). In posterior circulation stroke (PCS) this relation
is plausibly understudied due to a lack of methods that automatically
quantify FLV. Applicability of deep learning approaches to PCS is limited
due to its lower incidence compared to ACS. We evaluated strategies to
develop a CNN for PCS lesion segmentation by using image data from
both ACS and PCS patients. We included follow-up NCCT scans of 1018
patients with ACS and 107 patients with PCS. To assess whether an ACS
lesion segmentation generalizes to PCS, a CNN was trained on ACS data
(ACS-CNN). Second, to evaluate performance of only including PCS pa-
tients, a CNN was trained on PCS data. Third, to evaluate performance
when combining the datasets, a CNN was trained on both datasets. Fi-
nally, to evaluate performance of transfer learning, the ACS-CNN was
fine-tuned using PCS patients. The transfer learning strategy outper-
formed the other strategies in volume agreement with an ICC of 0.88
(95%CI: 0.83-0.92) versus 0.55 to 0.83 and a lesion detection rate of 87%
versus 41-77 for the other strategies. Hence, transfer learning improved
the FLV quantification and detection rate of PCS lesions compared to the
other strategies.
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3.1. INTRODUCTION

3.1 Introduction

Infarct volume, representing the tissue damage after an Acute Ischemic Stroke

(AIS), is commonly considered as a surrogate endpoint for the primary func-

tional outcome (modified Ranking Scale (mRS) after 90 days) [144]. Various

trials have shown a strong association of infarct volume with functional out-

come in patients suffering from a stroke due to a large vessel occlusion in the

anterior circulation [144; 172].

However, in patients with a stroke due to a Posterior Circulation Stroke

(PCS), the relation between infarct volume and outcome is understudied [167].

The low number of studies addressing this relation may be due to the com-

bination of two reasons; the relatively low prevalence of PCS compared to

Anterior Circulation Stroke (ACS) and the lack of automated analysis of PCS

lesion volume assessment.

With the huge effectiveness of endovascular treatment of anterior circu-

lation stroke patients, treatment of posterior stroke has attained renewed

interest in various studies and trials. For example, the recently completed BA-

SICS trial [163] could not show a beneficial effect of endovascular treatment

with functional outcome used as outcome measure. Alternatively, secondary

outcome measures such as infarct volume might show a beneficial effect of

certain treatments since functional outcome, as addressed by the mRS, is a

rather coarse outcome measure, which is also affected by many other con-

founders [141]. Developing methods that automatically segment lesions due

to a PCS, would help investigate Final Lesion Volume (FLV) as a surrogate

outcome for this type of stroke. Solutions for the automatic segmentation of

FLV based on convolutional neural networks (CNNs) have been presented

in the literature for CT and MR imaging [143; 151]. However, these studies

have only considered FLV of patients with an AIS due to an occlusion of the

anterior circulation [143; 144]. To achieve good performance, CNNs typically

require large amounts of labeled training data. However, PCS constitutes

only 26 % of AIS cases [145; 156] and training of CNNs for automatic PCS

lesion segmentation is thus hindered by limited availability of data. Further-

more, the applicability of methods developed for ACS FLV segmentation on

posterior stroke lesion segmentation is unknown.
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Several methods exist for dealing with a lack of data to train a CNN. One

method that reduces the data needed to train CNNs by reusing knowledge is

transfer learning [158]. To perform transfer learning, a CNN is pre-trained on

a task for which large amounts of image data are available and fine-tuned on

a different task for which little image data is available. Transfer learning has

been successfully applied to solve various medical image analysis problems

[153].

We evaluate strategies to create automated PCS lesion segmentation by us-

ing image data from patients with ACS and patients with PCS. We hypothesize

that transfer learning utilizing data of ACS lesions improves automatic PCS

lesion segmentation performance compared to alternative strategies: training

a CNN on only ACS lesions, only on PCS lesions, or on the combination of

ACS and PCS lesions.

3.2 Materials & Methods

3.2.1 Patient and Image Data

All involved patients in this retrospective study or their legal representatives

provided written informed consent. The medical ethics committee of each

participating hospital approved the use of the data after anonymization. The

Hermes dataset consists of 1665 patients who suffered from an ACS and

was obtained from the HERMES collaboration [149], which investigated the

effectiveness of endovascular therapy for treating ACS. This collaboration

combined data from seven clinical randomized trials and collected data be-

tween December 2010 and December 2014. The inclusion criteria are shown

in Figure 3.4a, in the appendix. Patients were excluded if no Follow-Up Non-

Contrast Computed Tomography (FU-NCCT) was made in the time window

of 12 hours and 2 weeks after stroke onset or if the preprocessing steps were

unsuccessful. In total 1018 patients out of the 1665 patients were included.

Baseline characteristics of the included patients are shown in Table 3.1.

The BASICS dataset consists of 168 patients who suffered from a PCS and

was obtained from the BASICS trial [152; 166], which investigated the effec-

tiveness of endovascular therapy for treating patients with a PCS. This trial
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Parameter Posterior Stroke Anterior Stroke

Clinical
Age, years, Mean (Standard Deviation) 65.65 (12.2) 66.1 (13.3)
Sex, F, No. [%] 34/107 [31.8] 458/1018 [45]
NIHSS at baseline, mean[median](N) 21.4 [19] (107) 17 [17] (1015)

Prior Conditions
Diabetes mellitus, No. [%] 28/107 [26.2] 169/1018 [16.6]
Hypertension, No. [%] 64 /107 [59.8] 564/1018 [55.4]
Stroke, No. [%] 21/107 [19.6] 121/1018 [11.9]
Posterior Circulation Stroke, No. [%] 7/107 [6.5] NAV

TIA, No. [%] 10/106 [9.4] NAV
Posterior Circulation TIA, No. [%] 2/106 [1.9] NAV
Atrial Fibrillation, No. [%] 13/107 [12.1] 314/1018 [30.8]
Atrial Fibrillation (history or 12 lead ECG), No. [%] 23/107 [21.5] NAV

Pre-Stroke mRS
0, No. [%] 80/107 [74.8] 836/1017 [82.1]
1, No. [%] 11/107[10.3] 129/1017 [12.7]
2, No. [%] 13/107 [12.1] 29/1017 [2.9]
3, No. [%] 3/107[2.8] 23/1017 [2.3]

Treatment
IV Thrombolysis, No. [%] 92/107 [86] 872/1018 [85.7]

Time
Stroke onset to IVT, minutes, Mean [Standard Deviation](N) 176.9 [176.102] (90) 112.2 [57.2] (871)

Table 3.1: Baseline characteristics, treatment and time data for patients with poste-
rior circulation stroke and anterior circulation stroke. Prior Posterior stroke, Transient
Ischemic Attack, posterior circulation TIA and Atrial Fibrillation (history or 12 lead
ECG) were not available (NAV) for the HERMES dataset.

included patients from 23 centers, collected between 2011 and 2019. Inclusion

criteria for our study are shown in Figure 3.4b, in the appendix. The latest

FU-NCCT scan was used if multiple scans were available for the same patient.

Patients were excluded if no FU-NCCT was made or if the follow up image

was of insufficient quality. In total, 107 patients out of the 168 available pa-

tients were included. Baseline characteristics of the included BASICS patients

are shown in Table 3.1. The infarcted regions are shown in Table 3.2, in the

appendix.

3.2.2 Reference Segmentations

For patients with an ACS, reference segmentations were obtained by manual

annotation by one of two experienced observers on the most recent FU-NCCT.

The annotation procedure is outlined in [144]. In summary, a window width

of 30 Hounsfield Units (HU) and a center level of 35 HU was set in ITK-

Snap [171]. All hypodense regions on the ipsilateral hemisphere including
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edema were included in the segmentations. Infarcted tissue in the ipsilateral

hemisphere with signs of an old infarct were excluded from the reference

segmentations. Parenchymal hemorrhages adjacent to or within the affected

area were included in the reference segmentations. Finally, reference segmen-

tations were checked and, if necessary, corrected by one of three radiologists,

each of whom had more than 5 years of experience.

Reference segmentations of lesions caused by a PCS on FU-NCCT scans

were manually segmented by a single trained observer (IVO) and were

checked by an experienced radiologist (CBLMM) who had more than 5 years

of experience. Lesions were segmented by using the aforementioned window

width and center level on ITK-Snap software [171]. Posterior Circulation

Alberta Stroke Program Early Computed Tomography Score (PC-ASPECTS)

[159] were used when available to identify the infarcted territory.

3.2.3 Preprocessing

The intracranial region as a volume of interest was obtained automatically

using a combination of preprocessing steps [143]. The bone was segmented

using a threshold-based segmentation by selecting all voxels with an inten-

sity of 170 HU or higher. Subsequently, the foramina, except the foramen

magnum, were closed using morphological filters, and a region growing al-

gorithm was applied to select the intracranial volume. To obtain the final

volume of interest, the region caudal to the foramen magnum was excluded.

To ensure the same size, orientation and voxel sizes, all scans were aligned

by automatically registering the images to a common space using rigid and

affine transformations. Images were registered using the Mattes Mutual In-

formation [155] with a gradient descent optimizer. In addition to registration,

the scans were downsampled to allow the entire scan to be passed into the

CNNs. After the preprocessing each scan had a size of 256 x 256 x 32, with

a slice thickness of 5 mm. The voxel intensities were clipped between -20

and 120 HU, and subsequently normalized between minus one and one. The

preprocessing was done using SimpleITK [154; 168] and Python 2.7.
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3.2.4 CNN for Automatic Posterior Circulation Lesion

Segmentation

The preprocessed images were input to a CNN which consisted of three-

dimensional convolutional kernels. The architecture of the CNN (shown in

Figure 3.5a in the appendix), was inspired by U-Net [161] and ResNet [150].

The CNN consisted of a downsampling path and an upsampling path. The

downsampling path started with an input block, consisting of a convolution

with a kernel size of three and a stride of one, followed by a max pooling layer

with a pooling size of two and a stride of two. The features generated by the

input block consisted of eight channels.

Subsequent to the input block, three downsampling blocks were added,

consisting of three 3D ResNet layers, shown in Figure 3.5b, in the appendix.

The first two blocks were followed by average pooling with a stride and

pooling size of two.

The upsampling path started with a transposed convolution using a stride

of two. Next, two upsampling blocks followed by an output layer were

added. Each upsampling block consisted of two ResNet layers, followed

by a transposed convolution with a stride of two and a kernel size of three.

Each upsampling block took the features from the previous block and the

corresponding downsampling block and concatenated them. The output

block consisted of two ResNet blocks followed by a convolutional layer. The

CNNs were implemented using Tensorflow 1.5.

3.2.5 Experimental Setup

Four different training strategies for CNNs were evaluated: A CNN was ran-

domly initialized and trained on images of patients in the HERMES dataset

(ACS-CNN), BASICS dataset (PCS-CNN) and the HERMES and BASICS

datasets combined (CD-CNN). The ACS-CNN was used to establish the gen-

eralization ability of a CNN trained on ACS to PCS lesion segmentation. The

PCS-CNN served as a baseline for training with limited but representative

data. The CD-CNN was used as a benchmark if both ACS and PCS data

were available, but no transfer learning was used. Transfer learning reused

the weights from the trained ACS-CNN to initialize all but the last block of
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the CNN, and fine-tuned by updating all the weights, using images from the

BASICS dataset (TL-CNN).

The CNNs used group normalization with four groups, the Leaky Relu

activation a batch size of two and the Adam optimizer. The loss function

used was the weighted binary cross entropy. The initial learning rate for the

ACS-CNN and CD-CNN was 10−3 and was decayed stepwise after 5, 10, 15

and 20 epochs to respectively, 5 ·10−4, 2 ·10−4, 10−4 , and 10−5. These networks

were trained for 25 epochs. The initial learning for the PCS-CNN and TL-

CNN was 10−5 and was decayed after 25, 50 and 75 epochs to respectively,

5 · 10−6, 2 · 10−6, and 10−6. These networks were trained and fine-tuned for

100 epochs. The weight decay was set to 10−5.

Data augmentation was applied at training time. The images were rotated

at a randomly chosen angle between zero and ten degrees along the axial

plane in either direction or were randomly flipped along the sagittal plane.

We evaluated the performance of the ACS-CNN to check whether the model

converges during pre-training. The ACS dataset was split randomly into scans

for training (85 %), validation (5 %) and testing (10 %). For this approach, we

used the entire PCS dataset for evaluation. Thus, we used stratified five-fold

cross-validation. Given the number of available PCS patients, the first four

testing splits consisted of 20 % and the fifth of 22 % of the data. The training

splits were of equal size and consisted of 78 % of the PCS data.

3.2.6 Evaluation

The reliability between the automatically and manually segmented volumes

was evaluated with the Intraclass Correlation Coefficient (ICC) including the

95% Confidence Interval (95% CI). The ICC was interpreted in accordance to

the American Psychological Association [147]. Following their guidelines, an

ICC< 0.4 is defined as poor, an ICC between 0.4 and 0.6 as fair, an ICC between

0.6 and 0.75 as good and an ICC greater than 0.75 as excellent. In addition, a

Bland-Altman analysis was performed to assess the bias and spread in volume

measurements. Statistical significance between ICCs was evaluated by using

Fisher’s r-to-z transformation.

To determine whether our model accurately detected lesions independent

of size, the number of detected lesions was determined. For this measure,
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we calculated the ratio of the total number of correctly detected lesions and

the total number of lesions as determined by the ground truth in the dataset.

A lesion was defined as detected if the percentage of overlapping voxels

between the automatic and reference segmentations was larger than a prede-

fined threshold. In case of small thresholds, a non-zero overlap of automated

and reference lesion segmentation could be caused by chance. To account

for this issue the required percentage of overlapping voxels was set to either

greater than zero percent or a more conservative 20%. Next, the effect of

lesion volume on the lesion detection rate was studied by excluding lesions

of a progressively larger volume. This latter cutoff was set between zero and

4 mL, with increments of 0.5 mL.

The segmentation performance of the automatic methods was evaluated by

calculating the Dice coefficient as an overlap measure between the reference

and the automatic segmentation. Normality of the distribution of the Dice

coefficients was assessed before pairwise statistical testing by using Shapiro-

Wilk test. If the Dice coefficients were normally distributed, a paired t-test was

used, otherwise a Wilcoxon rank sum test was used. P-values were corrected

for the family wise error rate using the Bonferroni correction. All statistical

testing was done using the python library Pingouin, version 0.3.1 [165].

