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1 Introduction

1.1 Light

Light is essential for our existence as it allows us to perceive and interact with
our environment. Without the interaction between light and matter, our planet
would be an uninhabitable mass of ice and rock. Solar radiation warms the land
and the oceans and provides energy for photosynthetic organisms to produce oxy-
gen. Through optical perception, many organisms Ąnd nutrients, evade dangers,
communicate with each other, and navigate their surroundings. In addition to its
biological signiĄcance, light has played a pivotal role in human civilization and
culture. The manipulation of light has led to signiĄcant technological advance-
ments, including the invention of light bulbs and Ąber-optic communication. To
understand light transport through various media, it is crucial to study light scat-
tering, which provides valuable insights into the optical properties of materials
and how to shape the materials in a way to control the propagation of light.

1.2 Scattering of light

Let us consider plane waves of light propagating through a medium. If the
medium is homogeneous, light travels without any disturbance with a speed equal
to the well-known speed of light divided by the refractive index c/n. However, if
there are spatial variations in the refractive index n, the direction and amplitude
of light will change at the interface of these inhomogeneities. This occurs when
two homogeneous media with different refractive indices have an interface (e.g.,
refraction of light at the air-water interface) as well as when a medium contains
inclusions of another material with a different refractive index n2. Examples of
the latter case are photonic scattering media, such as paint, foam, and tissue,
where the incident waves are scattered and absorbed by inhomogeneities referred
to as scatterers [1Ű6]. The scatterers are characterized by their scattering cross-
section σscat, which is the hypothetical cross-sectional area used to normalize the
total scattered intensity of light by the scatterer. In other words, the total energy
scattered in all directions by the scatterer is equal to the energy incident on the
area σscat [7, 8]. In this thesis, the light that is scattered in this manner is called
diffuse light.
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Figure 1.1: Illustration of extinction of light. An object scatters and absorbs an
incoming beam of light, hence removes part of the energy from the beam that reaches
the observer.

When light interacts with a scatterer, a portion of the incident electromagnetic
energy can be converted through absorption into another form of energy, such as
thermal or chemical energy. The absorbed energy is expressed by the absorption
cross-section σabs of the scatterer, which is deĄned as the area in which the total
absorbed intensity is normalized to the incident energy on it [7, 8].

Scattering and absorption remove electromagnetic energy from the incident
beam. This attenuation is called extinction, and is illustrated in Fig. 1.1. Ex-
tinction can be measured by observing the source after light has interacted with
the scatterer. Hence, the extinction cross-section σext is the sum of scattering
and absorption cross-sections:

σext = σscat + σabs. (1.1)

In reality, the intensity alone does not provide a complete characterization of
either the incident or the scattered light. Additional information regarding po-
larization and phase is necessary for the complete picture of electromagnetic
waves [7]. While acknowledging the importance of polarization and phase, we
do not discuss them explicitly in this thesis, and place our main focus on energy
densities and intensities.

1.2.1 Single scattering of light

Single scattering refers to the situation where one scattering event occurs with
one scatterer1. There are three categories of single scattering, which are primarily
dependent on the size of the scatterer: Rayleigh scattering, Mie scattering, and
geometrical scattering. Rayleigh scattering describes the regime where the size
of the scatterer with radius r is much smaller than the wavelength of the incident
light λ: r ≪ λ [10]. In this regime, light scatters isotropically, that is, uniformly
in every direction as shown in Fig. 1.2(a). The blue color of the sky is a popular

1The general interaction of light with one scatterer is described by the t-matrix which includes
all possible scattering events, see [2, 9]
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example of Rayleigh scattering, where blue light is scattered more strongly than
other visible wavelengths by atmospheric molecules and aerosols. The scattering
cross-section in Rayleigh scattering depends on the inverse fourth power of the
wavelength of light σscat ∝ 1

λ4 [11]. Geometrical scattering describes the converse
case, in which the size of the scatterer is much larger than λ (r ≫ λ), as with
macroscopic objects like a windowpane or a bottle. In this case, reĆection and
refraction phenomena are adequate to explain the transport of light.

(a) (b) (c)

Figure 1.2: (a) An isotropic scatterer that scatters in all directions with equal proba-
bility. (b) An anisotropic scatterer that scatters more in the forward direction. (c) An
absorbing scatterer, where the loss of intensity is depicted as thinner arrow after the
scattering event. In (a,b) the solid arrows are incident and scattered (ŝ) directions, the
dashed arrows are other possible scattering directions, and the arrow lengths indicate
the probability to scatter into that direction. In (a, b, c), the centers of the scattering
spheres are at r, I0 is the incident intensity and I(r, ŝ) is the scattered intensity.

When the size of the scatterer is comparable to the wavelength (r ≈ λ), it is
considered to be in the Mie scattering regime, called after Gustav Mie [7, 12].
Mie scattering provides an excellent description of the scattering process if the
scatterer is a sphere or a long cylinder. Mie scattering approaches Rayleigh and
geometrical scattering in the long- and short-wavelength limits, respectively. A
scatterer with a spherical shape and a size approximately equal to the wave-
length of light is called a Mie sphere. Mie spheres exhibit resonances at speciĄc
wavelengths where the scattering cross-section is much larger than the physical
cross-section: σscat ≫ πr2 [9]. The scattering by Mie spheres is generally more
pronounced in the forward direction, as shown in Fig. 1.2(b), resulting in an
anisotropic scattering pattern. In this thesis, the term anisotropic scatterer or
anisotropic sample means the direction of light scattering is anisotropic, and it
does not necessarily refer to the shape of the scatterer, unless stated otherwise
(as in chapter 6).

Cross sections describe the scattering from individual scatterers, while mean
free paths characterize a collection of scatterers [2, 3, 9, 13]. We will refer to the
region with the collection of scatterers as the sample. The scattering mean free
path ℓscat is the average distance between two consecutive scattering events, and
in the independent scattering approximation it is equal to

ℓscat =
1

ρσscat
, (1.2)

where ρ represents the density of scatterers. For samples that contain absorbing
scatterers, the decay of incident light intensity is determined by the extinction
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mean free path ℓext that includes both scattering and absorption, and is equal to

ℓext = (
1

ℓscat
+

1

ℓabs
)−1, (1.3)

where ℓabs is the absorption mean free path, equal to

ℓabs =
1

ρσabs
, (1.4)

that represents the average distance light travels before being absorbed, down to
a fraction 1/e (≈ 36%).

1.2.2 Multiple scattering of light

As long as the size L of the sample is smaller than ℓscat, the single scattering
regime holds. Multiple scattering occurs when the scattering mean free path is
smaller than the sample size (ℓscat < L) and light undergoes multiple changes
in direction within the sample. At each scattering event, the direction of light
changes according to the phase function of the scatterers, which determines the
probability of the scattering direction. Details about the phase function are
provided in Chapter 4. By ignoring the wave nature of light, the propagation
inside a multiple scattering sample is described as a random walk with an average
step size of ℓscat. The direction of light is fully randomized after a number of
steps. The length scale that describes the distance over which the information of
the initial direction of light is lost, is the transport mean free path ℓtr [2, 14Ű17],
given by

ℓtr =
ℓscat

1 − ⟨cos θ⟩ , (1.5)

where ⟨cos θ⟩ is the average cosine of the scattered angle. In the Rayleigh regime,
the scattering is isotropic, ⟨cos θ⟩ = 0, and ℓtr = ℓscat. In case the scattering is
mostly in the forward direction, many scattering events are needed before the
direction of light becomes completely randomized. In the forward scattering case
we have 0 < ⟨cos θ⟩ < 1 and ℓtr > ℓscat. On the other hand, in the backscattering
case the direction of scattering is mainly backwards, with −1 < ⟨cos θ⟩ < 0 and
ℓtr < ℓscat. Another important regime is where the transport mean free path is
much smaller than the sample size ℓtr ≪ L and even of the order or smaller than
the wavelength, which is signiĄcant for light localization studies2 [19Ű21].

Multiple scattering is an important optical phenomenon that affects our per-
ception of the world around us. For instance, a glass of water is transparent, but
water droplets form clouds in the sky that appear white due to multiple scat-
tering. The color of white paint is also a result of multiple scattering caused by
TiO2 or similar nanoparticles. Biological tissue, fog, milk, and interstellar clouds
are other examples of media in which multiple scattering is prominent.

An important property of light that diffuses in a photonic scattering medium is
the energy density. In medical applications like photodynamic therapy (PDT), it

2Strong localization of light occurs when ℓtr ≤ λ [18]
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is necessary to understand the position-dependent energy density distribution in-
side tissue that is illuminated by a light source [22Ű24]. This knowledge is crucial
to activate the photosensitizing agents that are placed in the tissue beforehand,
to achieve the targeted treatment [25].

The understanding of light transport in multiple scattering media is also es-
sential in the Ąeld of satellite observations of water bodies [26, 27]. This type
of scattering media contain absorbing and anisotropic scatterers. Investigations
of optical properties of the water bodies through satellite observations help re-
veal the biochemical composition of water, monitor water quality, and assess the
impacts of climate change and pollution on natural water resources [28Ű30]. Mul-
tiple scattering is also relevant in various industrial applications, such as diffuser
glasses and phosphor plates used in white light emitting diodes (LEDs).

1.3 Light scattering in the industrial regime

Understanding the transport of light in photonic scattering media is crucial
for many application areas, such as atmospheric and climate sciences [31Ű34],
oceanography [35, 36], biophysics [37Ű40], powder technology [16, 41, 42], print-
ing [43], and solid-state lighting [44Ű47]. In the context of industrial applications
that are at the basis of the FFSO program that funded this thesis, it is necessary
to balance two competing properties. First, the transmission and the reĆection
of light should be optimized, particularly for applications where quick measure-
ments are required, such as in wafer metrology. The maximum transmission
requirement favors the use of thin samples. Conversely, light should be suffi-
ciently diffused, particularly for even illumination of a detector, such as in an
earth-observing satellite, or in lighting where the underlying LED components
should not be visible to the consumer. For the lighting industry, the sample
thickness L must be at least one transport mean free path (L ≥ ℓtr). These
requirements are simultaneously achieved when the sample thickness is on the
order of the transport mean free path (L ≈ ℓtr), a situation we refer to as scat-
tering in the industrial regime. Fig. 1.3 shows an illustration of thin, thick and
industrial regimes. The balance of both high transmission and diffuse light may
be achieved by samples that contain anisotropic scatterers, since the length scales
relate as ℓscat < L < ℓtr, hence the output is more directional than the isotropic
case.

In the thick limit (L ≪ ℓabs, L ≫ ℓtr) of non-absorbing media, diffusion theory
provides an accurate description of light transport in photonic scattering me-
dia [1, 9], notably of the energy density [48]. In principle, light transmission
through thick samples can be increased by wavefront shaping [49, 50]. However,
including a digital micromirror device (DMD) or a spatial light modulator (SLM)
is not very practical in most industrial applications. In the thin limit (L ≪ ℓtr),
geometrical optics accurately describes light transport and reĆection. The in-
termediate industrial regime is of utmost importance for industrial applications,
however, it is also the least understood as it falls into neither the thick nor the
thin limit, and therefore requires further exploration. Furthermore, anisotropic
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scatterers offer many control opportunities and deserve extra attention in the
industrial regime.

𝐿 < ℓtr
Thin regime

𝐿 > ℓtr
Thick regime

Industrial regimeℓscat < 𝐿 < ℓtr
𝐿 ≈ ℓtr

𝐿 ℓtr

Figure 1.3: Illustration of scattering regimes as a function of the ratio of sample
thickness L and the transport mean free path ℓtr. The Ągure showcases three examples:
A transparent polymer slab, representing a sample in the thin regime and featuring
a physicistsŠ favorite symbol behind it. A Philips hue white LED bulb by Signify
with a phosphor layer, representing a sample that contains a scattering medium in the
industrial regime. Thick clouds on top of Trolltunga, Norway, representing scattering
media in the thick regime.

The energy density is crucial to understand how light is converted in a white
LED. White LEDs typically rely on a combination of a blue LED [51], and a phos-
phor layer that absorbs part of the blue light and re-emits in green, yellow, and
red light to achieve the desired white light [44, 45, 52Ű54]. A good understanding
of light transport in scattering media with absorbing scatterers is essential to
control the properties of the phosphor layers. A nice example of these conver-
sion layers is the so-called Lumiramic developed by Lumileds, which is based on
phosphor in a ceramic material that improves thermal management [46].

The combination of a blue LED, phosphor, and possibly other scatterers is
not only intended to convert colors but also to produce an even distribution of
white light for outgoing directions. In many optical systems like car lighting and
smart street lighting, it is essential to control the escape distribution to produce
a narrower yet still diffuse cone, instead of a Lambertian, to reach a higher sys-
tem efficacy and improved beam quality. A promising method to achieve this is
to introduce additional anisotropic scatterers inside the phosphor layers. There-
fore, understanding the light transport and energy density distribution within
photonic scattering media, which contains absorbing and anisotropic scatterers,
is extremely relevant for industrial applications.
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1.4 Transport theory

Transport theory describes the propagation of waves in scattering media, no-
tably in a widely-used realistic situation like a slab in three dimensions (3D), as
shown in Fig. 1.4. The theory describes the transfer of intensity and neglects
interference effects including diffraction [1]. For all practical purposes the trans-
port theory is rigorous and only in exceptional cases such as the situations of
very strong elastic scattering and Anderson localization of light where interfer-
ence predominates, the transport shows features beyond the predictions of trans-
port theory [2]. Even though transport theory neglects interference effects, it
contains information about correlation of Ąelds [55] and it is used to improve the
understanding of interference effects, such as wavefront shaping inside scattering
media [50].

0 𝐿 𝑧

Figure 1.4: Incident plane waves with intensity I0 are scattered by scatterers (spheres)
inside a slab and leave as scattered waves with total intensity Iout. The refractive indices
of the slab and of the medium outside are nslab and nout, respectively. The reĆections
from interfaces and the back-scattered light are neglected from the illustration.

The basic differential equation used in transport theory is the radiative transfer
equation (RTE), which is equivalent to BoltzmannŠs equation used in the kinetic
theory of gases and neutron transport [1, 56, 57]. The most fundamental quantity
is the speciĄc intensity I(r, ŝ) that describes the average power Ćux density at
position r in a given direction ŝ within a unit solid angle and a unit frequency
band [1]. Due to its dependency on both the position r and the direction ŝ, it is
challenging to solve I(r, ŝ) directly.

The most popular method to solve the RTE for light is the Monte Carlo simu-
lation of light transport [58Ű66], a statistical method that converges to the exact
solution of the RTE. To obtain a high accuracy, however, this method comes with
the cost of extremely long computation times [67] and high computational power
requirements with concomitant high energy consumption.

The complexity of transport theory and the slow Monte Carlo simulations have
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stimulated the development of analytical approximations to the RTE [68Ű74]. De-
spite impressive advances made by graphics processing unit (GPU) based Monte
Carlo simulations in terms of speed [63, 64], analytical methods are still signiĄ-
cantly faster. Moreover, in certain conĄgurations, such as the slab geometry, the
results of these analytical approximations match the accuracy of simulations.

A widely used analytical approximation to the RTE is the PN approximation
(see subsection 4.2.1 for full solution for a slab geometry), where the dependence
on both variables is separated [57] by expanding the speciĄc intensity I(r, ŝ) in
products of complete sets on the domains of r and ŝ

I(r, ŝ) =

N
∑

l=0

l
∑

m=−l

ψml (r)Y ml (ŝ). (1.6)

Here, ψml (r) are the spatial components, Y ml (ŝ) are the directional components
taken as the Laplace spherical harmonics [75, 76], and N is the order of the ap-
proximation that determines the number of terms in Eq. (1.6). The analytical
PN approximations are mostly used for simple sample geometries such as a slab
and a sphere and their accuracies depend notably on (i) the order N of the ap-
proximation, (ii) on the optical properties of the medium and (iii) the scattering
phase function used in the approximation. The speciĄc intensity I(r, ŝ) and the
scattering phase function are discussed in detail in Chapter 4. As N approaches
inĄnity, the PN approximation yields exact solutions. In realistic cases, such as
a 3D slab, the order is rarely higher than N = 3 as the mathematical complex-
ity increases rapidly with increasing N . 3 The higher order terms have little
information to add for the isotropic scattering case, however, they could become
signiĄcant in the anisotropic samples. Analytical solution approaches that enable
higher orders (N > 3) exist, but generally require the numerical determination
of eigenvalues and eigenvectors [78Ű80]. In this thesis, we focus on the Ąrst- and
third-order PN approximation and a correction to the third-order for the forward
scattering case that improves the accuracy signiĄcantly.

1.5 Outline of the thesis

In this thesis, we study the light transport through photonic scattering media,
speciĄcally the position dependent energy density, by using the transport theory
and experimental observations. We speciĄcally focus on samples that consist of
anisotropically scattering and absorbing scatterers, as common approximations
to the radiative transfer equation fail for these samples and one is thus interested
in the possible description in these regimes.

As a uniĄcation of this thesis, let us brieĆy consider various dimensionalities.
Let us consider a general sample to have lengths (Lx, Ly, Lz) in the (x, y, z)
dimensions. Let us assume that the light scattering may be described by mean

3Odd positive integers are chosen for N since odd order approximations are known to be more
accurate than even orders, as in the even order approximations the angular integrands are
discontinuous [77].
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free paths (ℓx, ℓy, ℓz) that may differ depending on whether light propagates
in the (x, y, z) directions. Most part of this thesis concerns the 3D situation
where the mean free paths are isotropic (ℓx = ℓy = ℓz) typical for samples with
isotropic internal structure like spherical scatterers. Moreover the samples are
"industrial", hence mean free paths are comparable to the sample dimensions.
We mostly study slab samples where one dimension is much less than the other
two ¶Lx, Ly♢ ≫ Lz, and where the light transport is in the thin dimension z,
hence the transport appears to be effectively 1D (see chapters 3-5)

A second main study in this thesis concerns samples that are structurally
anisotropic, namely consisting of parallel micropillars. In this class of samples
the transport is in essence two-dimensional (2D) and ¶ℓx, ℓz♢ ≪ ℓy. Moreover
the sample dimensions are such that the non-scattering direction is Ąnite Ly ≪
¶Lx, Lz♢, hence the transport is not strictly 2D and therefore called quasi-2D.

Chapter 2 summarizes the relevant parts of the theory of integrating spheres
to our experiments. The substitution error and how double-beam measurements
can reduce systematic the errors is discussed. Experimental measurements are
presented to compare the single-beam and double-beam measurements, and at
most 2% systematic error is found.

In Chapter 3 we study the P1, P3, and P3 + δE(4) approximations to the
radiative transfer equation, to model the light transport in photonic scattering
media. We deĄned the unphysical ranges of these analytical approximations
in the parameter space albedo4 a, anisotropy g, optical thickness b, and index
contrast ∆n2. We provide the relative error maps of the approximations by
comparing them to the Monte Carlo simulations of light transport, in a complete
range of a and g parameters and for a realistically chosen b and ∆n2. The results
presented in this chapter provide a guideline for the applicability of the P1, P3,
and P3 + δE(4) approximations, to interpret experiments on light transport in
photonic scattering slabs.

Chapter 4 lays out the theoretical background for Chapters 3 and 5. The key
parameters in transport theory are explained and the radiative transfer equation
for a slab is derived and solved using the analytical P1, P3, and P3 + δE(4)
approximations. Consideration of homogeneous layers with a different refractive
index, between the air-slab interface, is added to the boundary conditions and
the effect of internal reĆections to the source intensity is explained. Furthermore,
several alternative phase functions to the Henyey-Greenstein phase function are
discussed.

In Chapter 5 we present a comprehensive analysis of the experimental mea-
surements of position-dependent energy Ćuence rate, which is proportional to the
energy density, of samples that contain anisotropically scattering and absorbing
spherical scatterers. Preparation of samples and the experimental setup are ex-
plained in detail. The experimental observations are compared to the results
of the analytical approximations to the solution of the radiative transfer equa-
tion, which are discussed in Chapters 3 and 4, and the Monte Carlo simulations.
A detailed account of the experimental limitations, which prevent an absolute
measurement and an exact match with the models, is provided.

4In this thesis we refer to single scattering albedo as albedo, for convenience.
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Chapter 6 presents the position-dependent energy density measurements on
quasi-2D samples consisting of randomly positioned circular cylinders, etched
on a silicon wafer. The energy density is probed by measuring the out-of-plane
scattering from the top of the samples. The sample fabrication and the experi-
mental setup is explained in detail. Initial experimental results from the setup
are presented and discussed.

Finally, Chapter 7 summarizes the results of this thesis and provides an outlook
to improve the experiments and the possible utilization of the results for future
applications.



2 Measurements with integrating

spheres

2.1 Introduction

Integrating spheres are widely used tools for the measurement of optical prop-
erties of materials and of light sources. In particular, such spheres are used to
collect optical information that is angle-integrated or wave vector integrated.
Therefore, the inner surfaces of these spheres are coated with a highly reĆective
and diffusive material, which ensures uniform distribution and collection of light.
Integrating spheres have applications in various Ąelds, such as measurements of
light output and spectral characteristics of light emitting diodes (LEDs) [17, 47,
81, 82], quantum yield measurements of quantum dots [83, 84], characterization
of optical properties of biological materials such as coral colonies [85], algal cell
suspensions [86, 87], and food samples [88Ű91].

This chapter summarizes the theory of integrating spheres relevant to the ex-
periments conducted in this thesis following the reference [92]. The chapter
discusses the use of integrating spheres to conduct total transmission and total
reĆection measurements, to measure the optical properties of photonic scattering
samples. Finally, it discusses the double-beam total transmission measurements
to correct for systematic errors and compares them with single-beam measure-
ments obtained by our setup.

2.2 Integrating sphere theory

Light incident on a diffuse surface creates a virtual light source by reĆection.
The light emanating from the surface is described by its intensity, or radiance,
that is the Ćux density per unit projected solid angle

I =
FiRs

πAs



W

m2sr



(2.1)

where Fi is the input Ćux, Rs is the reĆectance from the surface, As is the
illuminated area, and the total projected solid angle from the surface is assumed
to be π. The wavelength and sample dependencies of the quantities discussed in
this chapter are not explicitly written in equations for visual convenience.

For an integrating sphere, the equation to describe intensity at the inner surface
of the sphere Is must consider both multiple surface reĆections and losses through
the port openings. The total Ćux incident on the internal sphere surface is higher
than the input Ćux Fi due to multiple reĆections inside the sphere.
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Figure 2.1: Schematic cross-section of an integrating sphere with two ports: an input
port with area Ai, and an exit port with area Ae. The sphere has internal area As and
inner wall reĆectance Rs. The input Ćux is Fi and Is is the intensity emanating from
sphere surface due to many reĆections of Fi inside the sphere.

