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SUMMARY

Paper sheets reveal pronounced changes in shape and dimensions upon exposure to variations in moisture,
which comprises digital printing operations. These are observed in the form of curls, waviness and buckling
at the sheet-scale of paper. In digital printing, this undesired behavior is due to the fact that the moisture is
rapidly absorbed in paper and thereafter evaporated within a short period of time.

These dimensional changes originate from the single fibre level, which affects the fibre network through the
inter-fibre bonds (regions where the fibres overlap). At these bonds, an interaction of the hygroscopic and
mechanical response of the fibres occurs, entailing micro-stresses and associated sheet-scale deformations.
In order to understand this macro-scale behavior of paper, it is essential to study the complex fibrous
network at the micro-scale.

In Chapter 2, a level-set based XFEM approach is used to model the hygro-elastic response of com-
plex fibrous networks in a two dimensional framework. The fibres are assumed to be completely bonded in
the inter-fibre bonds. The fibre edges are described by the zero level-set of a higher dimensional function.
The level-set method coupled with X-FEM captures the geometrical description of the fibres adequately
with a lower system size, since the discretization is decoupled from the geometry. Therefore, LS-XFEM
formalism is shown to be successful in modeling the hygo-mechanical response of complex networks of
fibres.

During the manufacturing process of paper, when the pulp is dried under restraint, internal stresses/strains
are developed as explained by the fibre segment activation mechanism. Upon exposure to a moisture cycle
(e.g. during printing), these strains are released at the fibre level which induces permanent deformations at
the macro-scale accompanied by dimensional instabilities. To capture such phenomena, a rate-independent
kinematic hardening plasticity model is developed for the individual fibres in Chapter 3. The results
obtained from the numerical network simulations using this model illustrate the influence of microstructural
properties of the network (e.g. the fraction of free-standing fibres versus bonded fibres) on the macroscopic
irreversible strains.

In addition to printing, the moisture infiltration in paper occurs also via the environment. Under sus-
tained loading over a period of time, creep takes place in paper networks. These macroscopic deformations
observable in paper networks over time are of great interest due to the lack of a suitable model that explains
this behavior. Furthermore, this intrinsic time-dependence is of significant importance for the service
conditions of paper packaging products. In order to understand the effects of time scales on the dimensional
alterations in paper, a rate-dependent plasticity model based on a power law is adopted in Chapter 4.
The model parameters are identified from experimental results performed on single paper fibres (Jentzen
[32] and Sedlachek [64]). Thereafter, network simulations are performed, which demonstrate the time
dependence at the sheet level.

In order to understand the role of the degree of bonding between the fibres in bonded regions on the
sheet-scale response of the network, the assumption in Chapters 2, 3 and 4 of a full kinematic constraint
between fibres at the bonds is partially relaxed in Chapter 5. In the relaxed bond model, the fibres in
bonds can have independent displacements, whereby the displacement difference is governed by interfacial
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stiffness. This is modeled numerically by embedded interfacial elements that connect the fibres in the
bonded regions of network. The computational results reveal the influence of the kinematic constraints
in the bonds at the sheet-level behavior of the network in addition to the anisotropic response of the network.

With the research undertaken in this thesis, it has been made possible to capture the complex geometry
of paper networks adequately, enabling the prediction of their hygro-expansive response. A clear under-
standing has been achieved on the role of various network parameters in determining the hygro-mechanical
behavior of paper. The developed numerical models allowed to gain insight into the hygro-mechanical
response of paper fibres and can be further developed to model macro-level properties of paper.
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