3.3 Results

Baseline characteristics of the patients in BASICS and HERMES datasets were

compared. Patients in the HERMES dataset had a similar age to patients

in the BASICS dataset. Diabetes (26.2% vs 16.6%, p<0.05) and prior stroke

(19.6% vs 11.9%, p<0.05) occurred more frequently in patients in the BASICS

dataset. However, atrial fibrillation (12.1% vs 30.8%, p<0.01) occurred more

frequently in patients in the HERMES dataset.

The median FLV in patients with PCS was 11 (IQR: 3.4 - 36) mL. The ICCs for

volume assessments for the TL-CNN, PCS-CNN, CD-CNN, and ACS-CNN

were 0.88 (95% CI: 0.83-0.92), 0.80 (95% CI: 0.72-0.86), 0.83 (95% CI: 0.76-

0.88) and 0.55 (95% CI: 0.4-0.67), respectively. The ICC of the TL-CNN, was

significantly larger than the ICCs of the ACS-CNN (p<0.01) and PCS-CNN

(p = 0.02). The ICC of the ACS-CNN was significantly smaller than the ICCs
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of the PCS-CNN (p<0.01) and CD-CNN (p<0.01). The bias and spread of the

volume measurements are shown in Figure 3.1 and Table 3.3.

The lesion detection rate of the TL-CNN was higher than for the other

learning strategies (Figure 3.2). Figure 3.2 shows that the lesion detection

rate increases with increasing lesion volume and that the lesion detection rate

decreases with increasing thresholds of overlapping voxels.

The TL-CNN, PCS-CNN, CD-CNN and ACS-CNN achieved a Dice coef-

ficient of 0.25±0.08, 0.21±0.06, 0.16±0.06 and 0.07±0.03, on the overall PCS

test set, respectively (Figure 3.3). The Dice coefficients were not normally dis-

tributed. Hence, a Wilcoxon rank sum test was used. Results of the Wilcoxon

rank sum test are shown in Table 3.4. For the anterior circulation stroke

lesions, the ACS-CNN achieved an average Dice coefficient of 0.60±0.07.

3.4 Discussion

Our study found that transfer learning results in a high level of agreement

between manually delineated and automatically quantified lesion volumes on

follow-up NCCTs of patients with a PCS. Furthermore, we found that transfer

learning resulted in higher spatial accuracy and larger volume agreement of

automatic PCS lesion segmentation compared to the other strategies. In

addition, the TL-CNN models also detected a larger number of PCS lesions

in comparison to the other strategies. Moreover, our results indicate that the

ACS-CNN models, which were trained on only patients who suffered from

an ACS, do not generalize to PCS lesion segmentation.

Our study is one of the few that addressed automated segmentation of pos-

terior circulation stroke lesions on follow-up NCCT. Previous work include

anterior stroke lesion segmentation in a variety of imaging modalities, such

as baseline CTP [148] baseline CTA [157], follow-up NCCT [143] and baseline

and follow-up DWI [170] using multiple approaches and addressing various

types of stroke.

A previous study focused on developing a CNN-based method for au-

tomatic ACS lesion segmentation on FU-NCCT [143] with a higher spatial

overlap accuracy than found in our study. This could be explained by the

larger lesion volumes in their population (median FLV of 48 vs 11 mL) and
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Figure 3.1: Comparison of the automated and reference segmentation volume
for the Transfer Learned CNN (TL-CNN), Posterior Circulation Stroke CNN (PCS-
CNN), Combined Datasets CNN (CD-CNN) and Anterior Circulation Stroke CNN
(ACS-CNN). Left column: Scatter plots comparing lesion volumes derived from the
reference segmentations (y-axis) and from the automatic segmentations determined
by the CNN (x-axis). Right column: Bland Altman plots of the lesion volumes. The
volumes corresponding to the reference and automatic segmentations are shown on
the x-axis and the volume difference y-axis.
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Figure 3.2: Percentage of detected lesions (y-axis) as a function of the minimum
volume requirement (x-axis) and the minimum percentage of overlapping voxels
for the Transfer Learned CNN (TL-CNN), Posterior Circulation Stroke CNN (PCS-
CNN), Combined Datasets CNN (CD-CNN) and Anterior Circulation Stroke CNN
(ACS-CNN) (green, blue, red and gray lines). For all methods a higher lesion volume
cutoff results in a higher percentage of detected lesions. The lower overlapping voxel
requirement, the higher the percentage of detected lesions (dotted versus solid lines).
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Figure 3.3: An example of automatic segmentation results obtained by the 4 CNNs
on the PCS test set. From the left to the right column: the original scan, the automatic
segmentation results from the TL-CNN, PCS-CNN, CD-CNN and ACS-CNN are
shown. The segmentation maps show true positives (green), false positives (blue)
and false negatives (orange). The scans were plotted using a window center around
35, with a window width of 30.
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the larger dataset available for training. In addition, the Dice coefficient is a

global overlap metric which works well for large lesions. If lesions are smaller

the Dice coefficient may be too sensitive to small errors and detection metrics

are more important.

Other methods for automatic ACS lesion segmentation used information

from the contralateral hemisphere to improve segmentation accuracy [142;

157]. PCS lesions can affect both hemispheres, hence comparing information

between the ipsilateral and its contralateral hemisphere is unlikely to improve

the accuracy.

Automated stroke lesion segmentation has also been developed for chronic

stroke lesions on T1 MRI. Chronic stroke lesions have been segmented by

using a random forest classifier to segment lesions in the left hemisphere

by using hand-crafted image features [160]. Another study used a deep

residual network to segment lesions on images of the ATLAS dataset, which

contains manually traced lesions on 304 T1-weighted MRI images [164]. Both

studies achieved higher similarity scores than our method, which could be

explained by the larger FLVs and higher sensitivity provided by T1-weighted

MRI images.

In previous research, transfer learning has also been successfully applied

to improve accuracy of various other medical image segmentation tasks. One

study used CNNs pre-trained on eight different medical image segmentation

tasks on various imaging modalities to improve automatic lung, liver and

liver tumor segmentation [146]. Unlike the aforementioned study, our study

pre-trained on a single imaging modality and task. Another study, pre-trained

CNNs using self-supervised tasks to improve lung nodule, liver and brain

tumor segmentation [173]. In agreement with our study, the results of prior

work indicate that for medical image segmentation transfer learning can be

beneficial.

Other work using transfer learning for medical image tasks included CNNs

pre-trained on ImageNet [162] as a benchmark. These studies used transfer

learning to improve performance on medical image analysis tasks on 2D

images. However, using ImageNet for transfer learning was less likely to

be suitable for our study because prior work has shown that ImageNet pre-

training improves performance on medical image analysis tasks less than
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using a pre-trained 3D model [173].

This study has several limitations. First, most of the FU-NCCT scans of

PCS patients included in this study were mostly obtained 24 hours after onset

of AIS. Creating manual reference segmentations of the lesions on these early

FU-NCCT scans is more challenging owing to the subtle differences in HU

values after 24 hours. In addition, FLV segmentations for patients with PCS

were performed by only one trained observer, hence inter-observer agreement

could not be assessed. However, the reference segmentations were verified by

an experienced radiologist. Second, this study suffered from a low number of

available PCS patients. Therefore, an even lower number of patients would

be included if the data was divided into training, validation and test sets.

This would have lowered the generalizability of the results to the PCS patient

population. To overcome this, five-fold cross validation was used to allow all

the data to be used as testing data in the analysis and to assess the stability

of the presented results. Third, the CNNs were not accurate at detecting

lesions with a volume smaller than 2mL. If a patient is suspected of having

lesions with a small volume, results from the presented algorithm should

be verified by an expert evaluation. Transfer learning allowed the CNNs to

reuse information learned from ACS lesion segmentation to segment lesions

caused by PCS. The resulting improvement in PCS lesion segmentation is

likely due to the similarity between the pre-training and the fine-tuning tasks

[169]. However, in our approach the detection and segmentation of small

lesions and the segmentation of lesions that are connected to cerebrospinal

fluid filled areas is still suboptimal.

Deep learning is potentially valuable for automating demanding tasks in

the quantification of radiological imaging. It is well-known that deep learning

requires large amounts of data to train algorithms, which may suggest a

limited applicability of deep learning in less common diseases. This study

also shows that deep learning models that are trained on a more general,

less specific disease may not be sufficient. Here we presented an alternative

approach based on transfer learning and showed that deep learning models

can be pre-trained on similar diseases and fine-tuned on the specific rarer

disease.

To conclude, the presented transfer learning approach improves automatic
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detection and segmentation of posterior circulation stroke lesions compared

to the evaluated commonly used training strategies. The presented auto-

mated posterior stroke lesion segmentation method allows inclusion of lesion

volume as an image outcome measure and as a metric to predict outcome

in large-scale clinical trials and potentially as a first step towards clinical

application.
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3.5 Supplementary materials

Figure 3.4: (A) Flowchart showing the exclusion criteria used for the HERMES
dataset. Exclusion criteria were: No FU-NCCT available which was acquired be-
tween 12 hours and 2 weeks (n = 637), an intracranial region segmentation error (n =
3) and a registration error (n = 7). In total, 1018 patients were included. These were
split into a training set ( n = 876 ), a val-idation set (n = 50) and a testing set (n = 101).
(B) Flowchart showing the exclusion criteria used for the BASICS dataset. Exclusion
criteria were: No FU-NCCT available (n = 55) or an image quality that was too low
(n = 6). In total, 107 patients were included. These were split into 5 training and
testing sets for the five-fold cross-validation. Patients could only belong to one test
set.
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Figure 3.5: A) 3D-Unet Architecture. The downsampling path (left) consisted of
3DResNet blocks with max pooling (green). The upsampling path (right) consisted
of ResNet blocks followed by transposed convolutions (red). The features created in
the downsampling path are colored blue and the features created in the upsampling
path are colored yellow. The dotted arrows indicate the skip connections. The
feature maps from the downsampling path were concatenated to the feature maps
in the upsampling path. The input image and output probability map are colored
purple. (B) 3D ResNet block.

Lesion Location Count/Total

No lesion 15/107
Left thalamus 33/107
Left cerebellum 40/107
Left PCA territory 19/107
Right thalamus 26/107
Right cerebellum 40/107
Right PCA territory 19/107
Midbrain 34/107
Pons 46/107
Other 4/107

Table 3.2: Lesion location in the posterior fossa, scored manually by using the
PC-ASPECTS.
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Method ICC Dice Bias Limits of Agreement

TL-CNN 0.88 (95% CI: 0.83-0.92) 0.25±0.07 0.84 mL -28.7 to 30.4 mL
PCS-CNN 0.80 (95% CI: 0.72-0.86) 0.21 ±0.06 3.8 mL -31.9 to 39.4 mL
CD-CNN 0.83 (95% CI: 0.76-0.88) 0.16±0.06 6.4 mL -27.3 to 40.2 mL
ACS-CN 0.55 (95% CI: 0.4-0.67) 0.07±0.03 13.5 mL -32.2 to 59.1 mL

Table 3.3: The ICC, Dice coefficients, bias and limits of agreement between the auto-
matically quantified and manually segmented volumes, respectively for the transfer
learned (TL-CNN), anterior circulation stroke (ACS-CNN), combined dataset (CD-
CNN) and posterior circulation stroke (PCS-CNN) convolutional neural networks,
tested on the PCS test set.

Dice Coefficient Bias

Method 1 Method 2 W P-Value W P-Value

TL-CNN PCS-CNN 766 <.05 2205 .28
TL-CNN CD-CNN 216 <.01 1018 <.01
TL-CNN ACS-CNN 62 <.01 938 <.01
PCS-CNN CD-CNN 535 <.01 1958 <.05
PCS-CNN ACS-CNN 114 <.01 1350 <.01
CD-CNN ACS-CNN 88 <.01 1443 <.01

Table 3.4: Wilcoxon rank sum test on pairwise differences between the Dice coeffi-
cient and the bias of the volume differences. The W-statistic and P-value are shown
in this table. The TL-CNN produced a significantly greater Dice coefficient than the
other methods. The PCS-CNN produced a significantly greater Dice coefficient than
the CD-CNN and ACS-CNN and the CD-CNN produced a significantly greater dice
coefficient than the ACS-CNN. The TL-CNN produced a significantly smaller bias
than the CD-CNN and ACS-CNN, the PCS-CNN produced a significantly smaller
bias than the CD-CNN and ACS-CNN and finally, the CD-CNN produced a signifi-
cantly smaller bias than the ACS-CNN.
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4. THROMBUS LOCALIZATION AND SEGMENTATION

Abstract

Thrombus volume in posterior circulation stroke (PCS) has been asso-
ciated with out-come, through recanalization. Manual thrombus seg-
mentation is impractical for large scale analysis of image characteristics.
Hence, in this study we develop the first automatic method for thrombus
localization and segmentation on CT in patients with PCS. In this multi-
center retrospective study, 187 patients with PCS from the MR CLEAN
Registry were included. We developed a convolutional neural network
(CNN) that segments thrombi and restricts the volume-of-interest (VOI)
to the brainstem (Polar-UNet). Furthermore, we reduced false positive
localization by removing small-volume objects, referred to as volume-
based removal (VBR). Polar-UNet is benchmarked against a CNN that
does not restrict the VOI (BL-UNet). Performance metrics included the
intra-class correlation coefficient (ICC) between automated and manu-
ally segmented thrombus volumes, the thrombus localization precision
and recall, and the Dice coefficient. The majority of the thrombi were
localized. Without VBR, Polar-UNet achieved a thrombus localization
recall of 0.82, versus 0.78 achieved by BL-UNet. This high recall was ac-
companied by a low precision of 0.14 and 0.09. VBR improved precision
to 0.65 and 0.56 for Polar-UNet and BL-UNet, respectively, with a small
reduction in recall to 0.75 and 0.69. The Dice coefficient achieved by
Polar-UNet was 0.44, versus 0.38 achieved by BL-UNet with VBR. Both
methods achieved ICCs of 0.41 (95% CI: 0.27-0.54). Restricting the VOI
to the brainstem improved the thrombus localization precision, recall,
and segmentation overlap compared to the benchmark. VBR improved
thrombus localization precision but lowered recall.
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4.1 Introduction

Stroke due to a large vessel occlusion in the posterior circulation accounts for

approximately 1% [186; 191] of all cases of acute ischemic stroke and is asso-

ciated with poor outcome [199]. Posterior circulation stroke (PCS) may have

an acute onset or a progressive and stuttering onset, and may produce symp-

toms that are not typically associated with anterior stroke, such as vertigo and

nausea [186]. Therefore, PCS is associated with a higher chance of misinterpre-

tation and under-diagnosis in clinical practice than anterior circulation stroke

(ACS) [175; 182], which has resulted in long delays in door-to-needle times

of patients suffering from a PCS compared to patients suffering from an ACS

[193; 196]. Reducing time from symptom onset to treatment may improve the

outcome of patients suffering from a PCS who are treated with intravenous

alteplase treatment and/or endovascular treatment [177; 181; 189].