Consider an integrating sphere, shown in Fig. 2.1, with an input port area Ai

and an exit port Ae. The internal sphere surface intensity Is is equal to

Is =
Fi

πAs
× Rs

1 −Rs(1 − fport)

=
Fi

πAs
×M

(2.2)

where M is called the sphere multiplier, As is the area of the inner sphere, Rs is
the reĆectance of the inner walls, and fport is the total port fraction deĄned as

fport ≡ Aports

As
, (2.3)

where Aports is the sum of all port areas1, that is equal to

Aports = Ai +Ae, (2.4)

for the sphere shown in Fig. 2.1. Note that the Is decrease as As increases at
constant input Fi.

A handy rule of thumb for integrating spheres is

0.94 <Rs < 0.99

0.02 <fport < 0.05
(2.5)

which deĄnes a range for the inner wall reĆectance Rs and states that no more
than 5% of the sphere surface area As should be consumed by port openings for
accurate measurements.

1A integrating sphere may have multiple ports, e.g., ours has 4
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Eqn. (2.2) is speciĄc to the case where Fi is incident on the inner sphere wall
through an open port, the wall reĆectance is uniform and the reĆectance of all
port areas is zero. A more general expression of the sphere multiplier M is

M =
R0

1 −Rs(1 −∑n
i=0 fi) −∑n

i=0 Rifi
, (2.6)

where R0 is the initial reĆectance for the incident Ćux, Ri is the reĆectance of
port opening i, and fi is the fractional port area of port i. For simplicity, the
average reĆectance R̄ is deĄned as

R̄ ≡ Rs(1 −
n
∑

i=0

fi) −
n
∑

i=0

Rifi. (2.7)

Hence the sphere multiplier becomes

M =
R0

1 − R̄
. (2.8)

There are various detection methods of measurements with integrating sphere,
such as using a lens to focus the diffuse output on a photodetector or directly
mounting a photodetector on the exit port of the integrating sphere. Here, we
consider the situation where a Ąber is attached to the exit port of the integrating
sphere, as illustrated in Fig. 2.2, and where the other end of the Ąber connected
to a detector. The Ćux collected by the Ąber FĄber is equal to

FĄber = IsAfπ(NA)2(1 −Rf), [W ] (2.9)

where NA is the numerical aperture of the Ąber, π(NA)2 is the projected solid
angle that is viewed by the Ąber core, and Rf is the specular reĆectance of the
Ąber surface that reĆects part of the light back into the sphere. The Ąber surface
has an area Af that depends on the core radius rc as Af = πr2

c . In measurements
using integrating spheres, it is crucial that the detected Ćux FĄber does not include
a portion of the incident Ćux Fi that is reĆected only once by the sphere surface,
which leads to a false response. This is prevented by the use of baffles, which
are coated with the same diffuse material that covers the sphere walls. The
purpose of the baffle is to block the detectorŠs view of the incident Ćux that has
not undergone at least two reĆections from the sphere surface. Fig. 2.2 shows
an example of an integrating sphere with a baffle. The positioning, shape and
number of baffles are optimized for the speciĄc design and requirements of the
integrating sphere, as well as the detection method employed in measurements.

While in theory, the surface intensity Is is uniform everywhere in the integrat-
ing sphere surface area, in practice that is not the case. Since different parts of
the sphere wall can have different reĆections, it is crucial to align the incident
beam correctly before starting measurements. Fig. 2.3 shows the cross-section
of an integrating sphere where a light beam is sent in through Port 1, and exits
through Port 2, where the initial reĆection would take place if the port would be
closed. A good way to ensure reproducibility of results in case of realigning the
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𝐹�iber 𝐴f

Figure 2.2: Schematic cross-section of an integrating sphere with 2 ports (entrance
and exit ports), a baffle, and a Ąberoptic cable attached to the exit port with Ąber
surface area Af . Fi is the incident Ćux on the integrating sphere surface, and Ffiber is
the Ćux that is collected by the Ąber.

incident beam in the setup, is to make sure the beam enters through the center of
Port 1, and leaves the sphere through the center of Port 2. Furthermore, the baf-
Ćes are generally positioned with consideration of this central positioning of the
incident beam. Having a small beam diameter compared to the port diameters
also helps to reduce this systematic error.

An experiment was done to observe the effect on the detected Ćux FĄber of the
incident beam position at the entry port of an integrating sphere (Opsira uku240).

Port 1

Port 2

Figure 2.3: Schematic cross-section of an integrating sphere with three ports, of which
Port 1 and Port 2 are open and the third has a Ąber attached to it. An incident light
beam enters through the center of Port 1, and exits through the center of Port 2.
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Port 1
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𝑥
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Figure 2.4: (a) Schematic of incident light beams positioned on Port 1 (entry port).
y0 is the center of the port opening, and y1, y2, y3, y4 and y5 represent other tested
positions within the port diameter dport = 20 mm. The incident beam travels in the
z-direction. (b) Measured spectra of incoming broadband beams that passed through
the positions shown in (a). (c) Relative errors ∆yi of measured spectra at varied entry
positions compared to the spectrum measured for central entry position y0.

We used a broadband supercontinuum light source (Fianium SC450, 2W) with a
beam diameter set to dbeam = 2 mm, and as a detector a spectrometer (Avantes
Starline, AvaSpec-2048L) coupled to the integrating sphere via a Ąberoptic cable.
The incident beam entry position is varied along one axis, and the spectrum of
the transmitted light is measured as a function of the entry position. Fig. 2.4(a)
shows a representation of the positions tested in the experiment. Fig. 2.4(b)
displays the measured spectra at different entry positions, and Fig. 2.4(c) shows
the relative error ∆yi of measured spectra for each tested entry position with
respect to the spectrum taken for the central position y0, where ∆yi is deĄned
as

∆yi ≡
√

(yi − y0)2

y2
0

. (2.10)

From Fig. 2.4(c), it is observed that the systematic relative error is between
4.6% < ∆y1,5 < 6.7%, for the entry positions that are ≈ 9 mm away from the
central position y0. For the entry positions that are within < 5 mm distance from
y0, the error is ∆y2,3,4 < 1%. In addition, it is observed that the Ćuctuation of
wavelength dependency is low. It is important to note that this experiment is
conducted along only one axis, and testing various positions at other axes could
result in further variations.
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Figure 2.5: Schematic of the Opsira uku240 integrating sphere used in this thesis. (a)
Total transmission and (b) total reĆection conĄgurations of the integrating sphere. The
yellow rectangle represents the sample, and it is attached to (a) Port 1 for the total
transmission and (b) Port 2 the total reĆection conĄgurations. There is a 6◦ angle
between the incident beam direction and the normal to the sample surface in (b), and
Port 3 is closed to measure the total transmission and the total reĆection of the sample.

2.3 Total transmission and reĆection measurements

Integrating spheres are commonly used for diffuse or total transmission and
total reĆection measurements, aimed at extracting various optical properties of
samples, including spectral characteristics [47] and mean free paths [17]. The
speciĄc integrating sphere (Opsira, uku240) utilized in the experiments conducted
in this thesis has four ports and employs two baffles, as shown in Fig. 2.5.

Fig. 2.5(a) shows the conĄguration of the total transmission measurements,
where the sample is positioned at Port 1 of the integrating sphere and the total
transmission TT of the sample is deĄned as

TT ≡ Ft

Fi
, (2.11)

where Ft is the measured total transmitted Ćux through the sample, and Fi

is the measured incident Ćux without a sample2. This two-step measurement
is often called single-beam measurement [93, 94] and it does not consider the
systematic substitution error, which is discussed at the end of this section. The
conĄguration of total reĆection measurements is shown in Fig. 2.5(b), where the
sample is placed at Port 2 of the integrating sphere. There is a 6◦ angle between
the incident beam direction and the normal to the sample surface in reĆectivity.
The total reĆection TR of the sample is deĄned as

TR ≡ Fr

Fi
, (2.12)

2The subtraction of dark counts is not included in eqn. (2.11) and other equations in this
chapter, for simplicity. If necessary, dark counts are subtracted from all measured flux.
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where Fr is the total reĆected Ćux from the sample. The 6◦ angle between the
incident beam direction and the normal to the sample surface in Fig. 2.5(b) serves
to remove or capture the specular reĆection from the sample surface by opening
or closing Port 3, respectively.

A systematic error present in all integrating spheres, called the substitution
error [93, 95], arises from alterations in the average reĆectance of the sphere walls
due to the presence of samples attached to the ports. This error is primarily
dependent on the port fraction fport of the integrating sphere, as well as the
reĆectance of the samples and the reĆectance of the integrating sphere walls.
This error is often small and neglected in practice, and approximations using
lookup tables are commonly used to estimate its impact [96]. Reference [97]
discusses experimental procedures to measure the substitution error in reĆection
measurements, using an additional reference port in the integrating sphere. The
introduction of the additional reference port is not possible in our experiments.
Due to the small port fraction fport < 0.7% of our integrating sphere and the low
reĆectance TR ≤ 15% of the samples used in the experiments of chapter 5, we
expect a small substitution error ∆TRsubs ≤ 2% [92]. References [92, 96] provide
additional, guidelines to further correct this error, if needed.

2.3.1 Double-beam total transmission measurements

Double-beam measurements are measurement with integrating spheres that
include additional steps to correct the substitution errors [92, 96] that are present
in single-beam measurements (see Fig. 2.5). Let us Ąrst examine the substitution
error in single-beam measurements by taking the ratio of detected transmitted
Ćux F det

t and detected incident Ćux F det
i using eqns. (2.2), (2.6) and (2.9) for the

conĄguration in Fig. 2.5(a).

F det
t

F det
i

=
Ft

πAs
MtAfπ(NA)2(1 −Rf)

Fi

πAs
MiAfπ(NA)2(1 −Rf)

,

=
Ft

Fi

Mt

Mi
,

= TT
Mt

Mi
.

(2.13)

Here, the sphere multiplier factor for the detected transmitted Ćux Mt is equal
to

Mt =
R0

1 −Rw(1 − ff − f1) −Rfff −R1f1
, (2.14)

where ff is the fractional port area of the Ąber port, f1 is the fractional port area
of the entry port (Port 1 in Fig. 2.5(a)), Rf is the reĆectance at the Ąber surface,
and R1 is the reĆectance at the entry port from the surface of the sample. The
sphere multiplier factor for the detected incident Ćux Mi is equal to

Mi =
R0

1 −Rw(1 − ff − f1) −Rfff
. (2.15)
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Eqns. (2.14) and (2.15) show that Mt and Mi do not cancel out, therefore, the
ratio of F det

t and F det
i is not equal to the total transmission of the sample, and

should thus be corrected. 𝐹i𝐹i
Port 3

Port 1

Port 2

Figure 2.6: Schematic of double-beam total transmission measurement conĄguration
of the integrating sphere. Port 3 is open during the measurements. Incident beam
enters from Port 1 or Port 3 depending on the step of the measurement series, and Port
2 is always closed. The yellow rectangle represent the sample that is attached to Port
1.

The setup conĄguration for double-beam total transmission measurements is
shown in Fig. 2.6. Port 3 is always open during double-beam measurements and
incident Ćux Fi enters the integrating sphere either from Port 1 or Port 3, depend-
ing on the step of the measurement series. The incident beam is aligned such that
the initial reĆection is at the same spot on the sphere surface regardless of the
port the beam enters the sphere. It should be noted that the initial reĆectance
from the sphere wall when the beam enters from Port 1 (R0) is inevitably differ-
ent from the initial reĆectance from the sphere wall when the beam enters from
Port 3 (R′

0). The double-beam method has a series of 4 steps to measure total
transmission of the samples:

1. The sample is attached to Port 1, the beam is incident on the sample and
enters the sphere from Port 1, to measure the transmitted Ćux F db

t

F db
t =

Ft

πAs
Mdb

t Afπ(NA)2(1 −Rf), (2.16)

where the multiplier factor Mdb
t is equal to

Mdb
t =

R0

1 −Rw(1 − ff − f1 − f2) −Rfff −R1f1
. (2.17)
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2. The sample is attached to Port 1 and the beam enters the sphere from Port
3, to measure the calibration Ćux F db

cal

F db
cal =

Fi

πAs
Mdb

calAfπ(NA)2(1 −Rf), (2.18)

where the multiplier factor Mdb
cal is equal to

Mdb
cal =

R′
0

1 −Rw(1 − ff − f1 − f2) −Rfff −R1f1
. (2.19)

3. Nothing is attached to Port 1 and the beam enters the sphere from Port 1,
to measure the incident Ćux F db

i

F db
i =

Fi

πAs
Mdb

i Afπ(NA)2(1 −Rf), (2.20)

where the multiplier factor Mdb
i is equal to

Mdb
i =

R0

1 −Rw(1 − ff − f1 − f2) −Rfff
. (2.21)

4. Nothing is attached to Port 1 and the beam enters the sphere from Port 3,
to measure the correction Ćux F db

cr

F db
cr =

Fi

πAs
Mdb

cr Afπ(NA)2(1 −Rf), (2.22)

where the multiplier factor Mdb
cr is equal to

Mdb
cr =

R′
0

1 −Rw(1 − ff − f1 − f2) −Rfff
. (2.23)

The total transmission TT is now deĄned to be

TT ≡ F db
t

F db
i

F db
cr

F db
cal

=
Ft

Fi
, (2.24)

where the multiplying factors cancel out, and the effect of sample reĆection is
eliminated.

The comparison of single-beam and double-beam total transmission measure-
ments with the integrating sphere used in our experiments are given in Fig. 2.7.
The samples used in this comparison are polymer slabs with different concen-
trations of TiO2 scatterers [17]. The sample labelled "0.0w.t.%TiO2" is a blank
polymer without any TiO2 scatterers. The total transmission of the samples
decrease with increasing scatterer density, as expected. The troughs observed
around 400 and 675nm correspond to unknown polymer absorption. The com-
parison between the double-beam and the single-beam measurements reveals sub-
stitution errors ∆TTsubs ≤ 2%, for all samples and wavelengths within the visible
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range. Such small ∆TTsubs are expected in our setup, as the integrating sphere
is designed to have a small port fraction (fport < 0.7%).

Figure 2.7: Total transmission measurements of polymer samples with different weight
concentrations of TiO2 scatterers. Double-beam (DB) measurements are represented
by Ąlled markers connected by solid lines, and single-beam (SB) measurements are
represented by hollow markers connected by dashed lines. The inset highlights the
small differences between measurement methods. Marker shape and color represent
samples with different weighted concentrations of scatterers, as labelled in the legend.

2.4 Summary

This chapter provides an overview of the theory of integrating spheres that is
relevant to the experiments conducted in this thesis. The substitution error is dis-
cussed, and the use of double-beam total transmission measurements to eliminate
this error is explained. Furthermore, a comparison is presented between single-
beam and double-beam total transmission measurements of scattering samples
using our experimental setup. It is observed that the substitution errors, shown
in Fig. 2.7, are less than 2% due to the small port fraction of the integrating
sphere employed in the experiments. Since this error is much smaller than other
sources of variations in our experiments, we decide to neglect it and proceed
with single-beam measurements in the subsequent experiments using the same
integrating sphere in this thesis.



3 Breakdown of transport models in

photonic scattering slabs

3.1 Introduction

The radiative transfer equation (RTE) models the transport of light inside
photonic scattering samples such as paint, foam and tissue. Analytic approxi-
mations to solve the RTE fail for samples with strong absorption and dominant
anisotropic scattering and predict unphysical negative energy densities and the
diffuse Ćux in the wrong direction. In this chapter, we thoroughly validate three
popular approximations to the RTE for a slab, namely the P1 approximation,
the P3 approximation, and a popular modiĄcation to P3 that corrects the for-
ward scattering in the approximation [99]. The Ąrst-order analytical approxima-
tion P1 to transport theory is the diffusion theory [1], which is widely used to
extract transport parameters from opaque media with isotropic scatterers (see
Fig. 1.2(a)) and with negligible absorption. For a slab shown in Fig. 1.4, this
opaque conĄguration amounts to the thickness L being much larger than the
transport mean free path ℓtr and much smaller than the absorption mean free
path ℓabs:

ℓtr ≪ L ≪ ℓabs. (3.1)

If the scattering is dominantly in the forward direction, ℓtr increases (see
Fig. 1.2(b)), and ℓabs decreases if the scatterers have signiĄcant absorption (see
Fig. 1.2(c)). Meretska et al. deĄned a physically more informative validity range
using the three-parameter space (a,g,b) spanned by the albedo a, the anisotropy
g, and the optical thickness b [100]. A practically relevant parameter space also
requires consideration of the internal reĆection at the slab boundaries [101, 102],
hence we add the refractive index contrast ∆n2 as a 4th parameter.

∆n2 ≡ n2
slab − n2

out

2n2
slab

. (3.2)

Here, nslab and nout are the refractive index of the medium inside the slab that
surrounds the scatterers and the index of the medium outside the slab (typically
free space), respectively. Once the (a, g, b, ∆n2) parameter set is known, the
solution of the PN approximation is fully determined.

In some parts of the (a, g, b, ∆n2) parameter space, the PN approximations
predict unphysical behavior, such as a negative energy density. We call these
regions unphysical ranges. In this chapter, we map the unphysical ranges and

The work presented in this chapter is published in reference [98]
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the relative errors of three popular approximations to the RTE, namely, the P1,
the P3, and the P3 + δE(4) approximations. The P3 approximation is a widely
used higher-order approximation to RTE [47, 82, 103, 104], especially popular
in biophysics [37, 69, 71]. The P3 + δE(4) approximation uses a modiĄed phase
function within the P3 approximation to increase the accuracy of the forward
scattering region [37, 69, 105] (see section 4.3.3). The unphysical ranges of each
approximation are found by scanning the (a, g, b, ∆n2) parameter space and
looking for the regions where the validity conditions (3.3) are violated. In addi-
tion, the relative error maps are obtained by comparing the PN approximations
to extensive Monte Carlo simulations. Our simulation code is based on the work
of Prahl et al. [58], with the addition of multiple internal reĆection similar to a
Fabry-Pérot cavity [106], where only the multiply reĆected intensities are consid-
ered but no interference, see Ref. [8], chapter 2.

(A) (B)

(C) (D)

Diffuse Flux

0 reference line

Avg. Intensity

0 reference line

g = 0.001; a = 0.999; b = 3 g = 0.001; a = 0.999; b = 3

Diffuse Flux

0 reference line

g = 0.99; a = 0.4; b = 3

Avg. Intensity

0 reference line

g = 0.99; a = 0.4; b = 3

Figure 3.1: Examples of physical and unphysical results. (A) Diffuse Ćux F and
(B) average intensity U computed with the P1 or diffusion approximation for isotropic
(g = 0.001) scattering with little absorption (a = 0.999) are physically sensible. (C)
Diffuse Ćux F and (D) average intensity U using P1 for anisotropic scattering (g = 0.99)
and strong absorption (a = 0.4). In (C) the red arrow on the left boundary indicates
the unphysical direction of F and in (D) the unphysical negative average intensity U is
highlighted with red hatches. Black dashed vertical lines represent the boundaries of
the slab with optical thickness b = 3 and ∆n2 = 0.245 typical of a polymer slab in air.
The direction of F is given by the orange arrows, and the red dashed horizontal line
indicates the zero level.
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3.2 Unphysical ranges of PN approximations

An example of an unphysical result of the P1 approximation is shown in
Fig. 3.1(C,D). In Fig. 3.1(D) the diffusion theory predicts an unphysical neg-
ative energy density. The diffuse Ćux F given in Fig. 3.1(C) is unphysical, since
the theory predicts erroneously an incident diffuse Ćux F , whereas a reĆected Ćux
opposite to the incident direction of light is required at the incident boundary
(left boundary in Fig. 3.1).

3.2.1 Unphysical ranges of the P1, P3 and P3 + δE(4)
approximations

The physical validity conditions of the PN approximation are expressed math-
ematically as [100]:

U(z) ≥ 0 ∀ z ∈ [0, L],

F (z) < 0 at z = 0,

F (z) > 0 at z = L.

(3.3)

Here U(z) is the average intensity that is directly proportional to the energy
density u(z) [1];

U(z) ≡ c

4π
u(z), (3.4)

where c is the speed of light. The unphysical ranges are found by checking
whether the approximations violate one or more of the conditions given in equa-
tion (3.3), for each set of parameters(a, g, b,∆n2). The unphysical regions given
in Figs. 3.2, 3.3 and 3.4 cover all possible albedos and anisotropies in pho-
tonic scattering slabs from backscattering to forward scattering. For all Ąg-
ures with anisotropy-albedo maps, the limits of anisotropy are g = −0.999999
and g = 0.999999, and extreme absorption limit is a = 0.000001. The perfect
anisotropy (g = 1 and g = −1) and complete absorption (a = 0) cases are not
discussed here, as they are unphysical [107, 108] and thus samples with such
properties can not be realized.

Fig. 3.2 shows the unphysical ranges when the optical thickness and refractive
index contrast are Ąxed (b = 3; ∆n2 = 0.245, e.g., a polymer slab in air). The
P3 approximation, being the higher-order approximation, is generally believed to
be an improvement on the P1 approximation [37]. Hence we expect a shrinking
of the unphysical range in going from P1 to PN . In Fig. 3.2(b), however, the ex-
pected improvement is not observed. It is even more remarkable that parts of the
physical regions of the P1 approximation are unphysical for the P3. As expected,
the P3 + δE(4) approximation is entirely physical for the forward scattering re-
gion. In the dominant backscattering range around g = −0.5 and below, however,
the approximation is primarily unphysical even without absorption, which is also
reasonable since the P3 + δE(4) approximation is a modiĄcation to correct only
the forward direction.
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b = 3; ∆n2 = 0.245

Unphys. P1 approx.

Unphys. P3 approx.

Unphys. P3 + δE(4)

approx.

approx.: P1 approx.: P3

approx.: P3 + δE(4)

(A) (B)

(C)

Figure 3.2: Unphysical ranges of (A) P1 approximation, (B) P3 approximation and (C)
P3 + δE(4) approximation. Fixed optical thickness b = 3 and refractive index contrast
∆n2 = 0.245 (e.g., polymer slab in air). In this Ągure and the following ones, the
extreme anisotropy limits are g = 0.999999 and g = −0.999999, as the exact forward
scattering g = 1 and exact backscattering g = −1 cases are unphysical.

The effects of varying the thickness b and the index contrast ∆n2 are pre-
sented in Fig. 3.3 and Fig. 3.4, respectively. Increasing the optical thickness
from b = 1 to b = 5 (see Fig. 3.3) has more effect on the unphysical range of the
P1 approximation compared to the other methods. A clear increase is seen in
the unphysical range of the P1 approximation, from strong to weak absorption
regions, and some minor expansion towards the isotropic regions with increased
thickness b. For the P3 approximation, increasing b also results in an expansion of
the unphysical range, however, the change is smaller than in the P1 approxima-
tion. In contrast, the unphysical range of the P3 + δE(4) approximation remains
almost the same for all thicknesses.



Unphysical ranges of PN approximations 35

(A) (B)

(C) Δn2 = 0.245

b = 1

b = 2

b = 3

b = 4

b = 5

Figure 3.3: Unphysical ranges of (A) P1 approximation, (B) P3 approximation and
(C) P3 + δE(4) approximation, for various optical thicknesses and for Ąxed refractive
index contrast ∆n2 = 0.245 (e.g., polymer slab in air).

In Fig. 3.4 we show the unphysical ranges when the index contrast is varied
up to 0.375 at a Ąxed optical thickness (b = 3). As ∆n2 increases, the unphysical
range of the P1 approximation shrinks towards the non-absorbing region. Inter-
estingly, for the P3 approximation, the ∆n2 = 0 (index matching) situation has a
very small unphysical range in the extreme limits of the (a,g) plane. As the index
contrast increases to ∆n2 = 0.245, the unphysical range increases dramatically.
However, a further increase to ∆n2 = 0.375 decreases the unphysical range. The
unphysical ranges of the P3 +δE(4) approximation are again invariant to changes
in ∆n2.

Our investigations of the unphysical ranges show that the P1 approximation
to the RTE should not be used for slabs with anisotropic scattering. The P3

approximation is physical almost everywhere, for samples with a refractive index
matching with the medium outside. Nevertheless, detailed investigations (not
shown here) of the P3 approximation for ∆n2 = 0 show that there are signiĄcant
relative errors in the dominant forward scattering range (g > 0.5). The P3 +
δE(4) approximation is found to be physical for the forward scattering region and
invariant for the changes in b and ∆n2. It is, however, the worst approximation
considered here for the backscattering region.
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(A) (B)

(C)

b = 3Δn2 = 0Δn2 = 0.245Δn2 = 0.375

Figure 3.4: Unphysical ranges of (A) P1 approximation, (B) P3 approximation and (C)
P3 + δE(4) approximation, for various refractive index contrasts and for Ąxed optical
thickness b = 3.

3.3 Are the physical ranges accurate?

The unphysical ranges of the approximations show where these approximations
should not be used, especially to determine the position dependent energy density
inside scattering media. However, this does not mean that in the physical ranges
the approximations are accurate. To check this, we compare the approximations
to accurate Monte Carlo simulations.

3.3.1 Monte Carlo simulation

The Monte Carlo simulations used in this work follow the same principles as the
work of Prahl et al. [58] and of Jacques [60]. In brief, one photon is repeatedly
launched inside the photonic scattering slab, with a "photon weight" of 1 and
initial direction ẑ. The photon moves a step length based on the probability of
photon travel before getting absorbed or scattered inside the slab. After that
step, a fraction of photon weight (determined by the albedo) is deposited at the
local bin in that location, and the remaining weight is propagating into new
direction, determined by using the Henyey-Greenstein phase function [109] for
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the speciĄed anisotropy. The propagation is continued by generating new steps
until the photon escapes a boundary or its weight is below a threshold.

The main difference of our simulation code with those of Prahl et al. [58]
and Jacques [60] is the incorporation of multiple internal reĆection of photons
from the boundaries of the slab (see Fig. 1.4). If an extremely long step length
is generated, a fraction of the photon weight could end up internally reĆecting
multiple times. This situation is considered in our simulations by the addition of
intensity Fabry-Perot calculations [110].

The Monte Carlo simulations are veriĄed by comparing their results with ex-
act calculations (and diffusion approximation for a slab with very long optical
thickness b = 100). The comparisons are reported in Table 3.1 provided at the
end of this chapter. The Lambert-Beer-Bouguer law used in Table 3.1 is

Iu = I0e
−ρσtL ≡ I0e

−b, (3.5)

where Iu is the transmitted unscattered intensity and I0 is the incident intensity.
We compare this with the case where a = 0, so the total transmission only has
the unscattered component as the diffuse part is completely absorbed. For the
purely forward scattering and non-absorbing case (a = 1; g = 1) we compared
our Monte Carlo simulations to the Intensity Fabry-Pérot calculations, for which
only the internal reĆections from the boundaries of the slab determines the total
transmission and reĆection of the slab. In addition, an anisotropic case with weak
absorption (g = 0.75; a = 0.9) is compared with the calculations reported by van
de Hulst in Table 35 of Ref. [111]. It is clear from Table 3.1 that our Monte
Carlo simulations are in good agreement with all of the compared methods, which
indicates the high accuracy of our simulations.

3.3.2 Evaluating relative errors for validating models

In practice, the transport mean free path ℓtr and the absorption mean free
path ℓabs are extracted from total transmission and total reĆection experiments
using a PN approximation [82]. The unphysical ranges of a PN approximation
are essential to recognize for which photonic scattering slabs that particular PN
approximation should not be used for extracting these transport parameters.
However, the bare acknowledgement of the unphysical ranges do not give any in-
formation on the accuracy of these methods to interpret observations on samples
residing in the physical regions. Therefore, we extensively compare with Monte
Carlo simulations to obtain relative error maps of transport parameters obtained
by the analytical approximation methods. The optical thickness and refractive
index contrast are chosen to be (b = 3, ∆n2 = 0.245), relevant to real samples.

Comparisons are done on the basis of the observation of both the total trans-
mission T and total reĆection R that can come from a real experiment or from
Monte Carlo simulations. The comparison takes four steps:

1. We calculate T and R using Monte Carlo simulations, using a Ąne grid in pa-
rameter space (a, g): TMC¶a, g♢ and RMC¶a, g♢. We compare these Monte
Carlo results to the PN results obtained for all albedos and anisotropies,
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Figure 3.5: Illustration of the comparison process of the analytical methods and Monte
Carlo simulations. The albedo a and anisotropy g parameters are used as coordinates
for the comparisons. The data on the grids represent the total transmission and total
reĆection results (T,R). The grid on the left presents the results of the Monte Carlo
calculations and the right one presents the results of PN approximation. The comparison
process is explained in detail in subsection 3.3.2.

using the same Ąne grid in parameter space (a′, g′): TPN ¶a′, g′♢ and
RPN ¶a′, g′♢. We deĄne the squared relative distance between the two re-
sults

δT (a, g, a′, g′) ≡ [TMC(a,g)−TPN (a′,g′)]
2

♣TMC(a,g)♣2 , (3.6)

δR(a, g, a′, g′) ≡ [RMC(a,g)−RPN (a′,g′)]
2

♣RMC(a,g)♣2 . (3.7)

We also deĄne the overall relative distance between the two calculations

S(a, g, a′, g′) ≡
√

δT (a, g, a′, g′) + δR(a, g, a′, g′). (3.8)

2. As a Ąrst impression of the errors, the results are compared by calculating
relative errors [112] for identical grid points a = a′ and g = g′, deĄned by

∆T (a, g) ≡
√

δT (a, g, a, g) × 100, (3.9)

∆R(a, g) ≡
√

δR(a, g, a, g) × 100. (3.10)

An example of a comparison in this step corresponds to comparing the blue
square I in the Monte Carlo grid with the red square II in the PN grid in
Fig. 3.5. The relative error maps for all (a, g) are shown in Fig. 3.6(a-f).

3. In a real experiment, one measures the total transmission T and the total
reĆection R of a sample and uses a numerical or an analytical method
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Figure 3.6: Relative error maps of the total transmission and the total reĆection
results for the PN approximations. (a) and (d) for P1, (b) and (e) for P3, (c) and
(f) for P3 + δE(4). Relative errors reported here are calculated by comparing these
approximations to our Monte Carlo simulations. Color map indicates the percentage
of errors. Values that are larger than 100% are indicated with black markers. The
unphysical ranges of the approximations are added to the graphs as red hatched regions.
Optical thickness and refractive index contrast are speciĄcally chosen as b = 3 and
∆n2 = 0.245 for these relative error maps.

to infer the (a, g) parameters that corresponds to the observations. In
this work we take T and R from Monte Carlo simulations as they are
highly accurate (see Table 3.1 at the end of this chapter). We call the
set obtained from Monte Carlo simulations (aI, gI), from which we infer
the true transport lengths, ℓtr and ℓabs. If we interpret the Monte Carlo
T and R results with the PN approximation, we obtain the parameter
set called (aIII, gIII), that minimizes the distance S(aI, gI, aIII, gIII). From
the matched pair (aIII, gIII) we infer the mean free paths ℓPN

tr (aIII, gIII) and
ℓPN

abs
(aIII, gIII) of that sample using the appropriate PN approximation. This

step is illustrated in Fig. 3.5 where the blue grid point III in the PN grid
represents (aIII,gIII) pair Ątted to the blue grid point I in the Monte Carlo
grid.

4. In the Ąnal step, the procedure of the previous step is repeated for all
possible (aI,gI) and its matched pair (aIII, gIII), and we calculate the relative
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errors of the interpretations of the analytic PN approximation:

∆ℓtr(aI, gI) ≡
√

[

ℓMC

tr
(aI,gI)−ℓ

PN

tr
(aIII,gIII)

]2

[ℓMC

tr
(aI,gI)]

2 × 100, (3.11)

∆ℓabs(aI, gI) ≡
√

[

ℓMC

abs
(aI,gI)−ℓ

PN

abs
(aIII,gIII)

]2

[ℓMC

abs
(aI,gI)]

2 × 100. (3.12)

These results are plotted in Fig. 3.7 for all (aI, gI).
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Figure 3.7: Relative error maps of absorption mean free path ℓabs and transport mean
free path ℓtr for the PN approximations. (a) and (d) for P1, (b) and (e) for P3, and (c)
and (f) for P3 + δE(4). Relative errors reported here are calculated by comparing these
approximations to our Monte Carlo simulations, according to the coordinates found
from the Ątting process explained in the text and illustrated in Fig. 3.5. Color map
indicates the percentage of errors. Values that are larger than 100% are indicated with
black markers. The unphysical ranges of the approximations are added to the graphs
as red hatched regions. Optical thickness and refractive index contrast are speciĄcally
chosen as b = 3 and ∆n2 = 0.245 for these relative error maps.

3.3.3 Relative error maps inside and outside the physical ranges

Fig. 3.6 shows the relative error maps that present the deviations of the total
transmission and the total reĆection calculations of the analytical methods from
the Monte Carlo simulations for realistic parameters b = 3 and ∆n2 = 0.245.
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Fig. 3.6(a) shows that the total transmission results of the P1 approximation
have up to 53% relative error in the unphysical forward scattering region, and up
to 86% relative error in the backscattering regions. For the P1 approximation, the
relative errors observed in total transmission occur for more directional scatter-
ing, however, signiĄcant relative errors are also observed for the total reĆection
results in the isotropic regions (g ≈ 0) reaching as high as 29% for absorbing
samples (see Fig. 3.6(d)). For an isotropic sample the errors in total reĆection
decrease as the absorption decreases and are less than 5% when the sample has
no absorption (a = 1). Fig. 3.6(d) shows that the total reĆection results of the
P1 approximation have large relative errors for most of the physical region, that
can exceed 500% for forward scattering samples with g > 0.9. In the unphysical
forward scattering region, the errors reach up to 103%. These results show that
the P1 approximation is particularly bad at describing total reĆection, even for
photonic scattering slabs with weak absorption. This observation is in line with
our observations that the unphysical behaviors are usually encountered near the
incident (left) boundary of the slab, where the light enters the slab (see Figs.
3.1(C,D)).

Relative errors of total transmission of the P3 approximation are given in
Fig. 3.6(b), which shows that it generally has less than 10% error in its physical
regions. For the unphysical forward scattering and backscattering cases, the er-
rors are 25% at most. Similar to the P1 approximation, in the extreme forward
scattering unphysical regions (g > 0.9), the P3 approximation has large relative
errors that go up to 104% in total reĆection (see Fig. 3.6(e)). For the backscat-
tering unphysical region, the P3 approximation has errors up to 21% at most. In
the physical regions, the relative errors of total reĆection calculations of the P3

approximation go up to 100% as the sample is in the vicinity of the unphysical
forward scattering region. However, for the signiĄcant part of the physical region
where there is weak anisotropy (g < 0.5 and g > −0.5), the relative errors are
less than 10%.

Figs. 3.6(c,f) show that the P3 + δE(4) approximation has up to 73% relative
error in the total transmission for extremely backscattering samples (g < −0.9).
Even though the relative errors in total reĆection results go up to 98% for regions
where g > 0.9 and a < 0.1, the remaining forward scattering range where 0.5 <
g < 0.9 is much more accurate than with the P1 and P3 approximations.

Fig. 3.7 presents the deviations of the inferred mean free paths ℓPN
tr and ℓPN

abs,
predicted by analytic approximations using "measured" total transmission (TMC)
and total reĆection (RMC), from the "real" ℓMC

tr and ℓMC
abs transport parameters.

Fig. 3.7(a) shows that the ℓP1

abs
has errors up to 211% for the forward scattering

unphysical range. In addition, it is clear that the P1 approximation also has large
errors in the physical part of the forward scattering range. In the unphysical
backscattering range, the relative errors of ℓP1

abs
are up to 100%, whereas, in the

physical backscattering range, the errors reach 166%.

For the transport mean free path ℓP1

tr , Fig. 3.7(d) shows that the P1 approxima-
tion has up to 56% error for the backscattering range. In the forward scattering
unphysical range, errors up to 100% are observed. In the physical, non-absorbing,
and dominant forward scattering range, relative errors reach 107%. Another high
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error region, for which errors up to 123%, is seen in Fig. 3.7(d), where there is
strong absorption (a < 0.2).

Fig. 3.7(b) shows that the P3 approximation has up to 100% relative error in
the absorption mean free path ℓP3

abs
results for the strongly anisotropic samples

g < −0.9 and g > 0.9. Moreover, the errors in the physical regions have fewer
errors compared to the P1 approximation. The relative error map for ℓP3

tr given
in Fig. 3.7(e) shows relative errors up to 306% in the strong absorption regions
(a < 0.3). In the unphysical forward scattering range, the errors of ℓP3

tr go up to
98%. In the rest of the grid, the P3 approximation has signiĄcantly less relative
errors than the P1 approximation for extracting ℓtr.

The relative error map of ℓ
P3+δE(4)
abs

given in Fig. 3.7(c) shows that the P3 +
δE(4) approximation has fewer regions with large errors compared to the P1

and the P3 approximations. In the extremely anisotropic cases, however, the

errors of ℓ
P3+δE(4)
abs

reach 106% for g = 0.98, and 200% for g = −0.99. For

ℓ
P3+δE(4)
tr , Fig. 3.7(f) shows that fewer regions with large errors, especially in the

forward scattering range, compared to the P1 and the P3 approximations. In
addition, Fig. 3.7(f) shows that the P3 + δE(4) approximation, similar to the
P3 approximation, has errors as large as 322% in regions with strong absorption
(a < 0.3).

Fig. 3.7 shows that the P1 approximation has more regions in the grid with
large relative errors, as expected. As the absorption increases, the P3 and the
P3 + δE(4) approximations predict results with relative errors more than 100%,
however, both are more accurate for the rest of the grid, with the P3 + δE(4)
approximation performing better for a wider forward scattering range.

With prior knowledge of parameters (a, g, b, ∆n2), one can verify if a sample
is in the unphysical ranges and use the relative error maps provided in this work
to see if any of the reported PN approximations are appropriate for their sample.
Needless to say, if (a, g, b, ∆n2) are already known, one could get the transport
parameters ℓtr and ℓabs without the use of PN approximation, given that the
density of scatterers in their sample fulĄls the independent scattering approxi-
mation [9]. Nevertheless, it is necessary to use either analytical approximations
or numerical methods to infer the position-dependent energy density u(z) and
the diffuse Ćux F (z) inside the sample. Hence, for these investigations, the un-
physical ranges and relative error maps of the analytical methods are crucial.

3.3.4 Practical cases

A Ąrst practical example is a slab of human dermis in air. The optical constants
of this slab are [113]: a = 0.99, g = 0.81, and ∆n2 = 0.245 (assuming nslab = 1.4).
If the slab has an optical thickness b = 3, Figs. 3.6 and 3.7 serve to choose
the analytical approximation to infer the position-dependent energy density and
diffuse Ćux inside the tissue. In this case, the P3 + δE(4) approximation would
be the best choice, as it has less than 1% error for extracting ℓtr and ℓabs. This
decision is in line with Star [37], who investigated a thicker (b = 9.5) slab of
human dermis and found the P3 + δE(4) approximation to be more accurate
than the P3 approximation.
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Other examples stem from the solid state lighting industry, where understand-
ing the light transport in white LEDs is an important issue. A typical white
LED contains a phosphor layer that absorbs incoming blue light and re-emits
light in different wavelengths to achieve white output. In reference [82], polymer
slabs containing phosphor (YAG:Ce3+) scatterers are studied, and their optical
constants are found using Monte Carlo simulations and the P3 approximation.
The refractive index of the polymer matrix is nslab = 1.4, and the surrounding
medium is air, which gives ∆n2 = 0.245. The optical constants for such a slab
are derived to be [82]: a = 0.89, g = 0.72 at a wavelength λ = 460nm where the
phosphors are absorbing, and a = 1, g = 0.82 at λ = 600nm where the phosphors
are non-absorbing. If we consider a slab with optical thickness b = 3 and look
at the Figs. 3.6 and 3.7, we see that the P3 + δE(4) approximation would be
the best one to use for both cases since it has less than 1% error for extracting
ℓtr and ℓabs, whereas the P3 approximation has ∆ℓP3

tr = 7% for absorbing, and
∆ℓP3

tr = 10% for non-absorbing wavelengths.

Earlier on, Jacques et al. have experimentally and numerically investigated
light distribution in various phosphor plates [114]. The optical constants of a
slab containing composite ceramic Ce:YAG are reported as: a = 0.71, g = 0.75
at a wavelength λ = 450nm where the phosphors are absorbing [114]. Assuming
the index contrast ∆n2 = 0.245, and the optical thickness b = 3, Figs. 3.6

and 3.7 shows less than 1% error for ∆ℓ
P3+δE(4)
tr and ∆ℓ

P3+δE(4)
abs

. The lengths

extracted using the P3 approximation have ∆ℓP3

tr = 16.15% and ∆ℓP3

abs
= 7.41%,

and with the P1 approximation have ∆ℓP1

tr = 0.4% and ∆ℓP1

abs
= 52.63%. A more

absorbing slab containing Ce:LuAG and Eu:nitride has reported optical constants
a = 0.25 and g = 0.75 at a wavelength λ = 450nm [114]. With ∆n2 = 0.245 and
b = 3, Figs. 3.6 and 3.7 shows that the P3 + δE(4) approximation yields ℓtr and
ℓabs with less than 1% relative error, whereas with the P1 approximation have
∆ℓP1

tr = 62.26% and ∆ℓP1

abs
= 38.89%, and the P3 approximation have ∆ℓP3

tr =

40.13% and ∆ℓP3

abs
= 5.63%. For both slabs, the P3 + δE(4) is the best analytical

approximation out of all three, as it gives the least relative errors, in agreement
with our discussions above.

3.4 Summary

We have studied the unphysical ranges of the P1, P3, and P3 + δE(4) ap-
proximations to the radiative transfer equation. First of all, we have deĄned
a physically sensible parameter space by albedo, anisotropy, optical thickness,
and index contrast (a, g, b, ∆n2). The unphysical parameter ranges are char-
acterized by unphysical negative energy densities and Ćuxes of the wrong sign.
These ranges are crucial when the position-dependent energy density inside the
photonic scattering slab is being investigated. We Ąnd that the delta function
correction to P3 eliminates the unphysical range in the forward scattering, but
not in backscattering.

Typically researchers want to extract the transport parameters ℓtr and ℓabs

from total transmission and reĆection experiments. We have presented the rela-
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tive errors in the transport parameters for all possible albedo and anisotropy and
for realistically chosen optical thickness and refractive index contrast, by com-
paring the analytical results with Monte Carlo simulations. These relative error
maps provide a guideline for the accuracy of the analytical methods to interpret
experiments on light transport in photonic scattering slabs. In the unphysical
ranges the relative errors are as large as 104%, but also in the physical ranges the
errors can be substantial. We emphasize that the relative error maps provided
here are for slabs with widely studied realistic optical thickness and refractive
index contrast. Maps for any other kind of samples with their speciĄc parameters
require characterization using the methodology explained here.

We conclude that the P1 approximation is not viable to extract either the trans-
port parameters or the position dependent energy density, unless the scattering
of the sample is purely isotropic and elastic. The P3 and P3 + δE(4) approxima-
tions are more reliable to use than the P1 approximation, unless there is strong
absorption (a < 0.3) or extreme anisotropy (g > 0.9 and g < −0.9). The approxi-
mations should not be used if the samples are in the unphysical parameter range,
even though the relative errors are low in some parts of these unphysical ranges.
Especially, the P3 + δE(4) approximation is suited for enhancing the accuracy
in the forward direction (g > 0) and should not be used in the backscattering
range (g < 0). Our results provide a guideline for the applicability of the P1, P3,
and P3 + δE(4) approximations to the radiative transfer equation, to interpret
experiments on light transport in photonic scattering slabs.
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4 Derivation of the PN

approximation to the radiative

transfer equation for a slab

4.1 Introduction

In this chapter, we give the detailed theoretical background of most of the
research done in this thesis. We start by deriving the radiative transfer equation
(RTE), and give its version of a slab geometry. We then derive the PN approx-
imation to RTE for a slab, and solve its Ąrst and third order, and provide the
derivations of a correction to P3 approximation for the forward direction, namely,
the P3 + δE(4) approximation. Finally, we discuss the consideration of dielectric
cuvette walls surrounding the slab and the resulting internal reĆections of the
unscattered incident light in the models. Additionally, we discuss the alterna-
tive phase functions to the Henyey-Greenstein [109] phase function that is used
in this work. Before starting with the derivations, we need to deĄne important
quantities, such as, the speciĄc intensity, the Ćux and the energy density. The
deĄnitions and derivations in this chapter follow chapter 7 of Ref. [1], hence, the
reader is referred to that textbook for more insight on transport theory.

4.1.1 SpeciĄc Intensity

𝑠0 𝑠
𝜃

𝑑𝑎𝑟
Figure 4.1: Illustration of directions for the speciĄc intensity I(r, ŝ, ν) and power dP

given in eqn. (4.1). Figure adapted from [1].