Localizing an occluding thrombus causing PCS on radiological imaging is

not a problem for expert neuro-radiologists and can be done quickly [197].

However, timely access to the services of an expert neuro-radiologist may not

be possible in primary stroke centers because of the limited number of avail-

able neuro-radiologists. Automated localization of PCS may help to avoid

misinterpretation in the case of a PCS. In addition to localization, segmenta-

tion of the thrombus would allow for automatic quantification of thrombus

volume. Thrombus volume was previously reported to be negatively associ-

ated with recanalization and a higher likelihood of poor functional outcome

[176; 194]. Recently proposed methods for the automated localization and

segmentation of thrombi in stroke patients make use of convolutional neural

networks (CNNs) [184; 198; 201]. Training CNNs requires imaging data from

a large number of patients to reach an acceptable localization accuracy. For

anterior circulation stroke, data from large numbers of patients are available

even in single medical centers. However, data from patients suffering from a

PCS are scarce.

As opposed to thrombi in patients with an ACS, thrombi in patients with a

PCS occur in a more limited area around the brainstem. This characteristic can

be used to improve the performance of a CNN-based thrombus localization

and segmentation method. A CNN can learn how to center a moving Volume-
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of-Interest (VOI) on the brainstem and evaluate only locations with a high

likelihood of a thrombus. We hypothesize that tracking the brainstem with

a small VOI improves the localization and segmentation of thrombi in the

posterior circulation. In addition, we hypothesize that by removing small,

segmented thrombi, the number of false positive thrombus localizations can

be reduced.

In this study, we aim to develop and evaluate the first automatic CNN-

based method for thrombus localization and segmentation on baseline on

non-contrast CT (NCCT) and CT angiography (CTA) in patients suffering

from a PCS.

4.2 Materials & Methods

4.2.1 Materials

The data used in this study were obtained from a prospective and nationwide

observational study on endovascular treatment in the Netherlands (the MR

CLEAN Registry [180]. The data were collected in 16 centers that performed

endovascular treatment in the Netherlands between March 2014 and January

2019. The dataset used in our study included all patients from the MR CLEAN

Registry that suffered from a PCS and consisted of NCCT and CTA scans

from 268 patients. Hence, patients were also included if they suffered from an

anterior circulation stroke (three patients) or a subarachnoid hemorrhage (one

patient) in addition to a PCS. Patients were excluded if no baseline CTA was

available, the scan quality was too low, registration of the NCCT to the CTA

was unsuccessful, or if the patient had a non-occlusive thrombus or dissection.

The Medical Ethics Committee of the Erasmus University Medical Center in

Rotterdam, the Netherlands, approved the MR CLEAN Registry (MEC-2014-

235). In addition, the institutional review board of each participating center

approved the MR CLEAN research protocol.

87



44444

4.2. MATERIALS & METHODS

4.2.2 Reference Annotations

Two types of annotations were made: reference thrombus segmentations,

and annotations of the reference path, which runs through the structures of

the brainstem. The reference segmentations of the thrombi were obtained

by manual annotation. One trained observer (RZ) manually segmented the

thrombi, and the second observer (AAEB) corrected the segmentations if

necessary. A window width of 30 Hounsfield units (HU) and a center level

of 35 HU was used for the NCCT scan, and a window width of 600 HU

and a center level of 300 HU was used for the CTA scan. Annotations were

made using ITK-Snap. For each patient, a case record form was available

from an imaging core lab, which indicated the location of the occlusion and

whether a Hyper-dense Artery Sign (HAS) was visible on the NCCT. The

information about the location of the occlusion was used to guide the manual

annotation. If the patient had a HAS, the NCCT was used to create the

reference segmentation. Otherwise, the absence of arterial filling on the CTA

was used to create the reference segmentation.

The reference path through the brainstem was annotated by one trained

observer (RZ). The path started in the spinal cord, continued through the

medulla oblongata, pons and midbrain. The reference path was marked by

annotating a single voxel per axial slice in ITK Snap.

4.2.3 Preprocessing

To limit the size of the scan, all slices 25 cm below the top of the skull were

excluded. Next, to align the anatomical structures in the CTA to those in the

NCCT, the CTAs were registered to the NCCT by using rigid transformations.

Finally, the voxel intensities were clipped between 100 and 200 HU and nor-

malized between minus one and one. The pre-processing was done using

SimpleITK and python 3.8.5.
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4.2.4 CNNs for Automatic Posterior Circulation Throm-

bus Localization and Segmentation

Existing deep-learning methods result in false positive localization and seg-

mentation if they are used on small objects. We developed a method to reduce

the number of false positive localizations by restricting the VOI to a region

that included the brain stem, which was most likely to contain a thrombus in

patients suffering from a PCS. To restrict the VOI to the brainstem, the method

had to learn how to move the VOI towards the brainstem on an axial slice. The

movement from the center of the VOI at a given location was parame-terized

as a circle with a radius and an angle (polar coordinates). The method learned

to regress these polar coordinates and was named polar-UNet. In addition to

regressing the polar coordinates, polar-UNet classified what action should be

taken at each step: to move the VOI within the current axial slice, segment

and move up one axial slice, or to stop the inference procedure.

The architecture of the regression and classification heads of the polar-

UNet is shown in Figure 4.1A. To create the polar-UNet, the regression and

classification head were added to the down-sampling path of the baseline

UNet (BL-UNet), which is shown in Figure 4.1B. Features were extracted at

four levels of the down-sampling path. These features were input into four

separate convolutional layers and global average-pooled. Next, the extracted

features were concatenated with the relative coordinates of the VOI in the scan

volume and input into two shared fully connected layers, which consisted of

256 neurons each. The output of the shared layer was passed to the individual

network heads, which regressed either the angle or the radius, or classified

the action. The angle regression head used a TanH activation, the radius

regression head used a sigmoid activation, and the action classification head

used the softmax activation function in the output layer. Finally, polar-UNet

also had the same up-sampling path as BL-UNet.

The BL-UNet was inspired by U-Net [192] and consisted of 3D ResNet

[179] blocks. The down-sampling path started with two convolutional layers,

which consisted of a kernel size of three and a stride of one. It was followed by

a max-pooling operation with a kernel size and stride of two. Subsequently,

three down-sampling blocks, which consisted of a 3D ResNet layer each,
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Figure 4.1: (A) The polar-UNet is created by attaching the following operations
to the BL-UNet. The features from four levels in the down-sampling path are input
to four blocks consisting of two convolutions. The output is global average-pooled
and concatenated before being passed to the fully connected shared layers. Finally,
individual fully connected layers are used to classify the action and regress the angle
and the radius. (B) Three-dimensional Baseline UNet (BL-UNet). Three-dimensional
ResNet blocks followed by a max-pooling operation (green) were used to construct
the down-sampling path (left). Three-dimensional ResNet blocks followed by a trans-
posed convolution were used to construct the up-sampling path (right). The features
generated in the down- and up-sampling paths are blue and yellow, respectively.
Skip connections were added between the up-sampling and down-sampling paths.
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were added. The first two blocks were followed by a max-pooling layer

with a stride and pooling size of two. The up-sampling path started with

a transposed convolution. Next, two up-sampling blocks, which consisted

of a ResNet block followed by a transposed convolution, were added. Each

transposed convolution had a stride of two and a kernel size of three. The

features of the down-sampling path were concatenated with the features in

the up-sampling path. The up-sampling path was followed by a three-by-

three convolution and a one-by-one convolution. During inference, BL-UNet

was applied to a non-overlapping grid of VOIs extracted from the entirety of

each scan. The CNNs were implemented using Pytorch 1.5.1 [190].

4.2.5 Experimental Setup

The BL-UNet was randomly initialized and trained on VOIs sampled from

the scan volumes. To ensure the data contained sufficient positive examples,

40 percent of the sampled VOIs contained a thrombus. The up-sampling

and down-sampling paths of the polar-UNet were initialized by reusing the

weights obtained by the pre-trained BL-UNet and were not updated during

training. The BL-UNet used group normalization with 4 groups, the ReLU

activation, a batch size of 32, a cyclical learning rate schedule, the Adam

optimizer and a weight decay of 20−6. The BL-UNet was trained for 300

epochs with 148 iterations per epoch.

The polar-UNet applied batch-normalization to the layers that were up-

dated during training and used a batch size of 128. The focal loss function

[183] was used for the segmentation and classification tasks, and the L2 loss

for the regression tasks. The polar-UNet was trained for 100 epochs with 148

iterations per epoch. Both CNNs used a maximum learning rate of 10−3, a

minimum learning rate of 20−5, and the weight decay was set to 20−5. The

learning rate was linearly increased to the maximum value in 300 iterations

and decreased to the minimum value in 300 iterations.

The polar coordinate reference values that were needed to move the VOI to

the area around the brainstem were calculated using the reference path. The

angle reference value was calculated as the angle between the coordinates

of the center of the VOI and the coordinates of the reference path on the

same axial slice. To allow for easier optimization, the angle reference values
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were normalized between 0 and 2. The radius reference value indicated the

step size that the VOI had to be moved to minimize the Euclidean distance

between the center of the VOI and the reference path on the same axial slice.

The radius was limited to the width of the VOI and normalized between 0

and 1 to allow for easier optimization.

The inference procedure of the polar-UNet is shown in the supplementary

materials Algorithm 1. We initialized the VOI at the center of the most caudal

axial slice in the scan. Per axial slice, the VOI could only be moved within

the axial slice 10 times before the VOI location was moved up by one axial

slice. If the VOI moved out of the bounds of the volume, the VOI location

was moved up by one slice and reset to the center of the axial slice.

Data augmentation was applied during training. The axial slices in the

scan volumes were rotated at an angle between minus ten and ten degrees

and, with a probability of 0.5, were flipped. Furthermore, the scan volumes

were magnified by a factor between 0.9 and 1.1 and translated in the axial

plane by a maximum of 80 voxels. Polar coordinates reference values were

updated accordingly. The sampled VOIs had dimensions of 192 × 192 × 8.

We used stratified five-fold cross-validation to evaluate the performance of

the CNN architectures. The hyper-parameters used in our study were found

by evaluating multiple sets of hyper-parameters on the first fold and selecting

the ones with the highest testing performance. To prevent inflation of the

results due to the first fold being used to find the optimal hyper-parameters,

this fold was excluded from the evaluation. To improve the localization

precision of the CNNs, only connected components larger than 0.065 mL

were included in further analyses. We refer to this step as Volume-based

Removal (VBR).

4.2.6 Evaluation

To evaluate the localization performance of our models, we calculated the

thrombus localization precision and recall. Hence, the number of True Pos-

itive (TP), False Positive (FP), and False Negative (FN) localizations had to

be calculated. To calculate the TP, FP, and FN localizations, the segmenta-

tion maps had to be divided into individual connected regions. Thus, a

connected-components analysis was run on the automatically created and
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manually annotated segmentations. If two connected components from the

manually annotated segmentation and the corresponding automatically cre-

ated segmentation had ten percent or more of their voxels overlapping, this

was counted as a TP localization. If a connected component from the automati-

cally created segmentation had less than ten percent overlap with a connected

component from the manually annotated segmentation it was counted as a FP

localization. If a connected component from the manually annotated segmen-

tation did not have more than ten percent overlap with any of the connected

components from the automatically created segmentation, it was counted as

a FN.

The intra-class correlation coefficient (ICC) was used to evaluate the agree-

ment be-tween the volume derived from the automatically and manually

segmented thrombi. We included the 95% confidence interval (95% CI) in our

analysis. Furthermore, we performed a Bland-Altman analysis to evaluate

the bias and limits of agreement of the volume measurements. We tested

whether the ICC of the automated segmentations created by the two CNN

architectures with and without VBR differed significantly by using Fishers r

to z transformation.

The segmentation overlap of the CNNs was evaluated by calculating the

Dice coefficient between the reference and the automatic segmentation. If no

thrombus was visible in the scan, the Dice coefficient would always equal

zero and would always deflate the results artificially. Hence, patients with

no visible thrombus in the scan were excluded from the analysis of the Dice

coefficient.

The obtained metrics were tested for normality with Shapiro-Wilk tests. If

the obtained metrics followed a normal distribution, paired t-tests were used

for comparison, otherwise Wilcoxon rank-sum tests were used. A Bonferroni

correction was applied to P-values to correct for family-wise error. Finally,

thrombi in the posterior circulation most commonly occur in the basilar artery.

Therefore, we evaluated whether thrombus location influenced true positive

thrombus localization, volume agreement, and segmentation overlap. Throm-

bus location was obtained from the case report file of each patient. The Python

library Pingouin, version 0.3.1 was used for all statistical testing.
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4.3 Results

The patient flow chart is shown in the supplementary materials, Figure 4.4.

In total, 187 patients were included in our study. The baseline characteristics

of the included patients are shown in the supplementary materials, Table 4.2.

In 185 out of 187 scans (99%) a thrombus was visible and was manually

annotated. After exclusion of the patients in the test set of the first fold, due

to this fold being used for hyper-parameter optimization, 149 scans were left

to evaluate the results on.

The thrombus localization recall varied between 129 (69%) and 146 (82%).

The thrombus localization recall before and after VBR for the BL-UNet and

polar-UNet is shown in Table 1. Overall, the Polar-UNet improved the throm-

bus localization recall over BL-UNet, and VBR reduced the thrombus local-

ization recall of both CNNs.

Localization Recall

Overall

N = 149

VA

N = 9

BA

N = 37

VA + BA

N = 22

BA + PCA

N = 49

VA + BA + PCA

N = 8

PCA

N = 19

NAV

N = 5

No VBR BL-UNet 0.78 0.58 0.86 0.76 0.89 1 0.46 0
Polar-Unet 0.82 0.75 0.94 0.83 0.87 0.9 0.46 0.33

VBR BL-UNet 0.69 0.42 0.61 0.69 0.73 0.8 0.15 0
Polar-UNet 0.75 0.67 0.81 0.83 0.8 0.9 0.31 0.33

Localization Precision

No VBR BL-UNet 0.09 0.10 0.09 0.12 0.11 0.15 0.04 0
Polar-UNet 0.14 0.27 0.14 0.17 0.13 0.23 0.05 0.04

VBR BL-UNet 0.56 0.56 0.55 0.65 0.53 0.73 0.29 0
Polar-UNet 0.62 0.57 0.66 0.77 0.55 1 0.4 0.2

Dice Coefficient N = 147 *
No VBR BL-UNet 0.38 0.30 0.42 0.42 0.45 0.5 0.15 0.09

Polar-UNet 0.44 0.34 0.49 0.50 0.48 0.56 0.2 0.26
VBR BL-UNet 0.35 0.21 0.37 0.42 0.44 0.5 0.07 0

Polar-UNet 0.44 0.33 0.50 0.52 0.48 0.62 0.12 0.17

Table 4.1: Thrombus localization recall and precision in the posterior circulation and
the Dice coefficient of the BL-UNet and Polar-UNet, with and without volume-based
removal (VBR). Results are shown for the entire dataset (overall), the vertebral artery
(VA), basilar artery (BA), posterior cerebral artery (PCA), thrombi which crossed
multiple segments (VA + BA, BA + PCA, VA + BA + PCA), and patients for whom
the thrombus location was not indicated (NAV). ∗ Two scans did not have a visible
thrombus. Hence, the Dice coefficient was calculated for 8 patients with a thrombus
in the VA and 4 with an unspecified occlusion location (NAV).

The thrombus localization precision before and after VBR for the BL-UNet

and polar-UNet is shown in Table 4.1. In all cases, Polar-UNet improved the

thrombus localization precision over the BL-UNet, and VBR improved the

thrombus localization precision of both CNNs (Figure 4.2). However, for all
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cases the thrombus localization precision is low with an overall maximum of

62%.

The median thrombus volume was 0.15 (IQR: 0.070.34) mL. The ICC for

the volume agreement of the BL-UNet and Polar-UNet without VBR were

0.38 (95% CI: 0.230.51) and 0.4 (95% CI: 0.250.53). With VBR, the ICCs for

the volume agreement of the BL-UNet and Polar-UNet were both 0.41 (95%

CI: 0.270.54). There was no statistically significant difference between the

volumetric agreement of the various methods. The Bland-Altman analysis

for each of the CNNs resulted in biases ranging from 0.06 mL for the Polar-

UNet without VBR to 0.06 mL for the BL-UNet with VBR. The LoAs were the

smallest for the BL-UNet with VBR, ranging from 0.64 to 0.77 mL. The LoAs

were largest for the Polar-UNet without VBR, ranging from 0.83 to 0.71 mL.

The bias and LoAs for the volume analysis are shown in the supplementary

materials, Table 4.4, and the Bland-Altman results are shown in Figure 4.3.
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Figure 4.2: Examples of automatic segmentation results obtained by BL-UNet and
Polar-UNet. From the left to right column: The original scan with a bounding box
indicating the zoom location, the ground truth segmentation map, the results ob-
tained from the BL-UNet without volume-based removal (VBR), the results obtained
from the Polar-UNet without VBR, and the results obtained from the Polar-UNet
with VBR. The top three rows display NCCT scans; the bottom row shows a CTA
scan. The top row shows the difficulty all CNN methods have with segmenting a
thrombus in the vertebral arteries. The second row from the top shows an example
of small false positives removed by the VBR step. The third row from the top row
shows false positives that are re-moved by restricting the volume-of-interest to the
posterior circulation with Polar-UNet. The bottom row shows an example of a scan
without a hyperdense artery sign. The segmentation maps show the ground truth
(pink), true positive (green), false negative (orange) and false positive (blue). The
NCCT scans were plotted using a window center level of 35, with a window width
of 30. The CTA scan was plotted using a window center level of 300, with a window
width of 600.

The Dice coefficients for the automated thrombus segmentation are shown

in Table 4.1. The results of the Wilcoxon rank-sum test are shown in the

supplementary materials, Table 4.3. The results show that the Polar-UNet

with VBR results in a statistically significantly larger Dice coefficient than

the other methods. Furthermore, the Polar-UNet without VBR results in a
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significantly greater Dice coefficient than the BL-UNet with or without VBR.

Figure 4.3: Comparison of the automated and manually segmented volume for
the BL-UNet and Polar-UNet with and without volume-based removal (VBR). Left
column: BlandAltman plots of the lesion volumes. The volumes corresponding to
the reference and automatic segmentations are shown on the x-axis, and the volume
difference is shown on the y-axis. Right column: scatter plots comparing lesion
volumes derived from the reference segmentations (y-axis) and from the automatic
segmentations determined by the CNN (x-axis).
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4.4 Discussion

In this study we have presented the first CNN-based method to segment and

localize thrombi in patients suffering from PCS. The restriction of the VOI to

areas in the vicinity of the brainstem improved the segmentation overlap and

thrombus localization precision and recall over the baseline method. The VBR

of small objects improved the thrombus localization precision of our method

but reduced the recall. Regardless of whether VBR of small objects is applied,

the bias of the automated volume quantifications is small, but the limits of

agreement are large. Finally, there is room to improve the methods volume

agreement and segmentation overlap.

Our study is the first to address the automated localization and segmenta-

tion of thrombi in the posterior circulation on CTA and NCCT. Prior work has

focused on identifying scans with a Large Vessel Occlusion (LVO) in the an-

terior circulation on a single-phase [174; 195] and multi-phase [187; 198] CTA.

Two studies included patients suffering from both types of stroke, either in the

posterior or anterior circulation [188; 198]. However, a limitation is that not

all studies report results specific to the posterior stroke patient group [198].

Another limitation of prior work is that the thrombus is not localized, nor is

it segmented. Only the presence or absence of an LVO in a scan is indicated.

Other work aimed to localize or segment thrombi on NCCT scans of patients

suffering from either anterior or posterior circulation stroke [184; 185; 201] .

One study used feature extraction and a random forest classifier [185]. This

study did not mention the location of the thrombi in their dataset. Other

work has used deep learning to localize or segment thrombi on NCCT scans

of patients in the anterior circulation [184; 201]. A key feature of these methods

is that a comparison between hemispheres was made to improve localization

or segmentation performance. A comparison between hemispheres has no

added value to PCS thrombus localization and segmentation, because of the

absence of lateral symmetry of the basilar artery.

Our study has several limitations. First, our method is not accurate at local-

izing and segmenting thrombi in the vertebral and posterior cerebral artery.

This is likely because of the rareness of thrombi in these sections. Hence, data

from few patients with occlusions in these regions were available to train our
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method on. In contrast, our method does achieve a good localization preci-

sion and a reasonable segmentation accuracy for thrombi in the basilar artery,

which is the most common location for PCS. Second, our data was annotated

by one trained observer. Hence, the inter-observer agreement could not be

assessed. However, the manual segmentations were verified and corrected by

another experienced observer. Third, the method achieved a low volumetric

agreement and segmentation overlap between the manually and automati-

cally segmented thrombi. Still, the volumetric agreement is similar to those

reported in a study that focuses on thrombus segmentation and localization

in the anterior circulation [201]. This is despite our method not being able to

use lateral symmetry information, as was done by methods for anterior stroke

localization and segmentation. Furthermore, the low Dice coefficient can be

explained by the small size of the thrombi. For small object segmentation,

the Dice coefficient is over-sensitive to small errors [200]. Fourth, manual

segmentation of thrombi in patients without a HAS and with poor collateral

status on single phase CTA leads to an overestimation of thrombus length

[178]. The overestimation of thrombus length is caused by a delayed contrast

arrival. Hence, our method may, just like manual segmentations, overesti-

mate the true length of the occluding thrombus. Fifth, since there were no

additional large datasets with patients with posterior stroke available, our

method lacks validation on an external dataset. Thus, results may vary when

our algorithm is trained on or applied to other datasets. However, the data

in our study were collected from sixteen different centers. Our algorithm

was nonetheless evaluated on a heterogeneous set of scans. As more image

data of patients with posterior stroke become available, our method may be

improved and validated by including this image data.

A valuable application of deep learning is to automate time-critical and

labor-intensive tasks such as the localization and segmentation of small ob-

jects in radiological imaging. Our study has shown that for small object

segmentation and localization, a standard deep-learning-based segmentation

method would result in large amounts of false positives. In this study we

have presented an approach that combines restricting the segmentation and

localization to the region in which the occlusion occurs, and excluding small

objects. We have shown that this combination reduces the number of false
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positives.

The automated posterior thrombus localization and segmentation method

is the first step towards a method that allows associations between thrombus

characteristics, such as thrombus volume and length, and PCS outcome to be

easily studied in clinical trials.
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4.5 Supplementary Materials

4.5.1 Appendix A

Figure 4.4: Flow chart showing the inclusion of the patients with a posterior
circulation stroke in the MR CLEAN Registry. Exclusion criteria were: no CTA
available (n = 21), poor image quality (n = 16), preprocessing error (n = 42), or a
non-occlusive thrombus or dissection (n = 2). In total, 187 patients were included.
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4.5.2 Appendix B

Parameter Posterior Stroke

Clinical
Age, years, median (IQR) 65.5 (20.8)
Sex, F, no. [%] 72/186 [38.7]
NIHSS at baseline, median(IQR) [N] 15 [22] (183)

Prior Conditions
Diabetes mellitus, no. [%] 32/184 [17.4]
Hypertension, no. [%] 97/181 [53.6]
Stroke, no. [%] 30/183 [16.4]
Atrial fibrillation, no. [%] 25/184 [13.6]

Pre-Stroke mRS
0, no. [%] 126/180 [70]
1, no. [%] 19/180 [10.6]
2, no. [%] 17/180 [8.4]
3, no. [%] 7/180 [3.9]
4, no. [%] 8/180 [4.4]
5, no. [%] 3/180 [1.7]

Treatment
IV Thrombolysis, no. [%] 102/186 [54.8]

Time
Stroke onset to IVT, minutes, median [IQR](N) 98 [73] (93)

Table 4.2: Baseline characteristics, treatment, and time data for included patients
with posterior circulation stroke.
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Method 1 Method 2 Dice Coefficient Bias

W p-Value W p-Value

BL-UNet BL-UNet (with VBR) 3039 >0.05 3698 >0.05
BL-UNet Polar-Unet 2415 <0.01 5392 >0.05
BL-UNet Polar-Unet (with VBR) 2481 <0.01 4361 >0.05
BL-UNet (with VBR) Polar-Unet 2551 <0.01 4832 >0.05
BL-UNet (with VBR) Polar-Unet (with VBR) 1367 <0.01 3703 >0.05
Polar-Unet Polar-Unet (with VBR) 2431 <0.05 3153 <0.01

Table 4.3: Wilcoxon rank-sum test on pairwise differences between the Dice coeffi-
cient and the bias of the volume differences. The W-statistic and p-value are shown.
The Polar UNet (with VBR) produced a significantly greater Dice coefficient relative
to the other methods. The Polar- UNet produced a significantly greater Dice coeffi-
cient relative to the BL-UNet (with VBR) and the BL-UNet. No method significantly
improved the bias of the volume estimation other than the Polar-UNet (with VBR)
over the Polar-UNet.

Bias LoA

No VBR BL-UNet 0.01 mL 0.75 to 0.73 mL
Polar-UNet 0.06 mL 0.83 to 0.71 mL

VBR BL-UNet 0.06 mL 0.64 to 0.77 mL
Polar-Unet 0.01 mL 0.77 to 0.75 mL

Table 4.4: Bias and limits of agreement between the automatically and manually
segmented thrombus volumes, respectively, for the BL-UNet and Polar-UNet with
and without volume-based removal (VBR).
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4.5.3 Appendix C

Algorithm 1: Inference procedure for the Polar-UNet
Data: scan : SH×W×D ,Max Iterations per Slice : M =

10 ,Starting Coordinates : C =

(256, 256) ,Predicted Segmentation : P = OH×W×D

for i← 0 to D do

for j← 0 to M do

VOI← extract(S,C) ;

angle← predict(VOI) ;

radius← predict(VOI) ;

action← predict(VOI) ;

VOIsegmentation ← predict(VOI) ;

if action == move then

C← updateCoordinates(angle, radius);

else if action == segment then

P← updateSegmentation(VOIsegmentation,C) ;

C← updateCoordinatesUpward() ;

else if action == stop then

stopInferenceProcedure() ;

end

end

return P
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5. PERINATAL ARTERIAL ISCHEMIC STROKE

Abstract

Background: Perinatal arterial ischemic stroke (PAIS) is associated with
adverse neurological outcomes. Quantification of brain development in
these infants relies on labor-intensive manual assessment of brain tis-
sues and ischemic lesions. Hence, we propose an automatic method
exploiting convolutional neural networks (CNNs) to segment brain tis-
sue classes and ischemic lesions in MRI scans of infants suffering from
PAIS.

Materials and Methods: This single-center retrospective study included
115 patients with PAIS that underwent MRI after the stroke onset (base-
line) and after three months (follow-up). Nine baseline and 12 follow-up
MRI scans were manually annotated to provide reference segmentations
(white matter, gray matter, basal ganglia and thalami, brainstem, ventri-
cles, extra-ventricular cerebrospinal fluid, and cerebellum, and addition-
ally on the baseline scans the ischemic lesions). Two CNNs were trained
to perform automatic segmentation in the baseline and follow-up MRIs.
Automatic segmentations were quantitatively evaluated using the Dice
coefficient (DC) and the mean surface distance (MSD). Agreement be-
tween volumes obtained by automatic and reference segmentations was
computed. Moreover, the scan quality and automatic segmentations
were qualitatively evaluated in a larger set of MRIs without manual an-
notation by two experts. Agreement between the method and the raters
and between the raters was established.