At a particular point in a random medium where the energy of wave Ćows, the
properties of the wave such as phase, and amplitude vary randomly over time.
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As a result, the magnitude and direction of the power Ćux density vector also
change continuously. If we deĄne a unit vector ŝ to represent a speciĄc direction,
we Ąnd the average power Ćux density within a frequency bandwidth dν centred
at frequency ν within a unit solid angle. This value, denoted as I(r, ŝ, ν), is the
speciĄc intensity (also known as the spectral radiance) and is measured in units
of Wm−2sr−1Hz−1. The amount of power dP Ćowing through an elementary area
dA oriented in the direction of unit vector ŝ0 within a unit solid angle (indicated
as dŝ in integrals) over a frequency interval (ν, ν + dν) is given as

dP = I(r, ŝ, ν) cos θdAdŝdν, (4.1)

where cos θ = ŝ · ŝ0

4.1.2 Flux

The total forward Ćux in direction ŝ0, passing through an inĄnitesimal area
dA, centred at position r, on a surface is given by integrating eqn. (4.1) with the
speciĄc intensity over a solid angle 2π within the forward range (0 ≤ θ ≤ π

2 ).
The Ćux is written as F+(r, ŝ0, ν)dA, where the forward Ćux density is

F+(r, ŝ0, ν) ≡
∫

(2π)+

I(r, ŝ, ν) cos θdŝ, (4.2)

where ŝ0 represents a unit vector normal to the surface dA. Similarly, we deĄne
the backward Ćux density F− for the Ćux Ćowing through dA at r in the backward
(−ŝ0) direction. This Ćux is given by integrating eqn. (4.1) over a solid angle 2π
in the backward range (π2 ≤ θ ≤ π), and the backward Ćux density is

F−(r, ŝ0, ν) ≡
∫

(2π)−

I(r, ŝ, ν)ŝ · (−ŝ0)dŝ. (4.3)

𝑠0𝑠0 𝐅+ 𝐅−(a) (b)

Figure 4.2: Illustration of (a) forward Ćux density F+ and (b) backward Ćux density
F−. Figure adapted from [1].

The total Ćux density, forward and backward, in the direction ŝ0 is the vector
sum of F+ and F−. It is expressed as the component of the Ćux density vector
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F(r, ν) along ŝ0, where the integration is taken over a complete solid angle 4π,

F+(r, ŝ0, ν) − F−(r, ŝ0, ν) ≡ F(r, ν) · ŝ0, (4.4)

F(r, ν) ≡
∫

4π

I(r, ŝ, ν)ŝdŝ. (4.5)

F(r, ν) represents the amount and the direction of the net Ćow of power, with
units of Wm−2Hz−1.

4.1.3 Energy density, average intensity and energy Ćuence rate

Let us consider a small area dA, the energy leaving that area in a time duration
dt, in a direction normal to the area within a solid angle dŝ and a frequency
interval (ν, ν+dν) is IdAdŝdνdt. The corresponding energy density is determined
by considering the volume occupied by the energy Ćowing through dA, which is
equal to dA c dt, where c is the velocity of the wave propagation. Therefore, the
energy density du(r) at r in a unit frequency interval dν is

du(r, ν) =
IdAdŝdνdt

dAcdtdν
=
I(r, ŝ, ν)dŝ

c
. (4.6)

When we consider the addition of energy due to the radiation in all directions,
the energy density u(r, ν) is integrated over all directions

u(r, ν) =
1

c

∫

4π

I(r, ŝ, ν)dŝ. (4.7)

In certain cases, it is more useful to deĄne the average intensity U(r, ν) or the en-
ergy Ćuence rate Φ(r, ν) as the integral of the speciĄc intensity over all directions.
The average intensity is given as

U(r, ν) ≡ 1

4π

∫

4π

I(r, ŝ, ν)dŝ =
c

4π
u(r, ν), (4.8)

and the energy Ćuence rate is

Φ(r, ν) =

∫

4π

I(r, ŝ, ν)dŝ = cu(r, ν). (4.9)

The average intensity is equal to the normalized energy density u(r, ν) and
does not represent the power Ćow. The energy Ćuence rate Φ(r, ν) has units
Wm−2Hz−1, same as the Ćux density F(r, ν), however, Φ(r, ν) represents the
total optical power through a sphere of unit surface area in all directions, while
F(r, ν) represents the optical power through a surface of unit area in a direction
parallel to the surface normal [23], as illustrated in Fig. 4.3.
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𝑠0
𝐅+(𝐫, 𝜈)𝐅−(𝐫, 𝜈)

(a) (b) Φ(𝐫, 𝜈)

Figure 4.3: Illustration of (a) forward and backward Ćux densities that represent power
Ćow through a unit surface area in a direction parallel to the surface normal, and (b)
energy Ćuence rate Φ(r, ν) that represent the total power Ćow through a unit spherical
surface in all directions.

4.1.4 Radiative transfer equation

Here we derive the radiative transfer equation (RTE) following chapter 7 of
Ref. [1]. After this point, we drop the frequency ν dependency of the speciĄc
intensity and write it as I(r, ŝ), as our study is near-monochromatic.

Consider an elementary volume dV with unit cross-section dA and length ds,
that contains ρdV scatterers, where ρ represents the number of scatterers per
unit volume. The speciĄc intensity I(r, ŝ) is incident on this volume dV . Each
scatterer, upon interacting with the total incident intensity I with units of Wm−2,
absorbs the power σabsI and scatters the power σscatI. This is called extinction,
and the decrease of speciĄc intensity per length is represented as

Decrease = −ρ(σscat + σabs)I(r, ŝ) = −ρσextI(r, ŝ), (4.10)

where σscat, σabs, and σext represent the scattering, the absorption and the ex-
tinction cross-sections respectively.

The speciĄc intensity also increases when a portion of the speciĄc intensity
incident from another direction ŝ′ is scattered into the direction ŝ. This increase
per length is equal to

Increase = ρσexta

∫

4π

p(ŝ, ŝ′)I(r, ŝ′)dŝ
′, (4.11)

where a is the albedo, that is, the ratio of σscat to σext, and p(ŝ, ŝ′) is the phase
function that describes the probability of light arriving from the ŝ′ direction to
scatter into the ŝ direction. The probability is normalized, so integration of
p(ŝ, ŝ′) over 4π is equal to 1.

The sources of the speciĄc intensity, inside and outside the scattering medium,
also have an effect on the spatial change of the intensity in the volume dV . We
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sum all contributions including the source terms to obtain the RTE that describes
the rate of change of the speciĄc intensity in space as

dI(r, ŝ)

ds
= −ρσextI(r, ŝ) + ρσexta

∫

4π

p(ŝ, ŝ′)I(r, ŝ′)dŝ
′ + ϵri(r, ŝ) + ϵ(r, ŝ), (4.12)

where ϵ(r, ŝ) and ϵri(r, ŝ) are internal and external source functions, respectively.
These functions represent the power generated per unit volume per unit solid an-
gle in the direction ŝ that accounts for all sources inside and outside the medium,
respectively. Since we only consider sources outside the medium in this work,
ϵ(r, ŝ) is omitted from now on.

Furthermore, we decompose I(r, ŝ) as

I(r, ŝ) = Iri(r, ŝ) + Idiff(r, ŝ), (4.13)

where Idiff(r, ŝ) is the diffuse speciĄc intensity and Iri(r, ŝ) is the reduced speciĄc
intensity. The diffuse speciĄc intensity Idiff is the intensity that is created after
an extinction event in the volume. The reduced speciĄc intensity Iri is the part
of the originally incident intensity that is left after extinction, and that satisĄes
the Lamber-Beer-Bouguer equation

dIri(r, ŝ)

ds
= −ρσextIri(r, ŝ). (4.14)

We also express the external source function as

ϵri(r, ŝ) = ρσexta

∫

4π

p(ŝ, ŝ′)Iri(r, ŝ′)dŝ
′. (4.15)

This means that we can express the spatial change of Idiff in volume ds as

dIdiff(r, ŝ)

ds
= −ρσextIdiff(r, ŝ) + ρσexta

∫

4π

p(ŝ, ŝ′)Idiff(r, ŝ′)dŝ
′ + ϵri(r, ŝ). (4.16)

We use eqn. (4.16) as RTE when deriving the PN approximations for the dif-
fuse light; the complete RTE is just the addition of the unscattered light from
eqn. (4.14).

4.2 Radiative transfer equation for a slab

The coordinate system for a slab geometry is shown in Fig. 4.4. When we
consider a slab, where the (x, y) coordinates tend to ±∞, due to spatial symmetry
the r dependence of the speciĄc intensity simpliĄes into a z-dependence, and the
angular dependence ŝ′ simpliĄes to a µ-dependence, where µ ≡ cos θ. We use the
relation

d

ds
=

d

dz

dz

ds
= cos θ

d

dz
≡ µ

d

dz
, (4.17)
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and the RTE becomes

µ
dIdiff(z, µ)

dz
= −ρσextIdiff(z, µ)

+ ρσexta(2π)

∫ 1

−1

p(µ, µ′)Idiff(z, µ′)dµ′

+ ϵri(z, µ).

(4.18)

It is worth to note that we assume spherical scatterers in a slab that are well
separated from each other for the derivations given here.

𝜃
x

y

zO 𝑠𝜙

Figure 4.4: Coordinate system used in radiative transfer equation for slab geometry.
The slab has Ąnite thickness in z-direction and inĄnite at the xy-plane. ϕ is the az-
imuthal angle on xy-plane, and θ is the angle between ŝ and z directions, a.k.a. the
scattering angle.

4.2.1 PN approximation to radiative transfer equation

The PN approximation solves the RTE by expanding every term on the basis
of spherical harmonics. The expansion of the speciĄc intensity I(r, ŝ) is already
given in eqn. (1.6). For a slab, spherical harmonics simplify to Legendre poly-
nomials [76], as the azimuthal term vanishes after integration over 4π. This is
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due to the symmetries introduced by the well-dispersed spherical scatterers in
the slab. In the PN approximation, Idiff is then expressed as

Idiff(z, µ) =

∞
∑

l=0

2l + 1

2
ψl(z)Pl(µ), (4.19)

where Pl(µ) is a Legendre polynomial of order l and the coefficient ψl(z) is equal
to

ψl(z) =

∫ 1

−1

Idiff(z, µ)Pl(µ)dµ. (4.20)

Similarly, the source term ϵri(z, µ) is expanded as

ϵri(z, µ) =

∞
∑

l=0

2l + 1

2
sl(z)Pl(µ), (4.21)

where the coefficient sl(z) is the lth moment of the source function. For plane
waves incident perpendicularly to the slab surface as the source of light with
incident Ćux F0, the coefficient equals

sl(z) = F0ρσtawle
−ρσtz, (4.22)

where wl is the lth moment of the phase function.
The phase function p(ŝ, ŝ′) only depends on the angle between the incoming ŝ

′

and outgoing ŝ directions. Thus, we can expand the phase function as

p(ŝ, ŝ′) =

∞
∑

l=0

2l + 1

4π
wlPl(ŝ · ŝ′). (4.23)

Using the addition theorem for spherical harmonics [76], we get

Pl(ŝ · ŝ′) = Pl(µ)Pl(µ
′) +



2

l
∑

m=−l

(l −m)!

(l +m)!
Pl(µ)mPl(µ

′)m cos [m(ϕ′ − ϕ)]

]

,
(4.24)

where ϕ and ϕ′ are azimuthal angles. Due to symmetries in the slab mentioned
above, only m = 0 remains and the second term on the right-hand side vanishes
after integration over 4π [69]. Thus we rewrite eqn. (4.23) as

p(ŝ, ŝ′) = p(µ, µ′) =

∞
∑

l=0

2l + 1

4π
wlPl(µ)Pl(µ

′). (4.25)

The well-known Henyey-Greenstein phase function [109] is given as

p(ŝ · ŝ′) =
1

4π
(1 − g2)(1 + g2 − 2g(ŝ · ŝ′))−3/2, (4.26)
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and has moments equal to powers of the anisotropy

wl = gl, (4.27)

where g is the anisotropy, also called the asymmetry parameter.
Substituting eqns. (4.19), (4.21) and (4.25) into eqn. (4.18), we get

µ
dIdiff(z, µ)

dz
+

∞
∑

l=0

2l + 1

2
ρσextψl(z)Pl(µ)

− ρσexta

∫ 1

−1

∞
∑

l=0

2l + 1

2

∞
∑

l=0

2l + 1

2
wlPl(µ)Pl(µ

′)ψl(z)Pl(µ
′)dµ′

−
∞
∑

l=0

2l + 1

2
sl(z)Pl(µ) = 0. (4.28)

Notice that we did not expand Idiff(z, µ) in the Ąrst term yet. We will do that
later for convenience. Let us multiply eqn. (4.28) with Pn(µ) and integrate over
2π

∫ 1

−1

Pn(µ)µ
dIdiff(z, µ)

dz
dµ+

∫ 1

−1

∞
∑

l=0

2l + 1

2
ρσextψl(z)Pl(µ)Pn(µ)dµ

−
∫ 1

−1

ρσexta

∫ 1

−1

∞
∑

l=0

2l + 1

2

∞
∑

l=0

2l + 1

2
wlPn(µ)Pl(µ)Pl(µ

′)ψl(z)Pl(µ
′)dµ′dµ

=

∫ 1

−1

∞
∑

l=0

2l + 1

2
sl(z)Pl(µ)Pn(µ)dµ. (4.29)

Let us now evaluate every term in eqn. (4.29) using the following recurrence

(2l + 1)xPl(x) = (l + 1)Pl+1(x) + lPl−1(x), (4.30)

and the orthagonality properties
∫ 1

−1

Pl(x)Pn(x)dx =
2

2l + 1
δln, (4.31)

of the Legendre polynomials, where δln is the Kronecker delta [76]. Hence, using
eqns. (4.30) and (4.31), the Ąrst term in eqn. (4.29) becomes
∫ 1

−1

Pl(µ)µ
dIdiff(z, µ)

dz
dµ =

∫ 1

−1



l + 1

2l + 1
Pl+1(µ) +

l

2l + 1
Pl−1(µ)



dIdiff(z, µ)

dz

=
l + 1

2l + 1

d

dz

∫ 1

−1

Pl+1(µ)Idiff(z, µ)dµ

+
l

2l + 1

d

dz

∫ 1

−1

Pl−1(µ)Idiff(z, µ)dµ

=
l + 1

2l + 1

dψl+1

dz
+

l

2l + 1

dψl−1

dz
.

(4.32)
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The second term becomes

∫ 1

−1

∞
∑

l=0

2l + 1

2
ρσextψl(z)Pl(µ)Pn(µ)dµ = ρσextψl(z). (4.33)

The third term becomes

∫ 1

−1

∞
∑

l=0

2l + 1

2
(−ρσexta)

∫ 1

−1

∞
∑

l=0

2l + 1

2
wlPn(µ)Pl(µ)ψl(z)Pl(µ

′)Pl(µ
′)dµ′dµ

= −ρσextawlψl(z). (4.34)

where we twice used the normalization from eqn. (4.31). Finally, the term on the
right-hand-side becomes

∫ 1

−1

∞
∑

l=0

2l + 1

2
sl(z)Pl(µ)Pn(µ)dµ = sl(z). (4.35)

Adding eqns. (4.32), (4.33), (4.34) and (4.35) we get

l + 1

2l + 1

dψl+1

dz
+

l

2l + 1

dψl−1

dz
+ ρσextψl(z) − ρσextawlψl(z) = sl(z). (4.36)

We multiply eqn. (4.36) with (2l + 1) to get the Ąnal expression,

(l + 1)
dψl+1

dz
+ l

dψl−1

dz
+ (2l + 1)(1 − awl)ρσextψl(z) = (2l + 1)sl(z). (4.37)

4.2.2 Plane waves as source

We use plane waves as source in our derivations. For plane waves parallel to
z-direction, Iri is [1]

Iri(r, ŝ) = F0e
−ρσextzδ(ŝ − ŝz), (4.38)

where ŝz is aligned with the z-axis. Eqn. (4.15) now becomes

ϵri(z, µ) = ρσexta

∫ 1

−1

F0e
−ρσextzδ(µ′ − µz)

∞
∑

l=0

2l + 1

2
wlPl(µ)Pl(µ

′)dµ′. (4.39)
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We multiply eqn. (4.39) with Pn(µ) and integrate over 2π to employ the orthonor-
mality property of the Legendre polynomials, given in eqn. (4.31), to obtain

∫ 1

−1

ϵri(z, µ)Pn(µ)dµ

= ρσexta

∫ 1

−1

Pn(µ)

∫ 1

−1

F0e
−ρσextzδ(µ′ − µz)

∞
∑

l=0

2l + 1

2
wlPl(µ)Pl(µ

′)dµ′dµ

= ρσexta

∫ 1

−1

F0e
−ρσextzδ(µ′ − µz))wlPl(µ

′)dµ′

= ρσextaF0e
−ρσextzwl

∫ 1

−1

δ(µ′ − µz)Pl(µ
′)dµ′

= F0ρσextawle
−ρσextz.

(4.40)

We acquire the expression for sl(z) by expanding the term on the left-hand side
of eqn. (4.40)

∫ 1

−1

∞
∑

l=0

2l + 1

2
sl(z)Pl(µ)Pn(µ)dµ = F0ρσextawle

−ρσextz

sl(z) = F0ρσextawle
−ρσextz.

(4.41)

Therefore, for plane waves as light source, our Ąnal expression (eqn.(4.37)) be-
comes

(l+1)
dψl+1

dz
+ l

dψl−1

dz
+(2l+1)(1−awl)ρσextψl(z) = (2l+1)F0ρσextawle

−ρσextz.

(4.42)
Eqn. (4.42) is an inĄnite set of coupled differential equations that describe the

propagation of the intensity of light in the scattering medium. To solve this
system of differential equations, we limit the expansion to order N . An odd 1

positive integer N is chosen with

ψ−1(z) = 0,

N < l < ∞ =⇒ ψl(z) = 0.
(4.43)

Thus, we get a set of N + 1 differential equations to solve, as l only takes values
l = 0, 1, ..., N .

4.2.3 P1 and diffusion approximations

The 1st order PN approximation is called, unsurprisingly, the P1 approxima-
tion. In this case the system of two coupled Ąrst order differential equations
can be transformed to one second order differential equation. This second order

1Odd positive integers are chosen for N since odd order approximations are known to be more
accurate than even orders, as in the latter the angular integrands are discontinuous [77].
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differential equation is equivalent to the steady state of the well known diffusion
equation [82, 104, 115, 116]. The steady state diffusion equation for the average
diffuse intensity in the case of plane wave incident upon a slab is given as [1]

d2Udiff(z)

dz2
− κ2

dUdiff(z) = −Qe−ρσextz, (4.44)

where the average intensity Udiff(z) is deĄned in eqn. (4.9) and the prefactors are
deĄned as

κ2
d ≡ 3(ρσabs)(ρσtr), (4.45)

Q ≡ (3ρσscatρσtr + 3ρσscatρσextg)



F0

4π



, (4.46)

g ≡



∫

4π
p(ŝ, ŝ′)(ŝ · ŝ′)dŝ

′




∫

4π
p(ŝ, ŝ′)dŝ′

 . (4.47)

Here, σtr is the transport cross-section that is equal to the sum of the scattering
and absorption cross-sections, where the scattering is weighted by the anisotropy;
yielding

σtr = σscat(1 − g) + σabs. (4.48)

In the P1 approximation, we solve eqn. (4.42) with l = 0, 1 to get

l = 0 ⇒ dψ1(z)

dz
+ (1 − aw0)ρσextψ0(z) = F0ρσextaw0e

−ρσextz, (4.49)

l = 1 ⇒ dψ0(z)

dz
+ 3(1 − aw1)ρσextψ1(z) = 3F0ρσextaw1e

−ρσextz, (4.50)

Using the moments of the Henyey-Greenstein phase function given in eqn. (4.27),
we have explicitly

w0 = 1,

w1 = g.
(4.51)

Using eqn. (4.51) we get from eqn. (4.50)

dψ0(z)

dz
+ 3(1 − ag)ρσextψ1(z) = 3F0ρσextage

−ρσextz,

⇒ ψ1(z) =
3F0ρσextage

−ρσextz − dψ0(z)
dz

3(1 − ag)ρσext
,

⇒ ψ1(z) =
3F0ρσscatge

−ρσextz − dψ0(z)
dz

3ρσtr
.

(4.52)
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Substituting this expression for ψ1 into its derivative in eqn. (4.49) we get



−3F0ρσextρσscatge
−ρσextz − d2ψ0(z)

dz2

3ρσtr



+ ρσabsψ0(z) = F0ρσextae
−ρσextz,

⇒ d2ψ0(z)

dz2
+ 3F0ρσextρσscatge

−ρσextz − 3ρσtrρσabsψ0(z) = −3F0ρσtrρσscate
−ρσextz,

⇒ d2ψ0(z)

dz2
− 3ρσtrρσabsψ0(z) = − (3ρσtrρσscat + 3ρσscatρσextg)F0e

−ρσextz.

(4.53)

Using coefficients κ2
d in eqn. (4.45) and Q in eqn. (4.46) this expression can be

simpliĄed as
d2ψ0(z)

dz2
− κ2

dψ0(z) = −(4π)Qe−ρσextz. (4.54)

Using the deĄnition of the coefficient ψl in eqn. (4.20), we get ψ0 equals

ψ0(z) =

∫ 1

−1

Idiff(z, µ)dµ. (4.55)

Since eqn. (4.55) is essentially the same as eqn. (4.9), we identify that ψ0 is
proportional to the energy density and average intensity:

Udiff(z) =
1

4π
ψ0(z). (4.56)

Thus, when we multiply eqn. (4.54) with 1
4π we get the diffusion equation

1

4π

d2ψ0(z)

dz2
− κ2

d

1

4π
ψ0(z) = −Qe−ρσextz. (4.57)

4.3 Solving the PN approximation

To solve higher order PN approximations, we follow the method used in refer-
ences [37, 47, 69]. We Ąrst demonstrate the method for P1 approximation, and
then expand it to P3 approximation. Finally, we discuss the P3 + δE(4) approx-
imation, which is a correction to P3 approximation for the forward direction.