Results: Brain tissues segmentation led to the average DC and MSD
between 0.78-0.92 and 0.18-1.1 mm for baseline, and between 0.88-0.95
and 0.10-0.58 mm for follow-up scans, respectively. For the ischemic
lesions at baseline these measurements were on average 1.23 and 2.2
mm. Volumetric measurements indicate limited oversegmentation for
the extra-ventricular cerebrospinal fluid and the ischemic lesions, and
undersegmentation of the ischemic lesions of the automatic method in
the baseline and follow-up scans. In scans without imaging artifacts,
brain tissue segmentation was graded as excellent in more than 85% and
91% of cases, respectively for the baseline and follow-up scans. For the
ischemic lesions at baseline, this was in 61% of cases.

Conclusions: The results show that automatic segmentation of brain
tissue classes and ischemic lesions in MRI scans of patients with PAIS
is feasible. The method may allow evaluation of the brain development
and efficacy of treatment in large datasets.

113



5555555

5.1. INTRODUCTION

5.1 Introduction

PAIS has an incidence rate of 1±5000 live births [205; 208; 215; 221; 229] and

is associated with adverse motor and cognitive outcomes [216; 226]. Infants

suffering from PAIS often present with hemi-convulsions and subsequently

undergo neonatal brain MRI to diagnose PAIS (baseline). A follow-up scan,

acquired weeks or months later, allows evaluation of residual damage and

may improve prediction of outcome (follow-up). Currently, stroke size and

location on the neonatal MRI scan and the effect of the stroke on brain devel-

opment are assessed by qualitative visual evaluation of the MRI. However,

qualitative evaluation is subjective and prone to intra- and inter-observer vari-

ability. Hence, quantitative evaluation would be preferred for the assessment

of the ischemic lesion and the brain tissue classes affected and unaffected by

stroke. Moreover, quantitative analysis would allow evaluation of the effects

of neuro-regenerative interventions such as recombinant human erythropoi-

etin (rhEPO) and mesenchymal stromal cells and might improve long-term

outcome prediction [202–204]. For this quantitative analysis, accurate seg-

mentation of the brain tissue classes and ischemic lesions in each hemisphere

in baseline and follow-up MRI acquisitions is needed.

Given the complexity of the task, manual segmentation of brain tissue

classes is practically infeasible in the clinical routine as well as in large studies.

Hence, automatic segmentation would be required. In prior research, meth-

ods for automated segmentation of brain tissue classes in MRI scans of infants

without large pathology have been developed [212; 213; 219]. However, stroke

impacts appearance and the shape of the brain tissues and therefore, meth-

ods developed for analysis of the brain without substantial pathology are not

directly applicable for segmentation of MRIs presenting stroke. In addition,

after the stroke onset, ischemic areas are well visible on DWI and poorly

visible on T2-weighted MRI that best shows different brain tissue classes.

Therefore, several methods have been developed to segment ischemic lesions

in neonatal MRI scans that analyzed one or both of these MRI sequences. For

example, Murphy et al. developed a method to segment hypoxic-ischemic

brain tissue in new-born infants with hypoxic-ischemic encephalopathy on
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DWI [220]. This method classified ischemic voxels based on their spatial and

intensity features with a random forest classifier. Ghosh et al. developed

method to segment the ischemic lesion using DWI and apparent diffusion co-

efficient (ADC) maps [209]. Their method used hierarchical region splitting

and symmetry based region growing to segment the ischemic lesion. Išgum

et al. segmented the ischemic lesions using DWI and ADC maps. Initial seg-

mentations were made by comparing the ADC maps of the patients to those

of control subjects. Subsequently, these segmentations were refined by using

spatial and texture features along with a linear discriminant classifier [211].

To the best of our knowledge, deep learning methods for ischemic stroke

segmentation have been applied only to brain MRI scans in adults. Zhang et

al proposed a 3D convolutional neural network (CNN) to segment ischemic

stroke in adult DWI [231]. Thereafter, Praveen et al. used an auto-encoder in

conjunction with a support vector machine to discriminate between normal

and ischemic tissue on co-registered T1-weighted, T2-weighted, DWI and

FLAIR MR scans [223]. All of the aforementioned methods segment brain

tissue affected by ischemia but do not segment unaffected brain tissue classes.

However, to quantify the treatment effect or improve outcome prediction after

stroke, quantitative analysis of these tissues may be important as well. Given

that PAIS typically affects one hemisphere, analysis of brain tissue classes per

hemisphere would allow comparison and quantification of the stroke damage.

Hence, in this study, we propose an automatic method that uses a CNN

to segment the brain tissue classes and the ischemic lesions per hemisphere

in infants suffering from PAIS on baseline and follow-up MRI scans. Specif-

ically, we segment the white matter (WM), gray matter (GM), basal ganglia

and thalami (BGT), brainstem (BST), ventricular cerebro-spinal fluid (vCSF),

the extra-ventricular cerebro-spinal fluid (eCSF), and cerebellum (CB), and

ischemic tissue. Given the differences in the visibility of the stroke and dif-

ferences in brain tissues caused by brain maturation in newborns, we train

two age-specific instances of the network architecture: one for the segmenta-

tion of baseline (baseline network) and another for the follow-up (follow-up

network) brain MRI scans. Brain tissues are best visible on T2-weighted MRI
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scans while the early ischemic changes result in diffusion restriction, best

visualized with DWI. Therefore, the baseline network analyses both DWI

and T2-weighted MRI scans. On follow-up scans, the diffusion restriction on

DWI is no longer present and tissue damaged by the diffusion restriction is

often filled with eCSF. Hence, only the T2-weighted scan is analyzed by our

follow-up network.

5.2 Materials & Methods

5.2.1 Materials

The study includes 115 newborn infants admitted to the Neonatal Intensive

Care Unit, University Medical Center Utrecht, the Netherlands that suffered

from PAIS, which was confirmed on MRI. The patient characteristics are

shown in Table 5.1. Informed consent was obtained from the parents verbally

to perform an MRI.

Patients underwent baseline MRI of the brain usually within one week

after birth. Three scanners were used, a 1.5T Phillips Achieva, a 3T Phillips

Achieva, and a 3T Phillips Ingenia Elition X scanner. All scans were acquired

in the axial plane. The image acquisition parameters are listed in Table 5.2.

Two to three months after the baseline scan, a follow-up MRI scan was made.

Patients were scanned with a 1.5T or a 3T Phillips Achieva scanner. The image

acquisition parameters are shown in Table 5.2.

5.2.2 Reference annotations

To train and evaluate the automatic segmentation, manual expert annotations

of brain tissue classes and ischemic lesions were performed in 9 baseline and

in 12 follow-up MRI scans. These scans contained no image artifacts. Man-

ual annotations of brain tissue classes (WM, GM, BGT, BST, vCSF, eCSF, CB)

were made in T2-weighted MRI at both baseline and follow-up following the

definition described in [210]. Manual annotation of the ischemic lesions was

made using the T2-weighted and DWI MRI available at baseline. Given the
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Parameter Baseline (N=115) Follow-up (N=97)

Clinical
Birthweight, grams, Median (IQR) 3360 (596) 3390(619)
Sex, F, No. [%] 50 [43.5] 46[42.2]
Seizures, No. [%] 85[74] 78[72]
Postnatal day at first seizure, Median(IQR)[N] 1(2)[60] 1(2)[54]
Postnatal day at MRI, Median(IQR) 4(2) 91(25)

Side of Ischemic Lesion
Right, No. [%] 44/115[38] 40/109[37]
Left, No. [%] 65/115[56] 62/109[57]
Bilateral, No. [%] 6/115[5] 7/109[6]

Vascular Territory
Main MCA, No. [%] 21/115[18] 21/109[19]
Anterior MCA branch, No. [%] 12/115[10] 9/109[9]
Middle MCA branch, No. [%] 16/115[14] 16/109[15]
Posterior MCA branch, No. [%] 24/115[21] 22/109[20]
Cortical MCA branch, No. [%] 18/115[16] 16/109[15]
Perforator branch, No. [%] 17/115[15] 17/109[16]
PCA, No. [%] 5/115[4] 6/109[6]
ACA, No. [%] 2/115[2] 2/109[2]

Table 5.1: Patient characteristics, ischemic lesion hemisphere, and vascular territory
of the scans acquired at baseline and follow-up.

Scan Time Sequence Matrix Size Voxel Dimensions Field Strength TE/TR N

Baseline T2w 512 x 512 0.35 x 0.35 x 2.0 mm 3T 120/6629 89
512 x 512 0.45 x 0.45 x 2.0 mm 3T 120/6277 1
256 x 256 0.7 x 0.7 x 2.0 mm 1.5T 50/7670 24
384 x 384 0.34 x0.34 x 2.0 mm 3T 120/6276 1

DWI 224 x 224 0.8 x 0.8 x 3.0 mm 3T 114/5453 69
256 x 256 0.7 x 0.7 x 4.0 mm 1.5T 89/4000 26
256 x 256 0.9 x 0.9 x 3.0 mm 3T 70/2452 19
224 x 224 0.8 x 0.8 x 3.3 mm 3T 118/5695 1*

Follow-Up T2w 512 x 512 0.35 x 0.35 x 2.0 mm 1.5T 50/7670 83
256 x 256 0.7 x 0.7 x 2.0 mm 3T 120/6629 26

Table 5.2: Image acquisition parameters for the scans. *scan made on Phillips
Ingenia Elition X, rather than Phillips Achieva scanner.
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very extensive workload of creating the manual annotations, brain tissue seg-

mentations were pre-segmented automatically using the algorithm described

in [218] and subsequently manually corrected by one of two trained experts

(LB and NW). The corrections were made using in-house developed software

[212]. Subsequently, to divide the brain into two hemispheres a reference

midline of the brain was annotated for both the baseline and follow-up T2-

weighted scans in ImageJ [225] that was subsequently used to separate the

segmentation of the brain tissue classes into tissue classes per hemisphere re-

sulting in a total of 14 brain tissue classes. At baseline the ischemic lesion was

segmented in addition to the brain tissue. For this, the DWI (B800 or B1000)

was registered to the T2-weighted MRI. Hence, the baseline and follow-up

segmentation consisted of 16 and 14 classes, respectively. Examples of refer-

ence segmentations of the baseline and follow-up scans are shown in Figure

5.1.

5.2.3 Method

Our method consisted of two main stages. In the preprocessing stage, T2-

weighted and DWI scans were normalized, resampled and aligned to al-

low joint analysis. Thereafter, convolutional neural networks were used

to segment brain tissue classes per hemisphere on baseline and follow-up

T2-weighted MRI scans, and the ischemic lesions in the baseline using T2-

weighted and DWI scans.

5.2.4 Preprocessing

To focus the analysis on the brain only, prior to segmentation, the T2-weighted

scans were skull stripped [228]. Given that ischemic region is best visible on

DWI scans and brain tissue classes on the T2-weighted scans, the DWI and

T2-weighted scan were aligned by rigid and thereafter by deformable reg-

istration. For this, the DWI was resampled to the spatial resolution of the

T2-weighted scan. Registration was performed using SimpleITK. The Mattes

mutual information with 64 bins was used as the loss function for both types

of registration. For the rigid registration the gradient descent optimizer was

used with a learning rate of 1. Optimization was performed for 150 itera-
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Figure 5.1: Examples of reference segmentations that are used during training and
testing. From left to right: the first two columns show baseline scans and the third
and fourth columns show follow-up scans. From top to bottom: The first row shows
a axial slices from the T2-weighted scan of 4 different patients. The second row
shows the DWI (only for the baseline) of the same patients. The third row shows
the T2-weighted scan overlaid with the brain tissue segmentation and the midline,
and the fourth row shows the scan overlaid with the reference segmentation for each
hemisphere.
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tions. For the deformable registration, the space between the control points

was set to 25 mm and an L-BFGS optimizer[217] was applied for 100 iterations.

The intensities of MRI voxels vary per acquisition protocol and scanner.

Hence, all voxel intensities were clamped between zero and the 99th percentile

of the voxel intensity values in each scan. The voxel values were subsequently

normalized between -1 and 1, and each slice was resampled to 512 x 512 voxels.

5.2.5 Automatic Segmentation

Currently, UNet-like architectures have been shown to be most successful

at segmentation of medical images [224]. Their success is attributed to the

combination of coarse features from the down-sampling path that are com-

bined with fine-grained features from the up-sampling path, via the use of

skip-connections. For our research, we have chosen UNet++ (Figure 5.2)

architecture because it uses deep supervision to co-train an ensemble of sub-

networks of varying depth within the architecture. Prior literature has shown

that this outperforms the standard UNet architecture [232]. Each node in

UNet++ consisted of two 3x3 convolutions, followed by batch normalization

and the ReLU activation function. The features were down-sampled by max-

pooling with a stride of two, up-sampled by a transposed convolution with

a stride of two or passed to the next layer. Each node was connected to all

previous nodes in the same row via skip-connections. To successfully co-train

the nested ensembles that UNet++ consists of, deep supervision was applied

to the three nodes before the output node. Before the deep supervision loss

functions were applied, a one by one convolution was used to reduce the num-

ber of feature maps to one. The final loss was calculated by taking a weighted

average between the deep supervision losses and output loss. The output loss

had a weight that was seven times greater than that of each individual deep

supervision losses. In total, the baseline and follow-up network respectively

segmented 14 and 16 classes. During training, the weighted cross entropy

loss function was used. To remedy the class imbalance that was caused by

the differing number of voxels per class, the tissue classes were assigned a

weight ten times greater than the background class. Multiscale analysis has

been shown to improve segmentation performance [232]. To allow multiscale

120



5555555

5.2. MATERIALS & METHODS

Figure 5.2: The UNet++ architecture used to segment the brain tissues and ischemic
lesion for each brain hemisphere. The input consisted of three consecutive axial
slices from each MRI sequence. The baseline DWI and T2-weighted MRI scans were
interleaved. For the baseline scans, each T2-weighted slice was concatenated to
the anatomically corresponding DWI slice. Each node outside of the down-sampling
path was connected to all the nodes that preceded it horizontally via skip-connections
and to the node that was one horizontal and diagonal index lower. Deep supervision
was applied to all the nodes in the top horizontal layer, other than the input node.

analysis during inference, the output of each deep supervision layer was av-

eraged to create the final prediction. The UNet++ was implemented using

Pytorch 1.5.1 [222].