4.3.1 P1 approximation

We start with a slight modiĄcation to eqns. (4.49) and (4.50) by writing them
as

l = 0 ⇒ dψ1(z)

dz
+ γ0ψ0(z) = F0ρσextaw0e

−ρσextz, (4.58)

l = 1 ⇒ dψ0(z)

dz
+ γ1ψ1(z) = 3F0ρσextaw1e

−ρσextz, (4.59)
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where we deĄne

γ0 ≡ (1 − aw0)ρσext,

γ1 ≡ 3(1 − aw1)ρσext.
(4.60)

Eqns. (4.58) and (4.59) have two types of solutions: Homogeneous and particular
solutions, where the full solution is the sum of the two. The particular solution
is of the form

ψlpt
(z) = Gle

−ρσextz, (4.61)

so we get

ψ0pt
(z) = G0e

−ρσextz,

ψ1pt
(z) = G1e

−ρσextz.
(4.62)

Using the particular solution, we solve eqns. (4.58) and (4.59), and get

G0 =
ρσextaF0(γ1w0 + 3ρσextw1)

γ0γ1 − ρ2σ2
ext

,

G1 =
ρσextaF0(3γ0w1 + ρσextw0)

γ0γ1 − ρ2σ2
ext

.

(4.63)

For the homogeneous solution, we take the right side of eqns. (4.58) and (4.59)
to be 0, which gives

l = 0 ⇒ dψ1(z)

dz
+ γ0ψ0(z) = 0, (4.64)

l = 1 ⇒ dψ0(z)

dz
+ γ1ψ1(z) = 0. (4.65)

The homogeneous solution is of the form

ψlh = HliCie
λiz. (4.66)

For the P1 approximation, we take i = 1, 2 and l = 0, 1. Here C1 and C2 are
integration constants, that will be calculated using suitable boundary conditions.
To ĄndHli, we neglect them for now, and we set H0i = 1 to insert it in eqn. (4.64).
We get

λiH1i + γ0H0i = 0,

H1i = −γ0

λi
.

(4.67)

Substituting Hli values to eqn. (4.65) gives

λi − γ1γ0

λi
= 0, (4.68)
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so we get

λ1 =
√
γ1γ0,

λ2 = −√
γ1γ0,

H01 = 1,

H02 = 1,

H11 = −γ0

λ1
,

H12 = −γ0

λ2
,

(4.69)

and the homogeneous solution for the P1 approximation is

ψ0h
(z) = H01C1e

λ1z +H02C2e
λ2z, (4.70)

ψ1h
(z) = H11C1e

λ1z +H12C2e
λ2z. (4.71)

We get the full solution of the P1 approximation by summing the particular and
homogeneous solutions, that is

ψ0(z) = H01C1e
λ1z +H02C2e

λ2z +G0e
−ρσextz, (4.72)

ψ1(z) = H11C1e
λ1z +H12C2e

λ2z +G1e
−ρσextz. (4.73)

Now we apply Marshak type boundary conditions [117] to these equations. The
boundary conditions assume that on the boundaries, no diffuse light enters the
scattering medium from the surrounding medium outside. When the refractive
indices of the media inside and outside does not match, the total diffuse Ćux at
the boundary directed into the medium is the part of the outwardly directed Ćux
that is reĆected by the surface [37, 69, 70, 74, 104]. This conservation law results
in two boundary conditions

∫ 1

0

Idiff(0, µ)Pl(µ)dµ =

∫ 1

0

R(µ)Idiff(0,−µ)Pl(µ)dµ, (4.74)

∫ 0

−1

Idiff(L,−µ)R(−µ)Pl(µ)dµ =

∫ 0

−1

Idiff(L, µ)Pl(µ)dµ, (4.75)

where L is the sample thickness and l = 1. R(µ) is the specular Fresnel reĆection
function for unpolarized light, given by

Rs =

∣

∣

∣

∣

∣

∣

∣

∣

n1µ− n2

√

1 −


n1

n2

√

1 − µ2
2

n1µ+ n2

√

1 −


n1

n2

√

1 − µ2
2

∣

∣

∣

∣

∣

∣

∣

∣

2

,

Rp =

∣

∣

∣

∣

∣

∣

∣

∣

n1

√

1 −


n1

n2

√

1 − µ2
2

− n2µ

n1

√

1 −


n1

n2

√

1 − µ2
2

+ n2µ

∣

∣

∣

∣

∣

∣

∣

∣

2

,

R(µ) =
(Rs +Rp)

2
.

(4.76)
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After substituting the expression for intensity in eqn. (4.19) into eqns (4.74) and
(4.75), and putting l = 0, 1 for the P1 approximation, we get

ψ0(0)J0(µ) + 3ψ1(0)J1(µ) = 0, (4.77)

ψ0(L)D0(µ) + 3ψ1(L)D1(µ) = 0, (4.78)

where

J0(µ) =

∫ 1

0

µ(1 −R(µ))dµ,

J1(µ) =

∫ 1

0

µ2(1 +R(µ))dµ,

D0 = −J0,

D1 = J1.

(4.79)

To Ąnd the integration constants C1 and C2, we submit eqns. (4.72) and (4.73)
into eqns. (4.77) and (4.78)

J0(µ) (H01C1 +H02C2 +G0) + 3J1(µ) (H11C1 +H12C2 +G1) = 0, (4.80)

D0(µ)
(

H01C1e
λ1L +H02C2e

λ2L +G0e
−ρσextL

)

+ 3D1(µ)
(

H11C1e
λ1L +H12C2e

λ2L +G1e
−ρσextL

)

= 0.
(4.81)

Solving these two equations for C1 and C2 gives the integration constants. We
do not write them here because the resulting expressions are rather long. Now
that we have everything, we can calculate ψ0 to get the diffuse average intensity
Udiff(z) as in eqn. (4.56), and ψ1 for the diffuse Ćux

Fdiff(z) = ψ1(z). (4.82)

4.3.2 P3 approximation

For the P3 approximation, we must take l = 0, 1, 2, 3 in eqn. (4.42) and we get
the four differential equations

l = 0 ⇒ dψ1(z)

dz
+ γ0ψ0(z) = F0ρσextaw0e

−ρσextz, (4.83)

l = 1 ⇒ 2
dψ2(z)

dz
+
dψ0(z)

dz
+ γ1ψ1(z) = 3F0ρσextaw1e

−ρσextz, (4.84)

l = 2 ⇒ 3
dψ3(z)

dz
+ 2

dψ1(z)

dz
+ γ2ψ2(z) = 5F0ρσextaw2e

−ρσextz, (4.85)

l = 3 ⇒ 3
dψ2(z)

dz
+ γ3ψ3(z) = 7F0ρσextaw3e

−ρσextz, (4.86)
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where

γ0 = (1 − aw0)ρσext,

γ1 = 3(1 − aw1)ρσext,

γ2 = 5(1 − aw2)ρσext,

γ3 = 7(1 − aw3)ρσext.

(4.87)

We again use eqn. (4.27) to get the Ąrst four moments of the phase function

w0 = 1,

w1 = g,

w2 = g2,

w3 = g3,

(4.88)

The particular solution in eqn. (4.61) gives

ψ0pt
(z) = G0e

−ρσextz,

ψ1pt
(z) = G1e

−ρσextz,

ψ2pt
(z) = G2e

−ρσextz,

ψ3pt
(z) = G3e

−ρσextz.

(4.89)

Using these particular solutions, we solve eqns. (4.83-4.86) and get the prefactors
Gl. They are rather long so we wonŠt write them here.

For the homogeneous solution, we again set the right-hand side of eqns. (4.83-
4.86) to be zero and the solution is again of the form given in eqn. (4.66). For
the P3 approximation we take i = 1, 2, 3, 4 and l = 0, 1, 2, 3, and get

γ0H0i + λiH1i = 0, (4.90)

λiH0i + γ1H1i + 2λiH2i = 0, (4.91)

2λiH1i + γ2H2i + 3λiH3i = 0, (4.92)

3λiH2i + γ3H3i = 0. (4.93)

We set H0i = 1 and put it in eqn. (4.90) and get

λiH1i + γ0H0i = 0,

H1i = −γ0

λi
.

(4.94)

Substituting H1i into eqn. (4.91) gives

λi − γ1γ0

λi
+ 2λiH2i = 0,

H2i =
γ0γ1 − λ2

i

2λ2
i

.
(4.95)
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Similarly, we put H2i to eqn. (4.92) and get

−2λi
γ0

λi
+ γ2

γ0γ1 − λ2
i

2λ2
i

+ 3λiH3i = 0,

H3i =
−γ0γ1γ2 + 4γ0λ

2
i + γ2λ

2
i

6λ3
i

.

(4.96)

Finally, putting all Hli in eqn. (4.93) gives λi values, however, they are also rather
long and wonŠt be given here. Now we have all the values needed, except Ci to
write the coefficients for the Ąnal solution,

ψ0(z) = H01C1e
λ1z +H02C2e

λ2z +H03C3e
λ3z +H04C4e

λ4z +G0e
−ρσextz, (4.97)

ψ1(z) = H11C1e
λ1z +H12C2e

λ2z +H13C3e
λ3z +H14C4e

λ4z +G1e
−ρσextz, (4.98)

ψ2(z) = H21C1e
λ1z +H22C2e

λ2z +H23C3e
λ3z +H24C4e

λ4z +G2e
−ρσextz, (4.99)

ψ3(z) = H31C1e
λ1z+H32C2e

λ2z+H33C3e
λ3z+H34C4e

λ4z+G3e
−ρσextz. (4.100)

Now, we again apply the boundary conditions given in eqns. (4.74-4.75). For
P1, we set l = 1 to them and get 2 equations. To solve the P3 approximation,
we need 2 more equations, which we obtain by setting l = 3 in eqns. (4.74-4.75).
This gives us the four equations below as boundary conditions

ψ0(0)J0(µ) + 3ψ1(0)J1(µ) + 5ψ2(0)J2(µ) + 7ψ3(0)J3(µ) = 0, (4.101)

ψ0(L)D0(µ) + 3ψ1(L)D1(µ) + 5ψ2(L)D2(µ) + 7ψ3(L)D3(µ) = 0, (4.102)

ψ0(0)E0(µ) + 3ψ1(0)E1(µ) + 5ψ2(0)E2(µ) + 7ψ3(0)E3(µ) = 0, (4.103)

ψ0(L)K0(µ) + 3ψ1(L)K1(µ) + 5ψ2(L)K2(µ) + 7ψ3(L)K3(µ) = 0, (4.104)
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where

J0(µ) =

∫ 1

0

µ(1 −R(µ))dµ,

J1(µ) =

∫ 1

0

µ2(1 +R(µ))dµ,

J2(µ) =

∫ 1

0

µ
3µ2 − 1

2
(1 −R(µ))dµ,

J3(µ) =

∫ 1

0

µ
5µ3 − 3µ

2
(1 +R(µ))dµ,

D0 = −J0,

D1 = J1,

D2 = −J2,

D3 = J3,

E0(µ) =

∫ 1

0

5µ3 − 3µ

2
(1 −R(µ))dµ,

E1(µ) =

∫ 1

0

µ
5µ3 − 3µ

2
(1 +R(µ))dµ,

E2(µ) =

∫ 1

0

5µ3 − 3µ

2

3µ2 − 1

2
(1 −R(µ))dµ,

E3(µ) =

∫ 1

0

5µ3 − 3µ

2

5µ3 − 3µ

2
(1 +R(µ))dµ,

K0 = −E0,

K1 = E1,

K2 = −E2,

K3 = E3.

(4.105)

When we substitute the eqns. (4.97-4.100) into the boundary conditions given
in eqns. (4.101-4.104) and solve for all Ci, we get the Ci coefficients. Again, these
are extremely long results and are not included here.

We now have everything we need to calculate the diffuse average intensity
Udiff(z) from eqn. (4.56), and the diffuse Ćux Fdiff(z) from eqn. (4.82). The total
transmission TT is given as

TT =
ψ1(L) + F0e

−ρσextL

F0
, (4.106)

and the total reĆection TR is

TR =
−ψ1(0)

F0
(4.107)
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4.3.3 P3 + δE(4) approximation

When the order N of the approximation is chosen, the higher-order terms of
the expansions are truncated. Therefore, the implementations of higher-order
approximations are expected to be more accurate, especially when it comes to
a photonic scattering slab with anisotropic scattering. The PN + δE(N + 1)
approximation adds a delta function to the Henyey-Greenstein phase function to
compensate for the loss in extreme forward scattering due to truncated higher-
order terms [69, 105]. This means the expansion of Henyey-Greenstein phase
function pH−G(µ, µ′) given in eqn. (4.25) becomes

pδE(N+1)(µ, µ
′) = (1 − f)pH−G(µ, µ′) + fδ(µ− µ′), (4.108)

where
f = gN+1. (4.109)

As the RTE and its moments keep their mathematical form, only the optical
constants need to be modiĄed as [37]:

σ′
scat = (1 − f)σscat ;

(g′)n =
gn − f

1 − f
;

a′ =
σ′

scat

σabs + σ′
scat

.

(4.110)

The addition of a strongly forward peaked delta function does not result in any
physical changes, as photons that maintain their direction of propagation are
not scattered [69]. However, mathematically, this modiĄcation leads to a more
forward-directed average scattering.

By using the phase function pδE(N+1), replacing the original optical constants
with the ones from eqn. (4.110) and taking the order N = 3 in the method
explained in subsection 4.3.2, the solution for the P3 + δE(4) approximation to
the RTE is found. In other words, only the optical constants in eqns. (4.83 -
4.89) are modiĄed to obtain the solution. To avoid redundancy, we refrain from
rewriting the modiĄed equations in this context. The success of the P3 + δE(4)
approximation is discussed in chapters 3 and 5.

4.4 Consideration of cuvette walls

In our experiments in chapter 5, the samples are microsphere suspensions in
water, and they are held in quartz cuvettes during measurements. Therefore,
for these samples the reĆections from cuvette walls need to be considered in
the boundary conditions of the models. The simple internal reĆection scheme
is shown in Fig. 4.5. Since the cuvette walls do not have any scatterers or
signiĄcant absorption, we neglect the extinction in these regions and approach
the problem by considering only the reĆections from the interfaces. We deĄne µ
as the directional cosine of light coming from slab to the cuvette wall and µcuv



66 Derivation of the PN approximation to the radiative transfer equation for a slab

as the directional cosine of light coming from the cuvette wall towards the slab,
where

µcuv =

√

1 −


nslab

ncuv

√

1 − µ2

2

. (4.111)

R* R*

T1,R1 T1,R1T2,R2 T2,R2

nair nairncuv nslab ncuv

Figure 4.5: Cross-section of a slab with cuvette walls. The blue arrows represent light
being reĆected from and transmitted through the boundaries. The refractive indices
of air, cuvette and slab media are nair, ncuv and nslab, respectively. T1 and R1 are
the Fresnel transmission and reĆection coefficients for unpolarized light, for the air-
cuvette interface. T2 and R2 are the Fresnel transmission and reĆection coefficients for
unpolarized light, for the slab-cuvette interface. R∗ represents the combined Fresnel
reĆection coefficient of the boundaries.

Next, we deĄne a Fresnel reĆection coefficient R∗(µ), that combines the effect of
the cuvette walls and reĆections from the slab-cuvette and cuvette-air interfaces,
as

R∗(µ) ≡ R2(µ) + T 2
2 (µ)R1(µcuv)

∞
∑

i=0

(R2(µ)R1(µcuv))i

= R2(µ) + T 2
2 (µ)R1(µcuv)

1

1 −R2(µ)R1(µcuv)
,

(4.112)
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where the reĆection coefficient of air-cuvette interface R1(µcuv) is

R1s(µcuv) =

∣

∣

∣

∣

∣

∣

∣

∣

ncuvµcuv − nair

√

1 −


ncuv

nair

√

1 − µ2
cuv

2

ncuvµcuv + nair

√

1 −


ncuv

nair

√

1 − µ2
cuv

2

∣

∣

∣

∣

∣

∣

∣

∣

2

,

R1p(µcuv) =

∣

∣

∣

∣

∣

∣

∣

∣

ncuv

√

1 −


ncuv

nair

√

1 − µ2
cuv

2

− nairµcuv

ncuv

√

1 −


ncuv

nair

√

1 − µ2
cuv

2

+ nairµcuv

∣

∣

∣

∣

∣

∣

∣

∣

2

,

R1(µcuv) =
(R1s +R1p)

2
,

(4.113)

the reĆection coefficient of slab-cuvette interface R2(µ) is

R2s(µ) =

∣

∣

∣

∣

∣

∣

∣

∣

nslabµ− ncuv

√

1 −


nslab

ncuv

√

1 − µ2
2

nslabµ+ ncuv

√

1 −


nslab

ncuv

√
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2

∣

∣

∣

∣

∣

∣

∣

∣

2

,

R2p(µ) =

∣

∣

∣

∣

∣

∣

∣

∣

nslab

√

1 −


nslab

ncuv

√

1 − µ2
2

− ncuvµ

ncuv

√

1 −


nslab

ncuv

√

1 − µ2
2

+ ncuvµ

∣

∣

∣

∣

∣

∣

∣

∣

2

,

R2(µ) =
(R2s(µ) +R2p(µ))

2
,

(4.114)

and the transmission coefficient of slab-cuvette interface T2(µ) is

T2s(µ) =

∣

∣

∣

∣

2nslabµ

nslabµ+ ncuvµcuv

∣

∣

∣

∣

2

,

T2p(µ) =

∣

∣

∣

∣

2nslabµ

ncuvµ+ nslabµcuv

∣

∣

∣

∣

2

,

T2(µ) =
(T2s + T2p)

2

ncuvµcuv

nslabµ
.

(4.115)

The R∗(µ) in eqn. (4.112) is then substituted to eqns. (4.74) and (4.75) as the
fresnel reĆection coefficient, to include the effect of cuvette walls in the boundary
conditions.

4.5 Internal reĆection of the reduced intensity

The internal reĆections of the reduced intensity Iri, or the unscattered source,
is not considered in the derivations given in the previous sections of this chapter.
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However, the effect of these reĆections is not negligible for the realistic samples
with cuvette walls. Fig. 4.6 shows the simple scheme of the internal reĆections
of the reduced intensity that contribute to the total left Ćux F0L at z = 0 with
direction z, and the total right Ćux F0R at z = L with direction −z.

R* R*

T1,R1 T1,R1T2,R2 T2,R2

nair nairncuv nslab ncuv

F0 F0L F0R

x

z
0 L

Figure 4.6: Cross-section of a slab with cuvette walls. The blue arrows represent the
unscattered part of the incident Ćux F0 being reĆected from and transmitted through
the boundaries. F0L is the total Ćux that travels in z-direction, and F0R is the total
Ćux that travels in −z-direction. The refractive indices of air, cuvette and slab media
are nair, ncuv and nslab, respectively. T1 and R1 are the Fresnel transmission and
reĆection coefficients for unpolarized light, for the air-cuvette interface. T2 and R2

are the Fresnel transmission and reĆection coefficients for unpolarized light, for the
slab-cuvette interface. R∗ represents the combined Fresnel reĆection coefficient of the
boundaries.

The reduced intensity Iri in the slab medium for plane waves as source in
eqn. (4.38) is re-written as

Iri(r, ŝ) = F0Le
−ρσextzδ(µ̂− µ̂z) + F0Re

−ρσext(L−z)δ(µ̂+ µ̂z) (4.116)

where µz is aligned with the z-axis, F0L is

F0L = F0T1T2



∞
∑

i=0

(R2R1)
i



∞
∑

k=0

(

e−2ρσextLR∗2
)k



,

F0L = F0T1T2
1

1 − (R2R1)

1

1 − (e−2ρσextLR∗2)
,

(4.117)
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and F0R is

F0R = F0T1T2e
−ρσextLR∗



∞
∑

i=0

(R2R1)
i



∞
∑

k=0

(

e−2ρσextLR∗2
)k



,

F0R = F0T1T2e
−ρσextLR∗ 1

1 − (R2R1)

1

1 − (e−2ρσextLR∗2)
.

(4.118)

Substituting eqn. (4.116) into eqn. (4.15) gives the lth moment of the source
function sl(z) to

sl(z) = (F0Le
−ρσextz + (−1)lF0Re

−ρσext(L−z))ρσextawl, (4.119)

which changes eqn. (4.42) to

(l + 1)
dψl+1

dz
+l
dψl−1

dz
+ (2l + 1)(1 − awl)ρσextψl(z) =

(2l + 1)(F0Le
−ρσextz + (−1)lF0Re

−ρσext(L−z))ρσextawl.

(4.120)

Eqn. (4.120) is solved the same way as explained in section 4.3, with consideration
of two separate sources with z and −z directions and the boundary conditions
including cuvette walls given in derived in section 4.4. To avoid redundancy, we
refrain from repeating the derivations with these slight modiĄcations.

4.6 Alternative phase functions

In this study, the Henyey-Greenstein and δE(N + 1) phase functions have
been utilized. The literature reports several alternative phase functions, and the
selection of an appropriate one is dependent on the knowledge of the optical
properties of the scatterers. Optimized phase functions have been developed for
speciĄc cases, and these can provide better results compared to the commonly
used phase functions.

Perhaps the most famous phase function is the Mie phase function. Gustav
Mie showed an analytical solution to the electromagnetic Ąeld inside dielectric
spheres subject to an incident planewave [12], from which a phase function can be
constructed in the form of an expansion in series of Legendre polynomials [118].
This phase function is dependent on the refractive index of the sphere relative
to the surrounding medium, and the size parameter x, that is the ratio of the
circumference of the sphere to the wavelength of the light in the surrounding
medium [7]

x =
2πr

λ
. (4.121)

Another famous description of scattering is done by Rayleigh [10], which is ap-
plicable for isotropically scattering spheres smaller than the size of the incident
wavelength, that is x ≪ 1.

An example for a phase function that is optimized for a speciĄc case is the
Fournier-Forand phase function [31], which is designed to describe light scattering
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in oceans. This phase function approximates the particle size distributions in the
oceans using an inverse power law called the Junge distribution [119]. With a
few more assumptions, the Fournier-Forand phase function, with two parameters
that determine the size distribution, and the refractive index of the scatterers,
is derived. There is no analytic expression for the mean cosine or an analytical
Legendre expansion for the Fournier-Forand phase function yet. This means
numerical calculations are required, that are difficult due to the complex form of
the phase function and the singularity it has for scattering angle θ = 0.

Other alternatives include the Cornette-Shanks phase function [120] that de-
scribes scattering by small particles well, the Draine phase function [121] that
aims to improve the Henyey-Greenstein phase function to better describe scatter-
ing by interstellar dust, and the Liu phase function [122] developed for strongly
forward scattering biomedical media. These alternatives, usually introduce extra
parameters and complexity to the phase function to better describe their speciĄc
cases and require more knowledge about the scatterers in the medium that light
travels. In this study, the focus is on the simplest cases, and a relatively simple
correction to Henyey-Greenstein by the δE(N + 1) is considered.

4.7 Summary

This chapter lays out the theoretical foundation of of chapters 3 and 5, start-
ing with an explanation of key parameters in transport theory, such as speciĄc
intensity and energy density. The radiative transfer equation for a slab geometry
is then derived and solved, utilizing the Ąrst and third-order PN approximations,
and a correction to the P3 approximation for forward scattering is explored, which
involves the incorporation of a delta function in the forward direction. Further-
more, to better represent the experiments in chapter 5, consideration of cuvette
walls surrounding the slab for boundary conditions and the addition of internal
reĆections of the reduced intensity to the models are discussed. Finally, several
alternative phase functions are discussed as examples, although they are out of
the scope of this thesis.



5 Probing the position-dependent

energy Ćuence rate in 3D

scattering samples

5.1 Introduction

For numerous applications such as light emitting diodes (LEDs) [34, 44Ű47],
oceanography [31Ű33, 35, 36], and biophysics [37Ű40] it is crucial to understand
the light transport, hence, predict the position-dependent energy density, which is
proportional to the position-dependent energy Ćuence rate. While Monte Carlo
simulations are a powerful tool to study the energy distribution in scattering
media [58Ű66], they come at the cost of extremely long computation times [67].
Analytical approximations to transport theory offer a much faster alternative, but
they may not provide accurate results for samples that exhibit strong anisotropic
scattering and absorption [98] (see Chapter 3).

Experimental observations of the position-dependent energy Ćuence rate in
real scattering samples are essential to identify reliable methods to model the
light transport in real devices. Such in situ and in vitro measurements of light
transport have been widely used in various research areas, including aerosols [123,
124], light-emitting diodes (LEDs) [125], and photodynamic therapy (PDT) [22,
24, 126]

In Chapter 3, we studied different models of light transport, and presented
their validity ranges. We are curious to see what happens in real samples in the
(a, g, b,∆n) parameter space where the analytic models breakdown. Naively one
would solely trust Monte Carlo simulations, but it is important to note that even
the most ideal simulation cannot fully replicate experimental observations. For
instance, Monte Carlo simulations of light transport rely on input parameters
such as scattering and absorption coefficients, which are typically interpreted
from other experiments that carry additional assumptions and errors. Hence,
accurate experimental measurements are considered superior to stand-alone sim-
ulations.

In this chapter, we report the experiments done in parameter ranges where
most of the approximations fail, to Ąnd out what happens and how well models
pertain. We present our experiments on the in situ detection of the position-
dependent Ćuence rate Φ(z) in both absorbing and non-absorbing, anisotropically
scattering samples. A schematic of the detection method is shown in Fig. 5.1,
where a slab with spherical scatterers is illuminated from the (x, y) side by light
with intensity I0(ν0). Light enters the sample and propagates inside, undergoing
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scattering and absorption by the spheres. A probe in the form of a thin cylindrical
capillary, Ąlled with quantum dots, is utilized to detect the intensity at known
positions inside the sample. When the light reaches the probe from any direction,
it excites the quantum dots, which subsequently emit light at a lower frequency
νe. Part of the re-emitted light is then collected from the top of the probe, and
the position-dependent energy Ćuence rate is inferred from this measurement.

0 L

x

z

Detection

𝐼0(𝜈0)

Figure 5.1: Cross-section of a slab with thickness L that contains a suspension of
microspheres in water. A thin capillary Ąlled with Ćuorescent reporters is inserted in
the sample as a probe. The slab is illuminated from the side by light with intensity
I0(ν0). The white arrows represent the direction of light with frequency ν0, including
both the diffuse and the unscattered parts. The black arrows represent the direction of
emitted light with frequency νe. Fluorescent emission is detected from the top of the
probe.

5.2 Experimental details

The experimental details of the position-dependent energy Ćuence rate mea-
surements inside scattering samples are presented in this section. The ex-
periments are conducted using samples that have strongly forward-scattering
(anisotropy g > 0.75) and absorbing (albedo a < 1) scatterers, which lie within
the parameter range where common analytical approximations fail, as shown in
Figs. 3.3 and 3.4.

5.2.1 Sample preparation

Samples are prepared by diluting commercially-bought polystyrene micro-
sphere suspensions, with a reported particle radii r = 0.5 ± 0.025 µm. The
microsphere suspensions used in our experiments are both plain and red-dyed
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Polybead® Polystyrene Microspheres from Polysciences for undyed and dyed
sphere suspensions, respectively. A buffer solution is produced by mixing Sodium
dodecyl sulfate (SDS) surfactant (0.05%) with de-ionized (DI) water (99.95%).
The samples with scatterers are then prepared by diluting their respective sus-
pensions with the buffer solution. The use of SDS in the buffer solution served
to prevent agglomeration and rapid sedimentation of the scatterers. The samples
prepared with this buffer solution are stable for approximately 24 hours, after
which sedimentation is observed. Prior to subsequent use in experiments, the
samples are carefully agitated to re-disperse the sediment, with attention paid to
prevent the introduction of air bubbles. Dyed sphere samples are labelled DS,
and plain (undyed) sphere samples are US. The contents and scatterer concen-
trations of prepared samples are provided in Table 5.1, and a photograph of the
samples are shown in Fig. 5.2.

Sample name Contents ρ (mm−3)
Ref 99.95 wt.% DI water + 0.05 wt.% SDS 0
DS1 0.025% (w/v) dyed sphere + Ref (4.6 ± 0.6) × 105

DS2 0.013% (w/v) dyed sphere + Ref (2.3 ± 0.3) × 105

DS3 0.006% (w/v) dyed sphere + Ref (1.1 ± 0.1) × 105

US1 0.026% (w/v) plain sphere + Ref (4.7 ± 0.6) × 105

US2 0.013% (w/v) plain sphere + Ref (2.4 ± 0.3) × 105

US3 0.007% (w/v) plain sphere + Ref (1.2 ± 0.2) × 105

Table 5.1: Contents and the number density of scatterers ρ of the prepared samples.
The percentages of spheres are adjusted from the information provided by Polyscience
about their products. DS are red-dyed microsphere samples, and US are undyed mi-
crosphere samples.

Figure 5.2: Photographs of the prepared samples with different densities of (a) red-
dyed scatterers, (b) undyed scatterers. The scatterers are polystyrene spheres with
(1.00 ± 0.05) µm diameter.
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5.2.2 Choice of the light source

Extinction spectra of the diluted dyed microsphere suspension with a scatterer
number density of ρ = (4.6 ± 0.6) × 104 mm−3 were measured using a UV-
Vis spectrometer (Perkin Elmer Lambda 850, MNF chair at MESA+). The
measured spectrum is presented in Fig. 5.3. The sphere suspension is diluted
with DI water, thus, the reference used in this UV-Vis measurement is also DI
water. The extinction peak of the microspheres in the visible range is observed
to be around 400 nm wavelength. Therefore, we chose a Thorlabs NPL41B
nanosecond laser with a peak wavelength of λ = 408.5 nm as the light source in
our experiments, to minimize the albedo of the scatterers.

Figure 5.3: Measured extinction of dyed microsphere suspension with number density
ρ = (4.6±0.6)×104mm−3. The sample is prepared by diluting the commercially bought
spheres with DI-water and does not include any surfactants to prevent agglomeration
of spheres.

5.2.3 Preparation of the probe

The concept of a probe Ąlled with Ćuorescent reporters is depicted in Fig. 5.1.
To realize this concept, a cylindrical, quartz capillary with 10 cm length (CM
ScientiĄc, CV1017Q-100), an outer diameter of 170µm and an inner diameter of
100 µm is utilized. A capillary is Ąlled with quantum dots suspended in decane
(Thermo Fisher QdotTM 655 ITKTM Organic Quantum Dots). The quantum dots
scatter and absorb the incident UV light, and re-emit in the red, with a peak at
λpeak = 665 nm wavelength (see Fig. 5.4(b)). To place the quantum dots inside
the capillary, the capillary is put in a teĆon-lined Ąber chuck (Newport FPH-J).
A rubber stop is attached to the back end of the Ąber chuck, and the quantum
dots are sucked in the capillary using this assembly (see Fig. 5.4(a)). Finally,
both ends of the capillary are sealed with super glue, as shown in Fig. 5.4(c).
Hereafter, we will refer to the capillary-Ąber chuck assembly as the probe.
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Figure 5.4: Photograph of the preparation phases of the probe. (a) The quantum dots,
the capillary held by the Ąber chuck, and the rubber stop used for sucking quantum
dots inside the capillary. (b) Red emission is observed when the capillary is illuminated
with UV light.

5.2.4 Experimental Setup

Figure 5.5 presents a schematic of the setup used in our experiments to probe
the position-dependent energy Ćuence rate inside anisotropically scattering and
absorbing samples. A blue laser (Thorlabs NPL41B) is used as the primary light
source (see subsection 5.2.2). The laser beam is spatially Ąltered because of the
many modes created inside the laser, which are not collimated as well as the
main mode, still perturb the beam proĄle when the beam reaches the sample.
The beam proĄles at the sample position, before and after rough spatial Ąltering
are shown in Fig. 5.6, where a substantial improvement is observed when the
laser beam is spatially Ąltered. The sample holders SH1 and SH2, attached to
the integrating sphere are 3D-printed in the Design Lab, whereas the holder
SH3 where the probe is immersed in (see Fig.5.5), is 3D-printed in the Rapid
Prototyping Lab of the University of Twente. The probe is connected to a custom-
built holder with 3D-printed and manually made parts, as shown in Fig. 5.7. To
detect the intensity emitted from the probe, a connector part is created in the
workshop to connect the probe with a Ąber-optic cable that is attached to a
spectrometer (Avantes Starline, AvaSpec-2048L) on the other end. The holder is
attached to an assembly of motorized translation stages (Thorlabs MTS50/M-
Z8) that moves the probe to precise positions in 3 dimensions. In-house Python
scripts are used to control the movement of the probe and detection with the
spectrometer. The x-direction movement is utilized to dip the probe in and take
it out of the sample, whereas the y and z-direction movements are used to scan
the sample and measure the intensity at speciĄc positions. Total transmission
and total reĆection measurements are done with an integrating sphere (Opsira
uku240), with a port diameter dport = 20 mm for both transmission and reĆection
ports (see also chapter 2).
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Figure 5.5: Schematic representation of the experimental setup. The blue laser is
the primary light source and is combined with the HeNe laser at the beam splitter,
for alignment purposes. The blue beam is spatially Ąltered. The probe is attached
to an assembly of motorized translation stages, for precise positioning in 3 dimen-
sions. The spectrometer is connected to the probe, integrating sphere, and unscattered
transmission detection via Ąber-optic cables. Holders SH1 and SH2 are used for total
reĆection and total transmission measurements, respectively. Holder SH3 is used for
measurements with the probe and unscattered transmission (Tu) measurements Several
components, including ND Ąlters and beam dumps, have been omitted for clarity.

Figure 5.6: Measured beam proĄles of the blue laser at the sample position (a) without
spatial Ąltering, and (b) with spatial Ąltering.
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Figure 5.7: Photograph of the assembled probe holder. The Ąber attached to the
probe, the integrating sphere transmission port and the sample holder SH3 with an
empty cuvette attached to it, is also visible in the photo.

Before measurements, each sample suspension is transferred to a wide quartz
cuvette (outer dimensions 12.5×32.5×45mm) with an inner thickness of L = 10
mm along the z-direction. These cuvettes are then placed in sample holders
for measurements. Holders SH1 and SH2 are used for total reĆection and total
transmission measurements, respectively. Holder SH3 is used for measurements
with the probe and unscattered transmission (Tu) measurements, as the distance
between the Ąber coupler of Tu detection and SH3 is sufficiently long for this
purpose [127].

5.3 Results and discussion

In this section, the results of unscattered transmission, total transmission, total
reĆection, and probe measurements are discussed. In addition, the method to
extract the albedo a and the anisotropy g of the samples is discussed.

5.3.1 Unscattered Transmission, Total Transmission and Total

ReĆection

The unscattered transmission Tu represents the portion of the incident light
that is transmitted through the sample without deviating from its initial direction
of travel. In other words, it represents the light that survives extinction while
maintaining its original direction. The Beer-Lambert-BouguerŠs law is used to
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express Tu as

Tu(λ, ρ) =
Iu(λ, ρ)

I0(λ)
= e−ρσext(λ,ρ)L. (5.1)

Here, Iu is the intensity transmitted without changing its direction, I0 is the
incident intensity, ρ is the number density, σext is the extinction cross-section,
and L is the sample thickness. Furthermore, the optical thickness b is deĄned

b(λ, ρ) ≡ ρσext(λ)L = µext(λ)L, (5.2)

where µext is the extinction coefficient.

(a)

(b)

Figure 5.8: (a) Unscattered transmission Tu, and (b) extracted optical thickness b of
samples DS2, DS3, US2 and US3.

Figure 5.8(a) presents the measured unscattered transmission Tu, and
Fig. 5.8(b) displays the extracted optical thickness of samples DS2, DS3, US2, and
US3 throughout the bandwidth of the blue laser. The densest samples DS1 and
US1 have a vanishing transmission below our detection limit and are not shown.
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Therefore, the optical thickness of DS1 and US1 are calculated from the measure-
ments of other samples, by scaling the density of scatterers. The measurement
results show a clear effect of the density of scatterers and the composition of the
scatterers on the light transmission. Naively, one would expect dyed samples to
be optically thicker than undyed samples with similar scatterer concentrations
due to increased absorption, however, our measurements show the opposite. We
attribute this interesting result to the presence of an unknown red dye inside the
scatterers that alters the refractive index of the polystyrene spheres in DS2 and
DS3. The dye likely makes the spheres more anisotropic, causing them to scatter
light more in the forward direction. Consequently, the unscattered part of the
transmitted light increases, which explains our observations in Fig. 5.8.

(a)

(b)

Figure 5.9: Total transmission TT(b) and total reĆection TR(b) of (a)dyed microsphere
suspensions, (b) undyed microsphere suspensions, as a function of optical thickness. The
lines connect the data points.

Total transmission (TT) and total reĆection (TR) measurements of dyed and
undyed microsphere suspensions are displayed in Fig. 5.9 as a function of their
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optical thicknesses at a wavelength of λ = 408.5 nm. As the optical thickness
b increases, both TT and TR decrease for the dyed microspheres. The decrease
in TT is in line with an increasing absorption, and the decrease in TR agrees
with the increasing density of forward scattering scatterers and absorption as the
suspension gets optically thicker. In contrast, for undyed sphere suspensions, the
TR increases with increasing optical thickness due to the scatterers having negli-
gible absorption. These measurements are necessary to determine the scattering
parameters of the samples using models such as the diffusion approximation, PN

approximations, and Monte Carlo simulations of light transport.

5.3.2 Determining (a, g) parameters of the samples

Mie calculations provide the albedo and anisotropy (a, g) of scatterers in a
sample if the complex refractive index and size of the scatterers are known. Un-
fortunately, the scatterers in the dyed microsphere suspensions are Ąlled with a
red dye that is unknown to us, as the manufacturer was not able to share the
information. Therefore, the albedo and anisotropy (a, g) of dyed microsphere
suspensions are determined by comparing TT and TR measurements to Monte
Carlo simulations of light transport, using a brute-force approach. This process
is similar to what is described in subsection 3.3.2. First, the optical thicknesses
b of the samples are extracted, and then Monte Carlo simulations of light trans-
port are performed for a grid of (a, g) pairs covering all possible albedos and
anisotropies. We then use the relative cost function S(a, g) deĄned as

S(a, g) ≡
√

(TTMC(a,g)−TTDS#(a0,g0))2

TT 2
DS#

(a0,g0)
+

(TRMC(a,g)−TRDS#(a0,g0))2

TR2
DS#

(a0,g0)
, (5.3)

where TTMC(a, g) and TRMC(a, g) are the total transmission and reĆection from
Monte Carlo simulations, TTDS#(a0, g0) and TRDS#(a0, g0) are measured, (a, g)
is the running coordinate in the albedo-anisotropy grid, and (a0, g0) is the albedo-
anisotropy pair of the sample that we are trying to extract. For the measured
TTDS#(a0, g0) and TRDS#(a0, g0) quantities, # represents the number of the
sample name, given in Table 5.1.

Fig. 5.10 shows the contour plot of calculated S(a, g) in percentage, for the
densest sample DS1. The x and y axes represent all possible albedo a and
anisotropy g values, respectively. S(a, g) decrease as the (a, g) coordinates indi-
cate strong forward scattering and absorption. The minimum cost or the best
Ąt is found, as expected, in the strong forward scattering and moderately ab-
sorbing region of the (a, g) grid. However, it is noteworthy that the best Ąt to
our measurements is at g0 = 1, which is an extreme point and is realistically
unattainable in real samples with scatterers. This implies that errors in our mea-
surements have a signiĄcant effect on the determination of the (a, g) parameters
of the samples. While the random errors in the measurements are negligible (see
Fig. 5.9), the systematic errors are signiĄcant and merit further discussion below.
We attribute the systematic errors to the integrating sphere ports, which are not
large enough to capture the total reĆected and transmitted light. Moreover, as



Results and discussion 81

we perform single-beam measurements, there is an inherent substitution error of
about 2% in our system (see Chapter 2).

DS1

Figure 5.10: The calculated cost S(a, g) for sample DS1 as a function of albedo (a) and
anisotropy (g). The minimum of S(a, g), that is in a forward scattering and absorbing
range (top right of this Ągure), indicates the best Ąt between simulated and experimental
total transmission and reĆection. The contour plot shows the variation of S(a, g) for
different values of (a, g).

Systematic errors are more signiĄcant for samples with a lower density of scat-
terers, as the suspensions are held in quartz cuvettes, and light reĆects from
the cuvette walls multiple times before leaving the sample. This could cause
the light to exit the sample at a wider angle than the integrating sphere can
collect, especially for the total reĆection measurements, as light is incident on
the sample with a 6◦ angle (see Chapter 2). If the absorption is high inside the
sample, this is a minor issue as the internally reĆected light diminishes quickly
and the spread is not wide. It is important to note that these internal reĆec-
tions are included in the Monte Carlo simulations to obtain results as close as
possible to the actual measurements. Since errors are larger for lower densities
and as we know that the reference sample has a = 1 and g = 1, we estimate the
maximum potential systematic errors of TT and TR for our measurements by
comparing the measurements to the Monte Carlo simulations for the reference
sample. This comparison gives us the maximum systematic error for the total
transmission ∆TT = 6% and for the total reĆection ∆TR = 4%. We utilize
these errors to extract a range of possible (a, g) parameters for each sample, and
we take the average value of that range as the extracted pair. Additionally, we
use the extracted range to model a dynamic range with the PN approximations,
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which are discussed in subsection 5.3.3. The extracted (a, g) parameters of the
dyed microsphere suspension samples are given in Table 5.2, which shows that
the dyed samples are highly forward scattering, and have moderate absorption.

Sample name Extracted a Extracted g
DS1 0.90 ± 0.02 0.95 ± 0.02
DS2 0.91 ± 0.01 0.96 ± 0.02
DS3 0.94 ± 0.02 0.97 ± 0.01

Table 5.2: Extracted albedo a and anisotropy g values of dyed microsphere suspension
samples DS1, DS2 and DS3. The values reported here are averaged over the extracted
range of (a, g) pairs, and errors are the standard deviation of the mean.

The comparison of simulated and measured transmission and reĆection sig-
nals is not necessary for the undyed microsphere suspensions, as their optical
properties can be obtained directly from Mie calculations. The complex refrac-
tive index of polystyrene spheres at 408.5 nm is taken from reference [128] to be
npoly = 1.61 + 0.0004i, which yields non-absorbing a = 0.997 and strong forward
scattering g = 0.919 for the undyed microspheres suspended in DI water. Ad-
ditionally, Mie calculations provide the extinction cross-section σext, which we
utilized together with the uncertainty of the scatterer radius ∆rscat = ±0.03 µm
to determine the ∼ 13% uncertainty in the reported densities listed in Table 5.1.
These extracted (a, g) parameters for both dyed and undyed samples lie within
the range where P1 and P3 approximations fail, whereas P3 + δE(4) should give
accurate results.

5.3.3 Position-dependent energy Ćuence rate of dyed

microsphere suspensions

To determine the position-dependent energy Ćuence rate Φ(z), the light inten-
sity at speciĄc points inside samples is measured using the experimental setup
described in subsection 5.2.4. The coordinate system adopted in this section is
depicted in Fig. 5.5. The objective is to infer Φ(z) from measurements of the
emission of quantum dots inside the probe, which are excited by the blue light
inside the sample, along z from the left boundary at z = 0 where the incident
light enters, to the right boundary at z = 10 mm. Finally, the experimental data
are compared to the theoretical models outlined in Chapter 3. Due to experi-
mental constraints, the probe scans start at z = 0.05 mm and end at z = 9.75
mm.

Measurements with probe along the z-direction inside the sample DS1 are
shown in Fig. 5.11, including the results from four primary scan directions: for-
ward, forward-side, random, and random-side. The forward direction indicates
that the sample is scanned from the left boundary (z = 0) to the right boundary
(z = 10), while forward-side refers to scanning the sample in the same direction
as forward in z, as well as scanning it in the y-direction at speciĄc z-positions.
Random direction refers to scans of the sample along the z-direction with the
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probe randomly positioned during the scan. Finally, random-side indicates that
the sample is scanned in the same way as in random direction, but in addition,
it is scanned in the y-direction at speciĄc z-positions, and the y-scans are also
done with a random positioning of the probe. Fig. 5.11 shows that the scan
direction has minimal inĆuence on the outcomes. The minor differences are at-
tributed to slight instabilities of the probe holder, which are discussed further in
subsection 5.3.5.

Figure 5.11: Representative scans of the position-dependent intensity in the z-direction
in sample DS1, for four different scan directions. The inset highlights the small differ-
ences between scans.

Figure 5.12 presents the position-dependent intensity in the z-direction for
samples DS1, DS2, and DS3. The datapoints in Fig. 5.12 represent an average of
four different scan directions, as elaborated in Fig. 5.11. Notably, the optically
thicker samples exhibit a higher intensity than the thinner samples, up to a
depth of approximately 2 mm inside the sample. This behavior is attributed
to the increased number of scatterers in the thicker samples, which scatter the
light into the probe more than the less dense samples at the Ąrst few millimeters.
After z = 2 mm depth, the trend reverses and the densest sample has the lowest
detected intensity. This trend is expected, as the extinction is higher for thicker
samples. However, it should be noted that while the probe scans the z-direction
entirely in this measurement, it is insufficient to fully characterize the Φ(z) as
modelled in Chapter 3, since a large portion of the xy-plane is not measured. The
models simplify the problem to one dimension by utilizing the symmetries within
the slab and averaging over the xy-plane at each z-position [98]. The diameter
of our probe is 170 µm, while the beam size is approximately 1 mm, and the
z-scans are done when the probe is at the center of the beam in y-direction.
Consequently, although the probeŠs length in the x-direction is roughly 40 mm
within the sample, the scan presented in Fig. 5.12 predominantly collects the
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unscattered intensity.