The UNet++ was randomly initialized and trained on stacks of three con-

secutive axial slices. The segmentation label was predicted for the axial slice

at the center of the stack. The slices adjacent to the slice of interest were

provided as additional spatial context. To allow analysis using the informa-

tion from the baseline T2-weighted and DWI images, each axial slice of the

T2-weighted scan was followed by its anatomically corresponding axial slice

of the DWI scan.
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Given that voxel-wise segmentation is applied, the segmentation result may

contain small isolated clusters of voxels which would not be physiologically

possible. Therefore, the tissue classes within the largest connected component

of the binarized segmentation map were retained. Similarly, to ensure that

no gaps exist due to an incorrect hemisphere segmentation, morphological

closing with a 2D diamond shaped structuring element with a connectivity

of 1 and a rank of 2 was applied to each hemisphere segmentation.

5.2.6 Evaluation

Quantitative evaluation of the brain tissue classes and the ischemic lesion

segmentation per hemisphere was performed in scans with manual reference

annotations. To evaluate the overlap between the reference and automatic

segmentation the Dice coefficient was computed. To evaluate segmentation

agreement along the tissue boundary, the mean surface distance (MSD) be-

tween the automatic and reference segmentation was calculated. Moreover,

the bias and limits of agreement were calculated for the brain tissue and is-

chemic volumes obtained from automatic and reference segmentations.

In scans without manual reference annotations, automatic segmentation

was qualitatively evaluated. In addition, to assess whether image quality

impacts automatic segmentation, presence of image corruption caused by

imaging artifacts was rated (None, Mild, Moderate, Severe) as listed in Table

5.3. Images graded as severely affected by artefacts (Severe) were excluded

from the qualitative evaluation of the automatic segmentation. The automatic

segmentation was evaluated qualitatively by two expert observers, NW (Ob-

server 1) and LB (Observer 2), on a three-point scale (Excellent, Moderate,

Poor) as listed in Table 5.3. Additionally, in the follow-up images the quality

of the segmentation of the brain tissues surrounding the location of the former

ischemic lesion was also rated on the same three-point scale. However, if no

tissue damage was visible, surrounding tissue was rated as Invisible.

The presented automatic method segments brain tissues and ischemic le-

sions per hemisphere. However, rating automatic segmentations in 16 and

14 classes in each baseline and follow-up MRIs respectively is an extremely
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Scale

Excellent Segmentation clinically useable after no or minor manual corrections
Moderate Segmentation clinically useable after major manual corrections
Poor Segmentation clinically unuseable

Table 5.3: Grading the quality of brain tissue segmentation, ischemic lesion seg-
mentation, hemisphere separation, and quality of the segmentation surrounding the
former location of the ischemic lesion.

Rating

None No artefacts visible in the scan
Mild Differentiation between tissue classes is clear despite mild artefacts

being present
Moderate Differentiation between tissue classes is visible, but with limited un-

certainty
Severe Differentiation between tissue classes is not visible due to artefacts

Table 5.4: Grading of the degree to which an image is corrupted by image artefacts.

time consuming task, especially in a larger set of images. Therefore, to make

the qualitative evaluation feasible, rating was performed per tissue class as

described above and hemisphere separation was graded separately for the

whole brain. The intra- and inter-rater agreement of the qualitative evalua-

tion of the scan quality and automatic segmentation were evaluated by the

accuracy between the raters.

5.3 Experiments and Results

5.3.1 Experimental Setup

Given that scans of 9 patients made at baseline were manually annotated and

available for training and quantitative evaluation, automatic segmentation

was performed in nine-fold cross-validation experiments. This means that in

each experiment, 8 scans were available for training and 1 scan for testing.

In case of the follow-up data, scans of 12 patients were manually annotated.

Hence, automatic segmentation was performed in six-fold cross-validation

experiments, where every time 10 training scans and 2 test scans were uti-

lized.

123



5555555

5.3. EXPERIMENTS AND RESULTS

Baseline Follow-up

Left Right Left Right

Dice MSD Dice MSD Dice MSD Dice MSD
WM 0.90 0.22 0.91 0.18 0.90 0.14 0.90 0.16
GM 0.81 0.18 0.82 0.15 0.92 0.10 0.91 0.12
BGT 0.90 0.63 0.84 1.08 0.94 0.34 0.93 0.31
BST 0.88 0.50 0.85 0.45 0.89 0.33 0.88 0.34
vCSF 0.83 0.30 0.78 0.38 0.90 0.56 0.90 0.25
eCSF 0.80 0.29 0.80 0.45 0.88 0.20 0.88 0.23
CB 0.91 0.41 0.92 0.44 0.95 0.29 0.95 0.58
IL 0.72 2.18 0.86 1.23 - - - -
Mean 0.84 0.59 0.85 0.35 0.91 0.28 0.91 0.28

Table 5.5: Median Dice coefficient (Dice) and mean surface distance (MSD) in mm
between the reference and automatic segmentation. Results are displayed for each
brain tissue type in the left and right hemisphere: white matter (WM), gray matter
(GM), basal ganglia and thalamus (BGT), brainstem (BST), the ventricular cerebro-
spinal fluid(vCSF), extra-ventricular cerebrospinal fluid (eCSF), and the cerebellum
(CB). In addition, the ischemic lesion is reported for the baseline scans. The mean Dice
coefficient over all brain tissue types and the IL is listed. Among the baseline scans
four had an ischemic lesion in the left hemisphere and five in the right hemisphere.

To optimize the networks, an Adam optimizer [214], a weight decay of 5e-5

and a batch size of 16 were used. The UNet++was optimized for 300 epochs

using a cyclical learning rate schedule [227] with a cycle length of 1,000 itera-

tions. The minimum learning rate was 1e-4 and the maximum learning rate

was 1.1e-3.

Automatic segmentation including preprocessing and segmentation took

under 4 minutes per scan.

5.3.2 Quantitative Evaluation

Quantitative results for the baseline and follow-up scans are listed in Table 5.5.

The results show that segmentation performance for the brain tissue classes

on the baseline scans was similar for the left and the right hemisphere, except

for the right BGT. Visual analysis of the segmentations revealed that in several

cases ischemic lesions were erroneously segmented as BGT likely causing to

the asymmetry in the segmentation of BGT. On the follow-up scans, the per-
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Figure 5.3: Example of brain tissue and ischemic lesion segmentations on the
baseline scans for two patients (top and bottom row). From left to right: T2-weighted
scan, DWI scan, reference segmentation and automatic segmentation. The top row
shows an example on which the network successfully segmented the hemispheres
and the brain tissues. The bottom row shows a DWI scan on which the ischemic
lesion is undersegmented and the basal ganglia are oversegmented by the automatic
method.

formance of the segmentation was similar in the left and the right hemisphere

for all tissue classes. Examples of segmentations for baseline and follow-up

scans are respectively shown in Figure 5.3 and Figure 5.4.

The median and inter-quartile range of the brain tissue and ischemic lesion

volumes obtained from the reference segmentations in the left and right hemi-

spheres are shown in Figure 5.5 for both the baseline and the follow-up scans.

The bias and limits of agreement between the reference and automatically

quantified volumes for both the baseline and follow-up scan are shown in

Figure 5.6. For the baseline scans, eCSF volumes in both hemispheres had a

bias greater than the other tissue classes indicating limited oversegmentation.

The left and right ischemic lesion respectively had a bias greater and smaller

than zero, indicating limited over -and under-segmentation. On the follow-

up scans the eCSF in both hemispheres had a greater bias than the other tissue

classes indicating oversegmentation.
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Figure 5.4: Example of brain tissue segmentations on follow-up scans for two
patients (top and bottom row). From left to right: T2-weighted scan, reference
segmentation and automatic segmentation. The top row shows a scan which was
accurately segmented. The bottom row shows a scan on which the right cerebellum
is incorrectly segmented.
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Figure 5.5: Boxplots showing the median and interquartile range (IQR) of the
reference brain tissue volumes in mL in the baseline(n=9) and follow-up scans(n=12).
Results are displayed for the left and right hemisphere in each plot: white matter
(WM), gray matter (GM), basal ganglia and thalamus (BGT), brainstem (BST), the
ventricular cerebro-spinal fluid (vCSF), extra-ventricular cerebrospinal fluid (eCSF),
and the cerebellum (CB). In addition, the ischemic lesion (IL) is reported for the
baseline images. Among the baseline scans four had ischemia in the left and five in
the right hemisphere. Outliers on the follow-up scans are due to cerebrospinal fluid
replacing brain tissue.
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Figure 5.6: Bias and limits of agreement between the volumes obtained from
the reference and automatic segmentation. Results are displayed for each brain
tissue class in the left and right hemisphere: white matter (WM), gray matter (GM),
basal ganglia and thalamus (BGT), brainstem (BST), the ventricular cerebro-spinal
fluid(vCSF), extra-ventricular cerebrospinal fluid (eCSF), and the cerebellum (CB).
In addition, results of the volumetric measurements for the ischemic lesion (IL) are
reported for the baseline images. Among the baseline scans four had an infarct in
the left and five in the right hemisphere.
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5.3.3 Qualitative Evaluation

The ratings of the baseline image quality with respect to presence of imaging

artifacts and automatic segmentation performance by Observer 1 are shown

in Figure 5.7. In total, 74, 19, 8 and 5 scans were rated as having None , Mild,

Moderate or Severe artifacts.

Specifically, the results show that the segmentation of brain tissue classes is

accurate on images that have no visible artefacts, i.e. with the majority of the

ratings being Excellent (useable after no or minor correction). Hemisphere

separation (HS) is also accurate with most segmentations being rated as Ex-

cellent. The results also show that the segmentation of the ischemic lesion is

the most challenging, with 61% percent of ischemic lesion segmentations on

images without artefacts being rated as Excellent and 22.6% being rated as

Moderate.

The ratings of the follow-up image quality with respect to presence of

imaging artifacts and automatic segmentation performance by Observer 2 are

shown in Figure 5.8. In total, Observer 2 graded 66, 18, 13 and 0 images as

having None, Mild, Moderate or Severe imaging artifacts, respectively.

The segmentation of the brain tissues was mostly rated as Excellent in

images without artefacts. Furthermore, on scans with no artefacts, 65% and

100% percent of cases the tissue surrounding former ischemia and hemisphere

separation, respectively, were rated as Excellent.
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Figure 5.7: Qualitative evaluation of the automatic segmentations for each brain
tissue class: white matter (WM), gray matter (GM), basal ganglia and thalamus
(BGT), brainstem (BST), the ventricular cerebrospinal fluid (vCSF), extra-ventricular
cerebrospinal fluid (eCSF), and the cerebellum (CB),the ischemic lesion (IL) and, the
hemisphere separation (HS) on the baseline scans by Observer 1. The ratings of each
tissue type are divided by the severity of the artefacts that afflicted them (None, Mild
and Moderate). Note that scans with severe artifacts were considered unsuitable for
automatic analysis and were therefore not rated. Results are given in percentages.

Figure 5.8: Qualitative evaluation of the automatic segmentations for each brain
tissue class: white matter (WM), gray matter (GM), basal ganglia and thalamus
(BGT), brainstem (BST), the ventricular cerebro-spinal fluid(vCSF), extra-ventricular
cerebrospinal fluid (eCSF), and the cerebellum (CB),the surrounding tissue and, the
hemisphere separation (HS) on the baseline scans by Observer 2. The ratings of each
tissue type are divided by the severity of the artefacts that afflicted them (None, Mild
and Moderate). Note that scans with severe artifacts were considered unsuitable for
automatic analysis and were therefore not rated. Results are given in percentages.

130



5555555

5.4. DISCUSSION

Rater CB eCSF vCSF BST BGT WM GM IL ST HS

Baseline Intrarater 96.3 88.9 92.3 96.3 100.0 96.3 84.6 80.0 96.3
Interrater 93.1 88.9 92.9 96.4 96.6 73.1 84.0 89.5 100.0

follow-up Interrater 93.3 93.3 86.2 93.3 93.3 96.7 90.0 - 83.3 100

Table 5.6: For the baseline and follow-up scans the accuracy between the ratings
of Observer 1 and Observer 2 are shown on a randomly selected subset of 30 scans.
The classes for which the accuracy is calculated are: white matter (WM), gray matter
(GM), basal ganglia and thalamus (BGT), brainstem (BST), the ventricular cerebro-
spinal fluid (vCSF), extra-ventricular cerebrospinal fluid (eCSF), the cerebellum (CB),
the area surrounding the formerly ischemic lesion (ST), the ischemic lesion (IL), and
the hemisphere separation (HS). For the baseline scans, accuracy between two ratings
of the same observer (Observer 1) is additionally shown.

The inter- and intrarater accuracy was calculated on a subset of 30 randomly

selected baseline scans. The interrater accuracy was also calculated on a

subset of 30 randomly selected follow-up scans. The inter- and intrarater

accuracy for the brain tissue segmentation, ischemic lesion segmentation,

tissue surrounding the formerly ischemic region, and hemisphere separation

are shown in Table 5.6.

5.4 Discussion

We have presented a deep learning method for segmentation of brain tissue

classes and the ischemic lesions in both hemispheres of brain MRI scans in

infants with PAIS. The segmentation was applied to scans acquired at two

time points, i.e. to scans made after the onset of stroke and to scans made at

3-months follow-up. Quantitative evaluation of the automatic segmentation

showed that on average the brain tissue classes and the ischemic lesions had

good spatial and volumetric agreement with the manual expert segmenta-

tions. Furthermore, the qualitative analysis on a larger set of MRIs showed

that the automatic brain tissue segmentations obtained on the baseline and

follow-up scans were clinically useable after no or minor correction. How-

ever, the segmentation of the ischemic lesions on the baseline scans was more

challenging more often requiring manual correction. Segmentation of the

ischemic lesions was especially compromised in scans corrupted by artefacts.

Hence, additional scrutiny of the segmentations should be applied when us-
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ing scans corrupted by artefacts.

Several aspects may have contributed to compromised segmentation re-

sults. First, contrast between the ischemic lesions and the unaffected regions

on DWI varied greatly between patients. This may have been due to differ-

ences in the timing of MRI. After a peak in signal intensity on DWI, the contrast

slowly normalizes around day 7, so-called pseudonormalization. This diver-

sity in contrast differences may not have been represented in our training data.

Second, small false positive segmentations occurred for the ischemic lesion

segmentation, but rarely for the brain tissue classes. While challenging for

the automatic segmentation, this type of error is easily manually corrected.

Third, ischemic lesions in the left hemisphere were often oversegmented. Al-

though these false positive segmentations and oversegmentation may lead to

an inaccurate estimation of ischemic volume, it takes little effort to manually

correct them.

Previous automatic segmentation methods reported accurate segmenta-

tions, but neither differentiated brain tissues per hemisphere. The study by

Moeskops et al. segmented the same brain tissue classes and unmyelinated

white matter in preterm infants imaged at term-equivalent age. Given nearly

the same tissue classes definition and age of the infants, this set enables com-

parison with performance on the baseline scans in the current study [219].

Despite the presence of pathology in the images in our study and more com-

plex per hemisphere analysis, we achieved comparable performance on the

segmentation of the baseline scans (Average Dice coefficients reported in [219]

vs ours: WM 0.92 vs 0.91, GM 0.88 vs 0.82, BGT 0.91 vs 0.87, BST 0.84 vs 0.87,

vCSF 0.81 vs 0.81, eCSF 0.84 vs 0.80, CB 0.93 vs 0.92 ). The largest differ-

ences are observed in the tissue classes that are directly adjacent to ischemia

in our set such as GM and CSF. Note that the differences in patient popu-

lations between these two studies preclude direct performance comparison

and only provide an indication.The study by Ding et al. segmented three

brain tissue classes (GM, WM, CSF) [207]. Furthermore, this study used more

data for training and their grey matter class incorporated brain tissues other

than cortical grey matter, such as the brainstem, cerebellum, amygdala, and

132



5555555

5.4. DISCUSSION

hippocampus. Due to the differences in tissue definitions and population of

patients quantitative results are not comparable.

Our method is the first deep-learning-based method that segments ischemic

lesions on DWI scans in perinatal ischemic stroke patients. Other work by

Igum et al. used a linear discriminant classifier to segment the ischemic lesion.

However, their method did not segment other brain tissue classes or indicated

the hemisphere in which the lesion was located. Unfortunately, this work did

not report overlap or boundary metrics [211].

The most comparable deep-learning-based methods for stroke lesion seg-

mentation problem are those that segment ischemic lesions on DWI scans in

adult patients [206; 230; 231]. We observe that our method achieves perfor-

mance in range of automated stroke lesion segmentation methods for adults

(Dice coefficient: 0.79 in our study vs. 0.79 [231], 0.67 [206], 0.85 for a single

U-Net [230]) despite our network being trained on two orders of magnitude

fewer data. However, none of the methods that were developed for scans of

adult patients additionally provide brain-tissue segmentations, nor do they

indicate which hemisphere is afflicted by the ischemia.

The automatic analysis of brain tissue volumes and the ischemic lesion in

follow-up and baseline scans would allow neuro-regenerative treatments to

be evaluated. For example, treatment of PAIS by intranasal administration of

mesenchymal stromal cells has recently been shown to be feasible and safe

[202]. However, large-scale placebo controlled trials still need to be conducted.

Given that our automatic method analyses a scan in less than 4 minutes, the

method would significantly reduce the analysis burden and could facilitate

large scale studies.

Despite the accurate segmentations provided by our method, our study has

several limitations. First, our study used a limited number of training and

quantitative testing data with manual reference annotations at the baseline

(n = 9) and follow-up (n = 12). Furthermore, these scans did not contain

imaging artefacts. Hence, we have not been able to quantitatively evaluate
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performance on a large set of scans or scans that contain imaging artefacts.

To ameliorate this limitation in our evaluation, we conducted a qualitative

evaluation in a large set of MRIs that showed that most brain tissue class

segmentations could be used without any or after minor manual correction.

Second, our network instances were trained on scans acquired under very

limited circumstances. For example, the scans were acquired on two types of

MRI scanners; A 1.5T and a 3T Phillips Achieva scanner. By only having data

from three scanners available to train on, the performance of our networks on

data acquired by different scanner types from different manufacturers may

not generalize. Furthermore, the scans were made at specific time points; the

baseline scan was usually made the week after birth and the follow-up was

made two to three months after the baseline. During the first year of life

the brain develops rapidly. Hence, by training our networks only on images

acquired at specific time points performance may not generalize to MRI made

at other infant ages. Future research should include scans from various stages

of the brain development and from a greater variety of scan types and scanner

vendors.

Third, our results indicated that our method segmented the ischemic lesion

in the right hemisphere more accurately than in the left hemisphere. This was

likely because the ischemic lesions in the right hemisphere were larger than

the ischemic lesions in the left hemisphere. Hence, these lesions were more

difficult for the method instance to segment accurately. On a larger test set

this bias would likely disappear.

Fourth, the intra- and interrater reliability were assessed by using the accu-

racy. This metric was used because the data was skewed due to the majority of

the automatic brain tissue segmentations being rated as Excellent. However,

caution must be applied when interpreting the accuracy alone because it does

not correct for observations that occur due to chance alone.

To conclude, we presented a method for automated segmentation of brain

tissue classes and ischemic lesions in each brain hemisphere. The automatic

134



5555555

5.4. DISCUSSION

segmentation method may allow evaluation of the brain development and

efficacy of treatment methods in large datasets imaging infants affected by

perinatal arterial ischemic stroke.
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Summary

Developing deep learning-based algorithms that accurately segment struc-

tures in scans that are relevant to treatment or evaluation of the outcome of

uncommon stroke is a difficult task. The difficulty is due to the presence

of image artefacts, few data being available to train the networks, and the

small volume of some of the target structures. Hence, the aim of this thesis

was to investigate, develop, and evaluate deep learning-based algorithms for

automatic segmentation of images of uncommon sub-types of stroke.

Deep transfer learning is a method by which information learned by a

deep neural network on one problem can be re-used to improve performance

on another problem. It is often used to ameliorate training of neural net-

works if few data are available. In a transfer learning scenario, a neural

network is pre-trained on a source task and domain and re-used, by either

fine-tuning or feature extraction, on a target task and domain. In chapter 2,

we have evaluated the effect of pre-training by using various source domain

and task combinations on target segmentation task performance. Convolu-

tional neural networks were pre-trained on three types of tasks; segmentation,

classification, and auto-encoding. The domain used was the same as the tar-

get task (T1-weighted MR scans) or different from the target task (natural

images). The pre-trained convolutional neural networks were fine-tuned and

their performance was evaluated on three target segmentation tasks: Multi-

ple sclerosis lesion, stroke lesion and brain tissue segmentation. Our results

showed that pre-training on a segmentation source task on the same domain

resulted in a greater improvement in spatial agreement from transfer learn-

ing than the other source tasks and domain combinations. Pre-training on a

similar task and domain resulted in a greater improvement in spatial overlap

on two of the three target segmentation tasks, even when it was compared to

pre-training on ImageNet [233], which is a dissimilar source domain and task

and consisted of ten times more data. However, our results have also shown

that the choice of source task and domain has an inconsistent effect on stroke

and multiple sclerosis lesion detection accuracy. Based on this study, we can

recommend that pre-training for target medical segmentation tasks should
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be done on a similar source task and domain if spatial overlap is the most

relevant metric.

Final lesion volume on follow-up NCCT is a common surrogate outcome

measure of anterior circulation stroke. Due to the scarcity of available data in

posterior circulation stroke, final lesion volume is understudied as a surrogate

outcome measure for this pathology. To reduce the manual annotation burden

of posterior stroke lesion segmentation, we have developed an algorithm that

used deep transfer learning to automatically segment infarct lesions due to a

posterior circulation stroke in chapter 3. The model that used deep transfer

learning was pre-trained on segmentations of infarct lesions due to a stroke

in the anterior circulation. We compared the method that used deep transfer

learning to models that were trained on only anterior circulation stroke pa-

tients, only on posterior circulation stroke patients, and on patients suffering

from a stroke in either one of the regions. The model that used deep transfer

learning achieved a greater volumetric agreement and a higher spatial over-

lap between the automatic and reference lesion segmentation than the other

methods. Furthermore, the deep transfer learned method also improved

lesion detection relative to the other methods. This method facilitates inves-

tigation of final lesion volume as a surrogate outcome measure in posterior

circulation stroke.

Segmentation-based thrombus image characteristics have been associated

with stroke treatment outcome. Manual annotation of thrombi may limit

the study of these associations. Hence, in chapter 4, we have developed an

automatic method that localizes and segments thrombi causing a posterior

circulation stroke. Segmentation methods for posterior thrombi that are not

restricted to a specific region in the brain, segment a large number of false

positive thrombi. We have shown that our method, which restricted itself

to the area around the brainstem, improved performance relative to a stan-

dard UNet and reduced the number of false positives. Our method can be

used to reduce the manual annotation burden for investigating the association

between segmentation-based thrombus image characteristics and various out-

come metrics.
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Brain-tissue and ischemic lesion volume per hemisphere can be used to eval-

uate treatment efficacy in patients suffering from perinatal arterial ischemic

stroke. Therefore, in chapter 5, we developed two instances of a convolu-

tional neural network to segment the white matter, gray matter, cerebrospinal

fluid, brainstem, cerebellum, basal ganglia and thalamus, ventricles, and the

ischemic lesion in scans of patients suffering from perinatal arterial ischemic

stroke. One network instance automatically segmented scans acquired at base-

line, the other instance automatically segmented scans acquired at follow-up.

Our network instances achieved comparable spatial overlap and alignment

to methods that were developed in related research for brain tissue segmen-

tation in scans of healthy brains and ischemic lesion segmentation in scans of

adult patients suffering acute ischemic stroke.
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General Discussion

Contributions to stroke research

An important aspect of modern stroke research involves analysing segmentation-

based image characteristics derived from scans, such as thrombus volume and

lesion volume. However, manual annotation of image data is labor- and time-

intensive. Hence, there is an interest to automate the segmentation process.

Currently, deep learning is the best available technique to automate image

segmentation. A limiting factor to the development, application, and evalua-

tion of deep learning-based segmentation methods is that they often require

a large amount of data. Less common sub-types of stroke that have few

available data have not yet benefited from deep learning-based segmentation.

Therefore, the primary focus of this thesis was to investigate, develop, and

evaluate deep learning-based algorithms for the segmentation of images of

sub-types of stroke that have few data available.

Final lesion volume has been proposed as an outcome measure in acute

stroke reperfusion clinical trials [258]. Subsequently, follow-up NCCT was

shown to have a strong association to functional outcome in anterior circu-

lation stroke [237; 260]. Due to the scarcity of available data in posterior

circulation stroke, the association between final lesion volume and functional

outcome is understudied. The study in chapter 3 has shown that deep learn-

ing can be used to automatically segment lesions due to a posterior circulation

large vessel occlusion on follow-up NCCT of adult patients. The developed al-

gorithm can be used to study associations between segmentation-based lesion

characteristics, such as lesion volume, and functional outcome. The method

can reduce the annotation burden by providing automatic segmentations.

However, due to the low spatial overlap the resulting automatically gener-

ated segmentations should be inspected and, if necessary, manually corrected.

Thrombus image characteristics have been associated with treatment out-

come in anterior circulation stroke in adult patients by prior studies. The

studied thrombus image characteristics for anterior circulation stroke are per-
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viousness, density, and length [236; 238; 242; 245; 249; 254; 255]. However,

one study showed that the only thrombus characteristic that is associated

with functional outcome in posterior circulation stroke is thrombus length

[240]. A limitation of current applications of thrombus length, perviousness,

and density assessment is that they are derived from Region-of-Interest (ROI)

markers in the proximal, medial, and distal parts of the thrombus rather than

complete segmentations. Prior research has already shown that thrombus

segmentations provide more information than ROI markers [256]. Segmenta-

tions have been used in conjunction with techniques from radiomics to extract

thrombus characteristics in patients with anterior circulation stroke. These

characteristics were found to be more predictive than thrombus length, per-

meability, and density [253]. The algorithm developed in 4 makes it easier

to test for these associations by reducing the annotation burden in posterior

stroke clinical trials and registries that involve adult patients.

Effectiveness of novel neuro-protective and neuro-regenerative treatments,

such as recombinant tissue erythropoietin [235] and mesenchymal stromal

cells [234], can be tested by comparing brain tissue volumes between each

hemisphere on baseline and follow-up scans. This is possible due to most

cases of stroke being confined to a single hemisphere. If treatments are ef-

fective, patients with perinatal arterial ischemic stroke treated with neuro-

protective and neuro-regenerative agents should have a similar volume for

all tissue classes in both hemispheres due to more brain tissue retention and

growth after the stroke. Moreover, the volume of the ischemic region can

be added to the analysis to control for possible interactions between lesion

size and treatment. However, annotating each scan manually would require

approximately a week of work per scan. The network instances developed

in chapter 5 reduce the manual annotation burden by automating the seg-

mentation process. A limitation of the presented network instances is that the

resulting segmentations may require manual inspection and correction before

being used in an analysis, specifically of the ischemic region on the baseline

scans. Moreover, due to limited variability in the training dataset, generaliza-

tions to scans from other MRI machines and protocols may be limited. Hence,

further development is required before possible clinical use of our network
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instances.

Contributions to medical image segmentation research

With the exception of the brain-tissue segmentation algorithms introduced in

chapter 5, all methods make use of some variant of transfer learning and build

on the findings in chapter 2. In chapter 2, we demonstrated that applying

transfer learning to medical segmentation tasks yields the best results if the

source domain and task are similar to the target domain and task. Hence, pre-

training on automatically generated segmentations adds little cost relative to

self-supervised pre-training, but has greater benefit if the data is similar.

Accurately segmenting small objects in medical scans is a difficult task due

to the large class imbalance, limited available data, and variable presentation.