Figure 5.12: Position-dependent intensity in the z-direction detected inside dyed mi-
crosphere suspensions DS1, DS2 and DS3. Optical thicknesses of the samples are given
in the legend. Data points represent the averages of four scans in different directions
(see Fig. 5.11).

DS2

Figure 5.13: Representative scans of y-direction at speciĄc z-positions inside sample
DS2.

In order to obtain a more comprehensive understanding of Φ(z), it is necessary
to scan samples in the y-direction at various positions in z. Figure 5.13 presents
three scans at speciĄc z-positions. The results show that the energy distribution
broadens in the y-direction as the light travels deeper in z, in agreement with
expectations from multiple scattering [3, 6, 11, 129]. All samples are probed in
the y-direction at numerous z-positions, and the resulting curves obtained from
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these y-scans at each z-position are integrated to derive a value that represents
the total Φ(z) integrated over an xy-plane. Fig. 5.14 shows the integrated y-
scans of sample DS2, where the z-positions are scaled by the thickness of the
sample, and the measured Φ(z) is normalized by the incident intensity. Notably,
Fig. 5.14 illustrates the inclusion of diffuse light to the detection, in contrast to the
measurements obtained solely from z-scans, as shown in Fig. 5.12. To compare
with these measurements, Φ(z) is modelled using the P1, P3, and P3 + δE(4)
approximations to the radiative transfer equation, and Monte Carlo simulations
of light transport [98].
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Figure 5.14: Representative integrated y-scans at speciĄc z-positions inside sample
DS2.

Fig. 5.15 presents the comparison between the models and our measurements.
The P1 and P3 approximations are not shown as they demonstrate poor accuracy
in Fig. 5.16. The green areas represent the modelled values for the extracted
(a, g) range using P3 + δE(4) approximation. The horizontal axis represents the
z-positions scaled by the thickness of the sample, while the vertical axis on the
left displays the Φ(z) measurements of samples normalized to the measurements
of the incident intensity, which is presented in Fig. 5.18(b). The right vertical
axis corresponds to the modelled relative Φ(z). Both vertical axes are scaled
to compare the trends of measured and modelled Φ, and a good agreement is
observed between them. We deĄne a straightforward relation, neglecting the
small random errors in measurements,

Φreal(z) ≡ KΦmeasured(z), (5.4)

where K is a constant that represents the portion of Φ that is measured. K
mainly depends on the experimental limitations that are discussed below in sub-
section 5.3.5. The small differences in measured and modelled Φ trends, exclud-
ing the scaling discussed above, are attributed to the limitations of the Henyey-
Greenstein phase function [109].
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Figure 5.15: Comparison of measurement and models for samples (a) DS1, (b) DS2,
and (c) DS3. The dotted lines represent the calculated Φ(z) from the P3 + δE(4) ap-
proximation. The dynamic range of the P3 +δE(4) approximation is shown as the green
area. The circles represent the results of Monte Carlo simulations, and the triangles
connected with red dash-dotted lines represent the measured results of samples. The
measured results are calculated by integrating the y-scans at each z-position, shown as
triangles.
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Figure 5.16: Modelled position-dependent energy Ćuence rate Φ(z) for samples (a)
DS1, (b) DS2, and (c) DS3. Lines represent the results of the PN approximations, and
circles represent the results of Monte Carlo simulations. In (c), the unphysical area
where Φ is negative is hatched in black

The results of the P1, P3, and P3 + δE(4) approximations and Monte Carlo
simulations are illustrated in Fig. 5.16, where the z-positions are scaled by the
thickness of the sample, and the modelled Φ(z) is relative, as the incident Ćux
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density (irradiance) in the models is set to be F0 = 1. The dynamic ranges of the
PN approximations represent the modelled values for the extracted (a, g) range.
Initially, it may appear confusing that a relative result is greater than 1, as seen
in the case of sample DS1. Although both the irradiance F0 and energy Ćuence
rate Φ have the same units Wm−2, the former denotes the optical power through
the surface of a Ćat unit area in the direction normal to the surface, while the
latter refers to the total optical power through a spherical unit surface area in all
directions [23]. Therefore, depending on the scattering properties of the medium
being measured, it is possible for Φ to be larger than the incident irradiance [37,
130, 131].

Fig. 5.16 shows that the P3 + δE(4) approximation has the closest agreement
with the Monte Carlo simulations, which is consistent with previously reported
Ąndings [37, 98] (see Chapter 3). The P1 and P3 approximations perform poorly
for these anisotropically scattering and absorbing samples, and the P3 approxi-
mation even predicts an unphysical negative energy Ćuence rate in the dynamic
range of the optically thin sample DS3. The unphysical results of the P3 approx-
imation for sample DS3 also agree with our previous Ąndings [98] presented in
Fig. 3.3, which shows a broader unphysical range of P3 for optically thin samples
in the strong forward scattering range, compared to the thicker samples.

5.3.4 Position-dependent energy Ćuence rate of undyed

microsphere suspensions

In this subsection, we present measured Φ(z) of undyed sphere suspensions
and compare them to models. Fig. 5.17 presents the comparison of all models
to measurements. The PN approximation results do not have dynamic ranges
in Fig. 5.17 as the (a, g) pair of samples US1, US2, and US3 are extracted from
exact Mie calculations, as explained in subsection 5.3.2. Similar to Fig. 5.15, the
horizontal axis denotes the z-positions scaled by the thickness of the sample, and
the left vertical axis gives the Φ(z) measurements of samples normalized to the
measurements of the incident intensity given in Fig. 5.18(b). The right vertical
axis is the modelled relative Φ(z), and both vertical axes are scaled to compare
the trends of measured and modelled Φ. A good agreement between the trends
of P3 + δE(4), Monte Carlo, and measurements are observed. Differences due to
experimental limitations are discussed in subsection 5.3.5.

5.3.5 Experimental Limitations

Systematic errors are inevitable in any experimental measurement, including
the measurements of Φ(z). It is important to identify and comprehend the un-
derlying causes of the systematic errors, before claiming that the measurements
reĆect reality. This subsection discusses the limitations of our experiment that
affects the scaling value, K, for eqn. 5.4.

The discussion starts with the shift in detected peaks for y-scans at different
z-positions, which is not immediately obvious for scans presented in Fig. 5.13. To
clarify this effect, y-scans by the probe at speciĄc z are presented in Fig. 5.18(a),
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Figure 5.17: Comparison of measurement and models for samples (a) US1, (b) US2,
and (c) US3. The lines represent the results of the PN approximations and the cir-
cles represent the results of Monte Carlo simulations The red triangles connected with
dash-dotted lines represent the measured results of samples. The measured results are
calculated by integrating the y-scans at each z-position, shown as triangles.

which demonstrate a clear shift of the detected intensity in the y-direction. This
shift is caused by the probe moving at a small angle with respect to the z-axis.
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The angle is estimated as approximately θz = 0.63◦, considering the peaks move-
ment of 0.1 mm in the y-direction for a 9.1 mm travel in the z-direction. Further-
more, Fig. 5.18(b) presents the incident intensity detected by the probe in air,
which is used to normalize the measurements of samples in order to compensate
for the effect of the y-shift.

(a) (b)

Figure 5.18: (a) Probe scans in the y-direction in absence of a sample. This represents
the incident beam proĄles at the indicated z-positions inside the sample. (b) Integrated
y-scans at speciĄc z-positions, in the absence of a sample. The blue line represents the
polynomial Ąt to the measurements, to determine the incident beam intensity at all
z-positions.

Other experimental limitations associated with the measurements with the
probe are listed as follows:

1. The capillary Ąlled with quantum dots, is not exactly parallel to the x-axis
given in Fig. 5.5. Although the kinematic mount attached to the probe
holder, as shown in Fig. 5.7, is utilized to adjust the capillary angle, perfect
alignment is not always achieved. As a result, the probe positioning inside
the sample is restricted to a range between z = 0.35 mm and z = 9.75 mm,
for the z-direction. In the event that the probe approaches the boundaries
beyond these limits, the capillary may come into contact with the quartz
walls of the cuvette, potentially causing its displacement or, worse, breaking
of the capillary.

2. The stabilities of the probe holder, sample holder, and Ąber-optic cable that
connects the probe and detector are not ideal. Small variances in different
scan directions presented in Fig. 5.11 are likely caused by this. However,
even slight changes in the adjustment of these elements can lead to drastic
changes in the detected intensity. Therefore it is crucial to normalize the
measurements to the incident intensity measured under identical conditions
as the sample measurements. The measurements presented in this chapter
are conducted with utmost care to address this issue.
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3. The Ąnite dimensions of the cuvette used in our experiments differ from
ideal slab geometry, as a slab has an inĄnite xy-plane. However, the beam
diameter of our source (dbeam ≈ 1 mm) is signiĄcantly smaller than the
inner xy-dimensions of the cuvette (42.5 × 30 mm), rendering this effect
negligible.

4. Although the measurement of Φ(z) along the xy-plane is carried out
through y-scans of the samples, the scans are limited to the range y = −6
mm to y = 6 mm with the beam centred at y = 0. This range is selected
due to low signal strength beyond this range, and to shorten the complete
measurement time of samples. The range restriction leaves 18 mm of un-
measured space in the y-axis. Additionally, during the sample scans, the
capillary tip is situated at a distance of approximately x ≈ 11 mm from
the cuvetteŠs bottom. Consequently, the probe scans a rectangular area
of dimensions 34 x 12 mm within the cuvette. Hence, the portion of the
scanned area to the full xy-plane within the sample is Ascan = 32%. How-
ever, the measurement of Φ(z) cannot be directly scaled with Ascan because
the experiments employ a collimated beam as the source and detect most
of the light within the cuvette, as evident by the low signal strength beyond
the scan range (see Fig. 5.13). However, it is worth noting that the signal
outside the scanned range is higher for undyed samples, owing to the lower
absorption by the scatterers compared to the dyed samples. Therefore,
the scaling difference between the measured and modelled Φ(z) for undyed
samples is greater than the one for dyed samples.

5. The quantum dots inside the capillary have a certain quantum yield to
convert absorbed blue light to emitted red light. This quantum yield is
provided by the manufacturer as η ≥ 64%. Furthermore, the manufac-
turer provides the molar extinction coefficient ϵ = 5.7 × 106 cm−1M−1,
and the molar concentration c = 1.0 ± 0.1 µM. Using the inner diame-
ter of the capillary that holds the quantum dots dinner = 100 µm and the
Beer-Lambert-BouguerŠs law, we calculate the extinction Eqdots to be

Eqdots = ϵcdinner = 57, (5.5)

and the optical thickness bqdots to be

bqdots = Eqdots ∗ ln(10) = 131.2. (5.6)

6. The presence of the probe inside the sample has an impact on light trans-
port within the medium. In order to investigate this effect, the unscat-
tered transmission Tu of the probe is measured 1, while scanning in the
y-direction at various z-positions inside sample Ref (see Table 5.1). The
obtained results are illustrated in Fig. 5.19. Based on Fig. 5.19, the ex-
tinction coefficient of the probe is derived as µext = 4.8 mm−1 when the

1This measurement is conducted with a similar capillary as the one used in the measurements
of Φ(z).



92 Probing the position-dependent energy fluence rate in 3D scattering samples

probe is situated at the center of the beam. The µext represents the sum
of absorption and scattering by the probe, hence, the absorbed portion of
light by the probe and quantum dots inside, cannot be estimated by this
measurement alone.

Figure 5.19: Unscattered transmission Tu of the probe scanning the y-direction at
various z-positions inside sample Ref, see Table 5.1.

7. Part of the emitted light propagates through the capillary and emerges
from its top, where it is coupled to the Ąber-optic cable of the spectrometer
via a connector manufactured in the workshop of the University of Twente.
This connector, visible in Fig. 5.7, introduces a distance of approximately
dcap−Ąber ≈ 5 mm between the capillary and the Ąber. Assuming that the
light emanates from the capillary with a solid angle of 2π and taking into
account the core diameter of the Ąber-optic cable (600 µm), straightforward
calculations yield a coupling efficiency of ηcoup = 2% between the capillary
and the Ąber.

All the experimental limitations listed above contribute to the deviation of
measurement results to the model predictions in scale, hence the parameter K
in eqn. 5.4 is introduced to capture these effects.

5.4 Summary

In this chapter, we present a comprehensive analysis of the experimental mea-
surements of the position-dependent energy Ćuence rate of samples. The analyt-
ical P1 and P3 approximations to the radiative transfer equation predict inaccu-
rate results for these samples, which are various dilutions of dyed and undyed
polystyrene microsphere suspensions. The albedo and anisotropy parameters for
the dyed samples are extracted from experiments and Monte Carlo simulations,
while Mie calculations are used to determine the parameters for the undyed sam-
ples. A thin capillary Ąlled with quantum dots is used in the experiments as a
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probe to measure the Ćuence rate inside the sample, and the results are compared
to analytical models and Monte Carlo simulations. We provide a detailed account
of the experimental limitations that prevent an absolute measurement, and an ex-
act match with the models. Notably, the P1 and P3 approximations fail to match
the observed trends in the position-dependent Ćuence rate, as anticipated. In
contrast, the Monte Carlo simulations and the P3 + δE(4) approximation, which
do not yield unphysical results for the samples under consideration, exhibit a
relatively good agreement with the measured trends of the Ćuence rate.





6 Probing position-dependent

energy density in quasi-2D

disordered arrays of silicon

micropillars

6.1 Introduction

So far in this thesis we have studied the light transport through three dimen-
sional (3D) random media containing spherical scatterers, with a focus on pre-
dicting and measuring the position-dependent energy density, which is relevant to
many applications as outlined in chapters 3 and 5. However, numerous other ap-
plication domains involve samples that contain scatterers with anisotropic shapes,
such as biological tissues [132Ű135], forests [136Ű140], atmospheric dust [141, 142],
and nematic liquid crystals [143Ű146]. The scatterers in these samples are often
assumed to be cylinders. To describe the light transport in anisotropic scattering
media, mostly the anisotropic diffusion theory [144, 147Ű149] or Monte Carlo
simulations of radiative transport [133, 150Ű152] are used in the literature.

In this chapter we perform a study of the transport of light in quasi-2D ensem-
bles of micropillars, made from silicon (Si) that have a shape that is as cylindrical
as possible. These samples are especially attractive for localization studies, since
they have high refractive index contrast between the scatterers and the medium,
hence strongly scattering [148, 153]. Furthermore, they are fabricated in a man-
ner that allows good control of shape and orientation of the scatterers (see sec-
tion 6.2). In 2D random medium with such properties, observation of Anderson
localization is predicted to be possible, however, the size of the cylinders and the
wavelength of the incident light should be optimized for that purpose [153].

For perspective, Ągure 6.1 provides an overview of exemplary scattering media
from literature with anisotropically shaped scatterers, in terms of their orienta-
tion of the scatterers deĄned below, and the refractive index contrast ∆n between
scatterers and their surrounding medium deĄned as

∆n ≡ ♣nscat − nsur♣, (6.1)

where nscat and nsur are the refractive indices of the scatterers and the sur-
rounding medium, respectively. The refractive indices provided are either taken
directly from the corresponding reference (with respect to the wavelength of light
used in the corresponding study), or estimated for wavelength λ = 1064 µm. We
deĄne ⟨cos ζ⟩ to be the average cosine of the angle ζ between the long axes of the



96 Probing position-dependent energy density in quasi-2D disordered arrays of silicon

micropillars

anisotropically shaped scatterers, to represent the average orientation of scatter-
ers. Therefore, ⟨cos ζ⟩ = 1 means the scatterers are parallel, and ⟨cos ζ⟩ ≈ 0
means there is no apparent general orientation. From this comparison it is ap-
parent that our samples are in the well-aligned limit, and push the index contrast
beyond state of the art, with the additional feature compared to GaP that our
scatterers have a well-deĄned geometry that makes them readily amenable for
modelling.

Figure 6.1: Exemplary scattering media with anisotropically shaped scatterers, as a
function of orientation ⟨cos ζ⟩ and refractive index contrast ∆n, which are deĄned in
the text. Si pillars represent the samples used in this chapter. The data for Porous
GaP [148], dry and wet wood [154], Ąbers in tendon [155] and atmospheric dust [141] are
estimated from the respective references. *For liquid crystals, the anisotropic refractive
index and an accepted range of order parameter S deĄned in reference [145] is used for
x and y-axes, respectively.

Figure 6.2 shows an illustration of a sample with randomly positioned and
parallel oriented cylindrical scatterers, that is illuminated by a light beam with
intensity I0 and incident direction z. When the direction of incident light aligns
perpendicular to the long axes of the cylinders, the light is scattered only in the
two-dimensional (2D) xz-plane, thus, the sample is translational-invariant. This
ideal case assumes that the cylinders are long enough that the ends of cylin-
ders do not scatter light into the third dimension. Furthermore, the cylinders
are closely parallel to each other, so the light transport is conĄned in 2D. In
reality, unavoidable fabrication defects cause roughness on the surface, imper-
fect parallelism between the cylinders, and scatterer shapes that are not perfect
cylinders, all of which results in a quasi-2D sample with some light scattering
in the y-direction, shown as scattered intensity Iscat in Fig. 6.2. Since the sam-
ple is multiple scattering, this transfer into the third dimension is signiĄcant.
Nevertheless, we assume the transport in the 3rd dimension hardly affects the 2D
scattering, since it is not very likely that a lot of light travelling in the y-direction
will be scattered back in the xz-plane. In other words, we assume the transport
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mean free path of our samples in y-direction to be much larger than the sample
thickness in y-direction, ℓtr,y ≫ Ly. While the out-of-plane scattering may be
considered as loss in studies that aim to observe strong and weak localization
of light in multiple scattering media [156Ű160], for us it is a feature that we can
exploit to extract information from within the sample [161, 162]. We assume that
the intensity detected in the 3rd dimension is proportional to the energy density
in the 2D xz-plane.

Figure 6.2: Illustration of a sample consisting of randomly positioned cylinders with
equal dimensions and parallel long axes in the y-direction. Light with intensity I0 and
direction z is incident on the cylinders. For a non-ideal sample with defects, part of
the light scatters into the y-direction, illustrated as scattered intensity Iscat at the top,
where it is conveniently detected.

In this chapter, we report the experiments done to measure the position-
dependent energy density inside slabs with randomly positioned Si pillars. We
employ the fabrication feature of light scattering into the third dimension, and
measure the scattered light from the top of the sample to observe the energy
distribution inside the sample. We explain the fabrication of the samples, the
experimental procedures, and present the Ąrst results1 acquired from the setup.

6.2 Experimental details

The samples used in this chapter require different approaches than the micro-
sphere suspensions, both in terms of fabrication and measurement. The fabrica-
tion of Si pillars is done by etching a silicon wafer using reactive ion etching [163],

1The measurements of samples are ongoing at the time of writing this thesis. Once the
experiments are completed, the findings will be submitted to a peer-reviewed scientific
journal.
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and the energy density is probed by detecting the scattered light from the top of
the sample.

Figure 6.3: Photographs of random and ordered arrays with different scatterer den-
sities (a) before cutting out of the wafer, and (b) individual samples attached to glass
slides for experiments.

6.2.1 Sample fabrication

Patterns for randomly placed micropillars were generated by in-house Matlab
script, and a mask that Ąts 80 samples in one wafer was designed with those
patterns using CleWin software. Samples are distinguished by having different
pillar radii of r = 2 µm or r = 3 µm, and having different packing fractions p,
ranging from 0.03 < p < 0.12, deĄned as

p ≡ (num. of pillars) × Vscat

Vsample
, (6.2)

where Vscat and Vsample are the volumes of one micropillar and the sample, respec-
tively. The pattern also includes samples with periodically ordered structures,
however those samples are not discussed in this thesis. All sample fabrication
was performed in the MESA+ Nanolab. Silicon wafers (110, p-doped silicon, 4
inch, 500 nm thickness) were coated with a layer of positive photoresist (Olin OiR
908-35) that was spin-coated at 4000 rpm for 1 min and baked at 95 ◦C for 10
min to remove residual solvent. An EVG 6200NT mask aligner was used for the
mask exposure, for which a hard contact and an exposure of 195 mJ/cm2 were
used. The sample was then post-exposure baked at 120 ◦C for 2 min before being
developed in OPD 4262 positive resist developer. The sample was then rinsed
with deionised water in a quick dump rinser until a resistivity of 10 Mohm was
reached. Etching was performed using a SPTS Pegasus reactive ion etcher, using
C4F8 as the protection gas, SF6 as the etching gas and O2 for plasma cleaning
to remove leftover Ćuorocarbon. A TePla300 plasma cleaner using O2 was used
to remove any leftover photoresist using a preset programme. Finally, individual
samples are cut from the wafer using a diamond scriber.
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Figure 6.4: SEM image of a sample that has randomly positioned pillars with radius
r = 3 µm.

A photograph of the full batch of samples before being cut is given in
Fig. 6.3(a), where the colorful reĆections from the samples with periodically
ordered pillar positions are observed. The random samples reveal a silvery ap-
pearance. Figure 6.3(b) shows individually cut samples that are placed on glass
substrates by double-sided carbon tape, which is done to conveniently attach
them to a home-made sample holder during experiments. Fig. 6.4 shows the
SEM image of a sample with disordered pillars, that have radius r = 3 µm,
where the rough surface of the pillars and thin tunnels parallel to the long axes
of the pillars are visible. These tunnels are present due to the errors in the
lithography process, and they do not reach the bottom of the pillars. The pillar
heights are approximately h = 54 µm.

6.2.2 Optical setup

Figure 6.5 presents a schematic of the optical setup used in the experiments
reported in this chapter. An infrared (IR) Nd:YVO laser (λ = 1064 nm) is used as
the primary light source and a HeNe laser is used for alignment purposes. The IR
laser is expanded 4 times by the reĆective beam expander (Thorlabs BE04R/M)
to create the desired focus spot size by the cylindrical lens (f = 100 mm) on the
front surface of the sample. The cylindrical lens focuses the incoming beam in
the y-direction, while keeping the initial size in x. The line focus is formed on
the front surface of the sample (see Fig. 6.7(a)), where the long axis of the pillars
are aligned with the y-axis. The measured beamwidth (1/e2) in the y-direction
for the IR beam at various z-positions around the focus spot is shown in Fig. 6.6.
From these measurements, the y-beamwidth is determined to be d0y = 50.5±0.6
µm and the Rayleigh length is zR = 2.4 mm. This beamwidth ensures that
≈ 86% of the incident beam is within the pillar height h = 54 µm. Within the
Rayleigh length zR inside the sample, which has its front surface at the focus
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spot, we assume all the directional vectors of the laser are parallel to z-direction.
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Figure 6.5: Schematic representation of the experimental setup. The Nd:YVO laser is
the primary light source and the HeNe laser introduced with the Ćip mirror is used for
alignment purposes. The beam expander expands the beam 4 times. LS1 and LS2 are
white light sources that are integrated to the beam paths by beam splitters (BS). The
cylindrical lens focuses the incoming beam on the front surface of the sample, where
the long axis of the pillars are aligned with the y-axis. The front camera views the front
surface of the sample. The scattered light is collected by the objective from the top of
the sample, and detected by the top camera.