A standard UNet approach applied to the entire scan volume results in a large

number of false positive segmentations. By localizing small objects prior to

segmenting small objects, false positive segmentation can be reduced. Various

methods that localize a structure in a medical scan prior to segmenting it have

been developed in earlier work [239; 244; 247; 250; 257; 261; 262]. An often

used method of localization is by using a bounding box regression [239; 241;

247; 261]. Bouget et al. combined a 2D Mask R-CNN in conjunction with a

2D U-Net to localize and segment mediastinal lymph nodes and anatomical

structures in the mediastinal area [239]. The 2D bounding boxes are converted

to 3D by combining consecutive 2D bounding boxes. Liang et al. used a

different method to combine bounding boxes to localize and segment organs

at risk in head and neck images [247]. Their method combined features

extracted from axial, coronal or sagittal slices as input. By using a voting

method the features were combined before bounding box regression and

segmentation. Zhang et al. used a fixed-size bounding box located around

the esophagus to improve segmentation [261]. The bounding box location

was found by using previously segmented structures that are close to the

oesophagus. De Vos et al. used a neural network to predicted the probability

that a structure was visible on slices from the three anatomical planes [241].

Using the starting location and ending location on each anatomical plane, a

bounding box was constructed. Using a 3D bounding box would not have
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been the best way of detecting thrombi in the posterior circulation, which

was described in chapter 4. This is due to the variable orientation that the

thrombus has, which would cause a bounding box to be much larger than

required in order to contain the entire thrombus. This may result in a larger

amount of false positive thrombus localization and segmentation.

Future research directions

Posterior Circulation Stroke

The results from our automated posterior stroke lesion segmentation method

can be used to estimate the overall infarcted volume. However, the severity

of clinical deficit not only depends on the total volume but may also depend

on the specific affected substructures. A study has already shown that lesion

volume in specific structures is associated with worse outcome 90 days after

the stroke than other structures in anterior circulation stroke [243]. In poste-

rior circulation stroke, hypo-attenuation of specific structures is predictive of

worse outcome [252]. Similarly, future research could focus on developing

a model to quantify the volume of these hypo-attenuated structures of the

brain in the posterior region.

One interesting research direction that could be explored to improve the

quantification of the thrombus characteristics, arterial filling and stenosis

detection during a posterior circulation stroke is deep learning-based artery

centerline tracking. Wolterink et al. developed a method to track the coronary

arteries [259]. The automatically extracted centerlines can help visualization

of the artery by straightening it using Multi-Planar Reformatting (MPR). Sub-

sequent research used MPR straightened arteries to localize plaque type and

the clinical significance of any stenosis [263]. Likewise, for posterior stroke

such an approach could be used to segment the thrombus, stenosis, and the

lumen of the involved arteries.

Deep learning approaches that involve segmentation in the posterior fossa

are hampered by CT image artifacts, such as beam hardening. An interesting

challenge could be to make deep learning-based methods more robust to CT

imaging artifacts. Specifically, a data augmentation method could be devised
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to mimic CT artifacts during training. Such data augmentation techniques

already exist for MRI [246; 251] and CT .

Perinatal Arterial Ischemic Stroke

The methods that were developed in chapter 5 segment brain tissue in patients

that suffer or have suffered from perinatal arterial ischemic stroke. These

methods currently rely on two separate instances of a deep neural network;

one for term and one for three month follow-up scans. We developed sepa-

rate network instances for term and follow-up scans for two reasons. First,

the degree of myelination increases as the infant develops. This causes the

appearance of the brain on T2 scans acquired at term versus follow-up to

differ. Second, during the term scan the DWI shows the hypo-perfused area

in the brain. Hence, this sequence is added to the network instance trained at

term but not at follow-up. Future trials and registries for this type of stroke

may, however, have imaging performed at other stages of development of

the infant. Because the brain changes rapidly during the first year of life,

generalization of the network instances to images acquired at other stages of

development cannot be assumed. Therefore, a more general method to seg-

ment brain tissue on MRI scans acquired during the first year of life, which

has already been developed for scans of patients not afflicted by severe pathol-

ogy [248], is of interest for brains afflicted by perinatal arterial ischemic stroke.
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Nederlandse Samenvatting

Het ontwikkelen van op deep learning gebaseerde algoritmen die accuraat

structuren in scans kunnen segmenteren die relevant zijn voor de behandeling

of de evaluatie van de uitkomst van ongebruikelijke beroerten is een moeilijke

taak. Deze moeilijkheid komt door de aanwezigheid van artefacten in scans,

de kleine hoeveelheid data die beschikbaar is voor het trainen van neurale

netwerken en het kleine volume van de te segmenteren structuren. Daarom

was het doel van deze these om op deep learning gebaseerde algoritmen voor

het automatisch segmenteren van beelden van ongebruikelijke subtypen van

beroerten te onderzoeken, ontwikkelen en evalueren.

Deep transfer learning is een methode waarmee informatie die geleerd is

door een diep neuraal netwerk op een probleem kan worden hergebruikt om

de prestaties te verbeteren op een ander probleem. Het wordt vaak gebruikt

om het trainen van neurale netwerken te verbertern wanneer er weinig data

beschikbaar is. In een transfer learning scenario, wordt een neuraal netwerk

dat is voor-getraind op een oorsprongstaak en domein hergebruikt voor een

doeltaak en doeldomein. Dit hergebruiken gebeurt doormiddel van het her-

calibereren van het netwerk of door het toepassen van het netwerk om ken-

merken te extraheren van de data uit het doeldomein met mogelijkerwijs een

andere doeltaak. In hoofdstuk 2 hebben we het effect van het voor-trainen

geëvalueerd op accuratesse van de segmentatie doeltaken, wanneer er ver-

schillende oorsprongs-domeinen en taken werden gebruikt. Convolutionele

neurale netwerken werden voor-getrained op drie verschillende oorsprongs-

taken; segmentatie, classificatie en auto-encoding. Het oorsprongsdomein dat

werd gebruikt was hetzelfde als die van de doeltaak (T1-gewogen MRI scans)

of het verschilde van die van de doeltaak (natuurlijke beelden). De voor-

getrainede convolutionele neurale netwerken werden hergecalibreerd en hun

prestaties geëvalueerd op drie segmentatie doeltaken: Laesies veroorzaakt

door multipele sclerose, laesies veroorzaakt door een beroerte en hersenweef-

seltype segmentatie. Onze resultaten lieten zien dat voor-trainen op een

segmentatie oorsprongstaak op hetzelfde domain resulteerde in een grotere

verbetering in de spatiële overeenstemming door transfer learning dan andere
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combinaties van oorsprongstaken en oorsprongsdomeinen. Het voor-trainen

op een vergelijkbare taak en domein resulteerde zelfs in een grotere verbe-

tering van de spatiële overeenstemming op twee van de drie segmentatie

doeltaken wanneer het werd vergeleken met voor-trainen op de ImageNet

dataset [264], een dataset die bestaat uit data van ander domein met een an-

dere taak. Dit was ondanks dat de ImageNet dataset uit tien keer meer data

bestond. Onze resultaten hebben echter ook laten zien dat de keuze van de

oorsprongstaak en het oorsprongsdomein een inconsisten effect heeft op laesie

detectie accuratesse door multipele sclerose of beroerten. Op basis van deze

studie kunnen we aanbevelen dat het voor-trainen op medische segmentatie

doeltaken gedaan zou moeten worden op een vergelijkbare oorsprongstaak en

domein wanneer de spatiële overeenstemming de meest relevante maatstaf is.

Het uiteindelijke volume van de laesie op vervolg NCCT is een gebruikeli-

jke surrogaat uitkomstmaat na een beroerte in de anterieure circulatie. Door-

dat data van patienten met een beroerte in de posterieure circulatie schaars is,

is het uiteindelijke volume van de laesie van dit ziektebeeld onderbestudeerd

als surrogaat uitkomstmaat. Om de handmatige annotatie last van het seg-

menteren van laesies door een beroerte in de posterieure circulatie te vermin-

deren, hebben we in hoofdstuk 3 een algoritme ontwikkeld dat doormiddel

van deep transfer learning automatisch laesies segmenteert die ontstaan zijn

door een beroerte. Het model dat deep transfer learning gebruikte, was

voor-getrained op segmentaties van infarct laesies die door een beroerte in

de anterieure circulatie waren ontstaan. We vergeleken het model dat deep

transfer learning gebruikte met drie modellen die met andere data waren ge-

traind: Het eerste model was getrained enkel op data van patienten met een

beroerte in de anterieure circulatie. Het tweede model was enkel getraind

op data van patienten met een beroerte in de posterieure circulatie. Het

derde model was getraind op data van patienten met een beroerte in ofwel

de posterieure circulatie ofwel de anterieure circulatie. Het model dat deep

transfer learning gebruikte behaalde een grotere volumetrische en spatiële

overeenstemming tussen de automatische en handmatige laesie segmentaties

dan de andere modellen. Bovendien verbeterde het model dat deep transfer

learning gebruikte ook de laesie detectie ten opzicht van de andere modellen.
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De ontwikkelde methode faciliteert verder onderzoek in het gebruik van het

uiteindelijke laesie volume na een beroerte in de posterieure circulatie als

surrogaat uitkomstmaat.

Op segmentatie gebaseerde thrombus beeld eigenschappen zijn geasso-

cieerd met de uitkomsten van de behandeling van een beroerte. Handmatige

annotatie van thrombi kan het bestuderen van deze associaties limiteren. Om

deze reden heben we in hoofdstuk 4 een methode ontwikkeld die thrombi die

een beroerte in de posterieure circulatie veroorzaken automatisch lokaliseert

en segmenteert. Segmentatie methoden voor thrombi in de posterieure cir-

culatie, die niet worden beperkt tot een bepaalde regio in de hersenen, seg-

menteren een groot aantal vals positieve thrombi. We hebben laten zien dat

onze methode, welke zichzelf limiteerde tot het gebied rondom de hersen-

stam, de prestaties verbeterde ten opzichte van een standaard U-Net. Onze

methode kan worden gebruikt om de manuele annotatie last te verminderen

welke nodig is om de associatie tussen op segmentatie gebaseerde thrombus

beeld karakteristieken en verschillende uitkomstmaten te bestuderen.

Het volume van het hersenweefsel en de ischemische laesie per hemisfeer

kan worden gebruikt om de effectiviteit van de behandeling van patienten

die leiden aan een perinatale arteriële ischemische beroerte te evalueren. Om

deze reden hebben we in hoofdstuk 5 twee exemplaren van een convolution-

eel neuraal netwerk ontwikkeld om witte stof, grijze stof, liquor, de hersen-

stam, het cerebellum, de basale ganglia en thalami, de ventrikelen en de

ischemische laesie te segmenteren in de basislijn- en vervolgs-scans van pa-

tienten die leiden aan een perinatale arteriële ischemische beroerte. Een van

de netwerk exemplaren segmenteerde automatisch de scans die verkregen

waren tijdens de basislijn en het andere exemplare segmenteerde automa-

tisch de vervolgscans. Onze netwerk exemplaren bereikten een vergelijkbare

spatiële overeenstemming en uitlijning met methoden die in gerelateerd on-

derzoek werden ontwikkeld voor hersenweefsel segmentatie in scans van

gezonde hersenen en ischemische laesie segmentatie in scans van volwassen

patienten die aan een acute ischemische beroerte leden.
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Twee problemen traden vaak op in de segmentaties die werden gecreëerd

door onze netwerk exemplaren. Allereerst, waren er vals positieve segmen-

taties die buiten en niet verbonden aan de hersenen waren. Deze vals posi-

tieven werden verwijderd door de segmentatie map in twee klassen te schei-

den: een klasse die bestond uit alleen achtergrond voxels en een klasse die

bestond uit al het hersenweefsel en de ischemische laesie samengevoegd.

Vervolgens, werd er een verbonden componeneten analyse gedaan en werd

alleen het weefsel en de ischemische laesie gehouden die volledig binnen de

grootste verbonden component viel. Als tweede waren er gedeelten van de

hemisfeer segmentaties waarin het hersenweefsel en de ischemische laesie

correct waren geklassificeerd, maar niet de hemisfeer. Dit werd gecorrigeerd

door middel van morfologisch sluiten. Onze netwerk exemplaren bereikten

een vergelijkbare spatiële overeenstemming en uitlijning met methoden voor

hersenweefsel segmentatie in scans van gezonde hersenen en ischemische

laesie segmentatie in scans van volwassen patienten die aan een acute is-

chemische beroerte leden.

166



8888888888

BIBLIOGRAPHY

Bibliography

[264] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet

Large Scale Visual Recognition Challenge. International Journal of Computer

Vision, 115(3):211–252, 9 2014.

167



Appendix



ABBREVIATIONS

Abbreviations

95% CI 95% Confidence Interval

ACS Anterior Circulation Stroke

ADC apparent diffusion coefficient

AIS Acute Ischemic Stroke

ANN Artificial Neural Network

ATLAS Anatomical Tracings of Lesions After Stroke

BA Brain Anatomy

BAHC Brain Age Healthy Cohort

BGT basal ganglia and thalami

BST brainstem

CB cerebellum

CNN Convolutional Neural Networks

CT Computed Tomography

CTA Computed Tomography Angiography

DWI Diffusion Weighted Imaging

eCSF extra-ventricular cerebro-spinal fluid

FLV Final Lesion Volume

FN False Negative

FP False Positive

FU-NCCT Follow-Up Non-Contrast Computed Tomography

GAN Generative Adversarial Network

GM gray matter

HAS Hyper-dense Artery Sign

HS Hemisphere separation

ICC Intraclass Correlation Coefficient

ISLES Ischemic Stroke LEsion Segmentation

LVO Large Vessel Occlusion

mIOU mean Intersection Over Union

MPR Multi-Planar Reformatting

MR Magnetic Resonance

MRI Magnetic Resonance Imaging

mRS modified Ranking Scale
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MS Multiple Sclerosis

NCCT Non-Contrast Computed Tomography

PAIS Perinatal Arterial Ischemic Stroke

PC-ASPECTS Posterior Circulation Alberta Stroke Program Early

Computed Tomography Score

PCS Posterior Circulation Stroke

rhEPO recombinant human erythropoietin

ROI Region-of-Interest

rTPA recombinant Tissue Plasminogen Activator

TP True Positive

VBR Volume-based Removal

vCSF ventricular cerebro-spinal fluid

VOI Volume-of-Interest

WM white matter
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