Figure 6.6: Measured beamwidths of IR laser around the focus position z = 0. A
parabola is Ąt to the data to estimate the Rayleigh length zR.
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The iris placed after the cylindrical lens blocks stray light and decreases the
spot size in the x-direction to make sure only the area with pillars is illuminated,
as illustrated in Fig. 6.7(a). The front camera (Guppy Pro F125B) and lens are
used to observe the focus spot on the front surface of the sample, to ensure correct
positioning of the sample. The sample is attached to a holder that incorporates
an assembly of linear stages, that allow movement in three dimensions. When a
sample is mounted on the holder for measurement, it is positioned at the focus
spot using real-time images acquired by the front camera. LS1 and LS2 are
white light sources that are integrated to the beam paths by beam splitters, to
illuminate the front and top surface of the sample for alignment purposes. The
objective (NA = 0.25) and the top camera (Stingray F145B) are used to detect
the scattered light from the top. The rectangular area, hereby referred to as
a panel, viewed by the top camera is illustrated in Fig. 6.7(b). Many panels
are measured along the x-axis of each sample to obtain an average result of the
samples. The top detection part of the setup, that is the objective, LS2, and the
top camera, is attached to linear stage assembly that is capable of moving in three
dimensions, which allows scanning the top surface of the sample. Monochromatic
images of the rectangular area viewed by the top camera are captured using
Vimba Viewer software.

y

2 mm

z
y

x
627 μm

470 μm

z

x

(a) (b)

Figure 6.7: Illustration of (a) the front view of the sample with representative elliptical
incident beam shape in red, and (b) the top view of the sample with the detected region
highlighted by the red rectangle.

6.3 Results and discussions

Fig. 6.8 shows example images captured by the top detection part of the setup.
The sample shown has a packing fraction p = 0.06 and pillar radius r = 2 µm.
Fig. 6.8(a) is the image of the sample when it is illuminated by the LS2 from the
top (xz surface), and Fig. 6.8(b) is the image of the out-of-plane scattered light
from the sample when the IR-laser is incident from the front side (xy surface).
It is immediately observed from Fig. 6.8(b) that the IR light becomes extinct
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within a short distance from the edge of the sample.

Figure 6.8: Captured images of a panel on a sample with packing fraction p = 0.06
and pillar radius r = 2 µm, by the top camera. (a) Microscopy image illuminated with
white light. (b) Out-of-plane scattered light, with IR laser focused on the front surface
of the sample.

The intensity of the light that is scattered out-of-plane, is measured at various
panels along the x-direction on the sample, as shown in Fig. 6.7. Figure 6.9 shows
measurements on one sample at three different panels, which mainly differ in
intensity value. The labelling of panel numbers runs from 1 to 20, and consecutive
panels overlap due to the limited size of the sample. We do our analysis on panels
that do not overlap and are close to the middle of the sample, such as the three
panels presented in Fig. 6.9. It is observed from Fig. 6.9, that the detected
intensity is lower for panel 5 which is close to the bottom edge of the sample.
This is likely due to the intensity of the incident beam being less towards the top
and bottom edges of the sample. Another possible reason for the difference in
detected intensities is the imperfect mounting of the sample, which could have a
slight tilt over the z-direction, that would vary the incident intensities for different
panels. The samples are mounted with utmost care to prevent this systematic
tilt error, and only panels close to the middle of the samples are selected for the
analysis. The measured intensity at these panels are averaged to get the position-
dependent diffuse average intensity Udiff(z) of the sample that is proportional to
the diffuse energy density udiff(z). Udiff(z) here is a relative quantity, as we
detect a portion of the absolute quantity, limited by the systematic errors and
capabilities of the experimental setup. Furthermore, the tail on the left side
of the edge of the measured curves, potentially includes information about the
diffuse reĆection from the sample, however, measurements from the front surface
would provide better understanding on the reĆection of the samples. This work
focuses on the z-dependent energy density distribution inside the sample, and
reĆection measurements are left as an outlook.
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Figure 6.9: Intensity as a function of z-position, measured at three non-overlapping
panels on the sample with pillar radius r = 2 µm, and packing fraction p = 0.09. The
edge of the sample is shown as the black dashed line at z = 0 µm, and the gray area
around it represents the error of the estimated edge position.

(a) (b)

Figure 6.10: (a) Measured intensity as a function of z-position on the sample, for a
sample placed in various y-positions. ysamp = 0 is the standard sample position, where
the focus spot is within pillar length. (b) MagniĄed view of the intensity peaks to
highlight the differences between measurements. The pillars on the sample have radius
r = 3 µm, and the packing fraction is p = 0.12. The edge of the sample is shown as
black dashed line at z = 0 µm, and the gray area around it represents the error of the
estimated edge position.

Ensuring precise placement of the sample at the focus spot requires careful
alignment, and any deviation from this position leads to systematic measurement
errors. Figure 6.10 shows the effect of wrong sample positioning in the y-direction,
on the measurement results. The sample reported in Fig. 6.10 has randomly
positioned pillars with radius r = 3 µm, and a packing fraction p = 0.12. The
sample is placed in different y-positions, denoted as ysamp, around the focus spot
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of the IR laser. The IR beam hits the bulk Si substrate at the bottom of the
pillars for ysamp = 20 µm to ysamp = 30 µm. The light then reĆects from the
substrate and introduces a sharp peak around 5µm < z < 10µm to the detected
intensity, close to the left edge of the sample as observed in Fig. 6.10(b). For
sample placed at ysamp = −30 µm, it is observed that part of the IR beam misses
the pillars and travels in z without interacting with the sample. This part of
the light is not detected, thus, for ysamp = −30 µm the measured intensity is
reduced. For the range −20 µm ≤ ysamp ≤ 10 µm, the variations in intensity are
small, as the majority of the incoming light scatters from the intended parts of
the sample.

On the other hand, Fig. 6.11 shows the effect of sample positioning in the z-
direction on the measured intensities. The sample is positioned as far as zsamp =
±50 µm and no signiĄcant difference is observed in measured intensity. The
results shown in Fig. 6.11 agree with our beamwidth measurements, since the
tested distances from the standard position zsamp = 0 µm are much less than the
Rayleigh length zR.

(a) (b)

Figure 6.11: (a) Measured intensity as a function of z-position on the sample, for a
sample placed in various z-positions. zsamp = 0 is the standard sample position, where
the focus spot is at the sample front face. (b) MagniĄed view of the peaks to highlight
the small differences between measurements. The pillars on the sample have radius
r = 3 µm, and the packing fraction of the sample is p = 0.12. The edge of the sample
is shown as black dashed line at z = 0 µm, and the gray area around it represents the
error of the estimated edge position.

6.3.1 Density dependence

Fig. 6.12 shows the measured position-dependent intensity for samples with
pillar radius (a) r = 2 µm and (b) r = 3 µm, with a range of packing fractions
up to p = 0.12. In both Fig. 6.12(a) and (b), an increase in peak intensity is ob-
served as the packing fraction increases. Furthermore, the intensity distribution
is broader for the samples with less scatterers, as the light can penetrate those
samples deeper than the denser ones (see Fig. 6.14). Both of these observations
agree with the expectations from multiple-scattering samples, as for denser sam-
ples the diffuse energy density would be concentrated at z ≈ ℓtr which results in
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a higher and sharper peak, while for less dense ones, it will spread more in z and
reach deeper in the sample. Defect regions that contain either dust particles on
the sample or broken pillars, present themselves in measurements as small peaks
in intensity. The most visible one in Fig. 6.12(a) is around z = 200 µm for sample
with p = 0.12, and it is caused by a dust particle. It is hard to distinguish the
peaks caused by defect regions for samples with low packing fraction, as clustered
regions of scatterers also result in similar proĄles in the measured intensity. For
these samples, we used captured images with white light illumination as shown
in Fig. 6.3(a). No defect region was observed within the analysed panels of sam-
ples presented Fig. 6.12, except for the one mentioned above for the sample with
r = 2 µm and p = 0.12.

𝑟 = 3 μm
(a) (b)

𝑟 = 2 μm

Figure 6.12: Measured intensity as a function of z-position. (a) Measurements of
samples that have a pillar radius r = 2 µm, and various packing fractions. (b) Mea-
surements of samples that have a pillar radius r = 3 µm, and various packing fractions.
The edge of the sample is shown as black dashed line at z = 0 µm, and the gray area
around it represents the error of the estimated edge position. Intensities shown here
are divided to the exposure time of each corresponding measurement.

Following references [2, 11], we estimate the transport mean free path ℓtr of the
samples to be on the same order of the distance between the measured Udiff(z)
peak and the front surface of the sample. Fig. 6.13 shows the extracted ℓtr from
measurements and approximated ones from Mie calculations, for samples with a
range of p. The Mie calculations for a single cylinder with incident unpolarized
IR light provide the scattering cross section σscat and anisotropy g of cylinders
with r = 2 µm and r = 3 µm, which we use to calculate the mean free paths.
Fig. 6.13 shows our extracted ℓtr values agree well with the approximated ones, as
they are in the same order of magnitude and show similar trend. The differences
are attributed to the systematic errors in our experimental setup and to the fact
that our pillars are not perfect cylinders due to the fabrication defects. However,
the measured ℓtr for both sample types are very similar, which is not expected
for samples with different pillar radii. This result can also be attributed to
the fabrication defects. Moreover, we only present a rough extraction of ℓtr by
considering the maximum point of the intensity peaks, for averaged results over



106 Probing position-dependent energy density in quasi-2D disordered arrays of silicon

micropillars

only three panels on the samples. The low number of panels are due to the
limitation of the sample size, as we could only get 3 non-overlapping panels.
Consideration of overlapping panels cause enhancement of overlapped regions in
the Ągures, which gives false results.

Figure 6.13: Transport mean free path ℓtr as a function of the sample packing fraction
p. Measured ℓtr are estimated from measurements of samples with pillar radius r = 2 µm
and r = 3 µm. Approximated ℓtr are obtained by using the single scatterer properties
estimated from Mie calculations for single cylinders with incident unpolarized light.
The uncertainties of the extracted results are the variance of the edge position for their
respective samples.

𝑟 = 3 μm(a) (b)𝑟 = 2 μm

Figure 6.14: Normalized intensity as a function of z-position of samples with (a) pillar
radius r = 2 µm and (b) r = 3 µm, and various packing fractions. In (a,b) the edge
of the sample is shown as black dashed line at z = 0 µm, and the gray area around it
represents the error of the estimated edge position. The black dotted line is at the half
point of the curves.

To better understand the effect of packing fraction on the depth of travel inside
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the samples, we normalize the measured intensity to 1, and look at the width
of the normalized curves. Fig. 6.14(a) and (b) present the normalized position-
dependent intensity of the same measurements shown in Fig. 6.12. Fig. 6.14
highlights the broadening of the intensity distributions with decreasing packing
fraction. The full width at half maximum of the measured intensity curves as a
function of packing fraction are given in Fig. 6.15, which shows the sample with
larger pillar radius have wider peaks in general. This observation agrees with
our expectations, since larger pillar radius would mean a larger scattering cross
section. In addition, considering that the scatterers are anisotropic, this leads to
more diffuse light to be detected deeper inside our sample.

Figure 6.15: Full width half maximum (FWHM) as a function of packing fraction
p, of the measured position dependent average intensity curves presented in Fig. 6.14.
Measurements for samples with radii r = 2 µm and r = 3 µm are shown, following
Fig. 6.14.

6.4 Summary

In this chapter, we present an experiment to probe the position-dependent
energy density inside slabs with randomly positioned silicon (Si) pillars. The
pillars are oriented parallel to each other, and are illuminated by IR laser that
has a direction perpendicular to the long axis of the pillars. Fabrication defects
that cause non-perfect pillars, allow us to monitor the energy distribution inside
the samples by measuring the out-of-plane scattering. We infer the position-
dependent average intensity, hence, the energy density inside the samples, from
the measured intensities that are proportional to both quantities. We explain
the fabrication of the samples, the experimental procedures, and present the
initial results. These results agree with expectations of such anisotropic, multiple
scattering samples, and provide a good initial understanding of our samples.





7 Summary and outlook

In this thesis, we study the light transport through photonic scattering media,
that consists of anisotropically scattering and absorbing scatterers. We explore
the regions where the common approximations of the transport theory fail to the
point of giving unphysical results, and we perform experiments to measure the
position-dependent energy density inside samples that are in these regions.

In Chapter 1 we introduce the topic of light scattering, from single- to multiple-
scattering, and describe the industrial scattering regime. We also introduce the
transport theory, that we use to describe the light transport theoretically. This
chapter ends by giving the outline of the thesis.

Chapter 2 reviews the theory of integrating spheres, discusses the substitution
error and how it can be solved using double-beam measurements. Experimental
measurements are presented, with a 2% error found between single-beam and
double-beam measurements. This error is small enough to neglect and the sub-
sequent integrating sphere experiments in this thesis proceeded with single-beam
measurements.

Chapter 3 studies the P1, P3, and P3 + δE(4) approximations to the radiative
transfer equation to model the light transport in photonic scattering media. The
unphysical ranges of these approximations are deĄned in terms of four key param-
eters; the albedo a, the anisotropy g, the optical thickness b, and the refractive
index contrast ∆n2. Relative error maps are provided by comparing the approxi-
mations to Monte Carlo simulations. The results show that the P1 approximation
is not suitable to extract the transport parameters or the position-dependent en-
ergy density unless the sample only scatters isotropically and elastically. The P3

and P3 + δE(4) approximations are generally more reliable, except for samples
with strong absorption or extreme anisotropy. In the forward scattering range,
the P3 + δE(4) approximation showed the best agreement with the Monte Carlo
simulations. The results provide a guideline for the applicability of these ap-
proximations to interpret experiments on light transport in photonic scattering
slabs.

Unphysical ranges and relative error maps of alternative methods to solve
the radiative transfer equation, be it by higher order PN approximations, or by
other numerical methods, could be interesting to research. The adequacy of the
complexity and the computation time of solutions can differ for each application,
and knowing the validity ranges of the methods is crucial. Furthermore, it is also
interesting to investigate these methods for different light sources than plane
waves with perpendicular incidence to the sample surface. Different angle of
incidences and emitters inside the samples are examples to this.

In Chapter 4 we provide the theoretical background for Chapters 3 and 5.
The key parameters in transport theory are explained, and the derivations and
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solutions of the P1, P3, and P3+δE(4) approximations are provided. The effect of
internal reĆections, which are present in the experiments, and alternative phase
functions to the Henyey-Greenstein function are discussed.

Chapter 5 presents a detailed analysis of experimental measurements of the
position-dependent energy Ćuence rate Φ in 3D samples containing anisotropi-
cally scattering and absorbing spherical scatterers. A thin capillary Ąlled with
quantum dots is used as probe, to detect the position-dependent Φ, and the ex-
perimental observations are compared to analytical approximations and Monte
Carlo simulations. A comprehensive account of the experimental limitations that
prevent an absolute measurement, and an exact match with the models, is pro-
vided. Notably, the P1 and P3 approximations fail to match the observed trends
in Φ, whereas the Monte Carlo simulations and the P3 + δE(4) approximation,
exhibit a relatively good agreement with the measured trends of Φ. Continua-
tion of the research conducted in this chapter should start with improving the
instabilities and limitations of the measurements,that are listed in Chapter 5.
Utilization of a larger integrating sphere with a smaller port fraction, but larger
port area to capture all the transmitted and reĆected light, will decrease the
errors in the extraction of the (a, g) parameters of the samples. Moreover, using
well-known samples in experiments allows the extraction of the (a, g) parame-
ters and the phase function for the models from Mie calculations, provided the
refractive index and the size of the scatterers are known. A more stable design
for the probe holder, that makes sure the capillary stays vertical and efficiently
couples the emission from the quantum dots to the Ąber of the detector, would
decrease the scaling value K in eqn. 5.4. The effect of the probe inside the sam-
ple should be further characterized to determine how the light scattered by the
probe alters Φ(z) inside the sample, especially since the sample is Ąnite and in-
ternal reĆections play a signiĄcant role. Possible ways to characterize this effect
are measurements and simulations of the angular dependency of the scattered
intensity by the probe.

Finally, Chapter 6 reports the preliminary results of position-dependent quasi-
2D energy density measurements on quasi-2D samples of randomly positioned
pillars etched on a silicon wafer. The energy density is probed by measuring out-
of-plane scattering from the top of the samples, when the illumination is done by
an IR laser with direction perpendicular to the long axes of the pillars. The laser
is focused at the sample surface using a cylindrical lens, to make sure the illu-
mination is only done on the pillars and not the end points of the pillars. These
initial results agree with expectations of such anisotropic and multiple scattering
samples, however, the experiments need to be improved to draw better conclu-
sions. A specialized sample holder needs to be designed to precisely position the
samples at the desired focus spot, to prevent the positioning errors discussed in
Chapter 6. Furthermore, an objective with a larger NA would allow more of the
scattered light to be collected. A comprehensive investigation is needed to de-
crease the defects of the samples. Especially, the formation of shallow tunnels in
the middle of pillars should be prevented. These tunnels are likely caused by the
etching mask alignment. Moreover, larger samples that allow more measurements
of non-overlapping panels should be fabricated. After the experiments are im-
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proved, the new results should be compared to theoretical expectations, similar to
Chapter 5 but for samples with cylindrical scatterers. ReĆection measurements
from the front surface of the samples can help characterize the samples better,
and can be used to further compare the experimental results with theoretical
models. These type of samples are also extremely interesting for backscattering
cone measurements and localization studies.

In this thesis we studied the light transport inside anisotropically scattering
and absorbing samples, speciĄcally the position-dependent energy density in such
samples. Our results provide a better understanding of these samples, which
common approximations fail to describe the light transport, and provide a guide-
line to the applicability of analytical models as an alternative to Monte Carlo
simulations.
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In dit proefschrift bestuderen we het lichttransport in fotonische verstrooi-
ingsmedia, bestaande uit anisotrope verstrooiende en absorberende deeltjes. We
onderzoeken de gebieden waar de gangbare benaderingen van de transporttheorie
falen en onfysische resultaten opleveren. Daarnaast voeren we experimenten uit
om de positieafhankelijke energiedichtheid binnen monsters in deze gebieden te
meten.

In Hoofdstuk 1 hebben we het onderwerp lichtverstrooiing geïntroduceerd, van
enkele- tot meervoudige verstrooiing, en hebben we het industriële verstrooiings-
regime beschreven. We hebben ook de transporttheorie geïntroduceerd, die we
theoretisch gebruiken om het lichttransport te beschrijven. Dit hoofdstuk eindigt
met een overzicht van het proefschrift.

Hoofdstuk 2 behandelt de theorie van integrerende bollen, bespreekt de sub-
stitutiefout en hoe deze kan worden opgelost met dubbelstraalmetingen. Experi-
mentele metingen worden gepresenteerd, waarbij een fout van 2% wordt gevon-
den tussen enkelstraal- en dubbelstraalmetingen. Deze fout is klein genoeg om
te verwaarlozen, en de daaropvolgende experimenten met integrerende bollen in
dit proefschrift werden uitgevoerd met enkelstraalmetingen.

Hoofdstuk 3 bestudeert de P1, P3 en P3 +δE(4) benaderingen van de stralings-
overdrachtvergelijking om het lichttransport in fotonische verstrooiingsmedia te
modelleren. De onfysische bereiken van deze benaderingen worden gedeĄnieerd
in termen van vier belangrijke parameters: de albedo a, de anisotropie g, de opti-
sche dikte b en het brekingsindexcontrast ∆n2. Relatieve foutenkaarten worden
gegeven door de benaderingen te vergelijken met Monte Carlo-simulaties. De
resultaten tonen aan dat de P1-benadering niet geschikt is om de transportpara-
meters of de positie-afhankelijke energiedichtheid te bepalen, tenzij het monster
alleen isotroop en elastisch verstrooit. De P3 en P3 + δE(4) benaderingen zijn
over het algemeen betrouwbaarder, behalve voor monsters met sterke absorp-
tie of extreme anisotropie. In het voorwaartse verstrooiingsbereik vertoont de
P3 + δE(4) benadering de beste overeenkomst met de Monte Carlo-simulaties.
De resultaten geven een richtlijn voor de toepasbaarheid van deze benaderingen
bij het interpreteren van experimenten over lichttransport in fotonische verstrooi-
ingsslabben.

Het kan interessant zijn om onfysische bereiken en relatieve foutenkaarten
van alternatieve methoden om de stralingsoverdrachtvergelijking op te lossen te
onderzoeken, of het nu gaat om hogere orde PN -benaderingen of andere numerieke
methoden. De geschiktheid van de complexiteit en de rekentijd van de oplossingen
kan verschillen voor elke toepassing, en het kennen van de geldigheidsgebieden
van de methoden is cruciaal. Bovendien is het interessant om deze methoden te
onderzoeken voor andere lichtbronnen dan vlakke golven met loodrechte inval op
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het monsteroppervlak. Voorbeelden hiervan zijn verschillende invalshoeken en
emitters binnenin de monsters.

In Hoofdstuk 4 geven we de theoretische achtergrond voor Hoofdstukken 3 en
5. De belangrijkste parameters in de transporttheorie worden uitgelegd, en de
aĆeidingen en oplossingen van de P1, P3 en P3 + δE(4) benaderingen worden
gegeven. Het effect van interne reĆecties, die aanwezig zijn in de experimenten,
en alternatieve fasefuncties voor de Henyey-Greenstein-functie worden besproken.

Hoofdstuk 5 presenteert een gedetailleerde analyse van experimentele metingen
van de positie-afhankelijke energieĆuëntie Φ in 3D-monsters met anisotrope ver-
strooiende en absorberende bolvormige deeltjes. Een dunne capillair gevuld met
quantumdots wordt gebruikt als sonde om de positieafhankelijke Φ te detecteren,
en de experimentele waarnemingen worden vergeleken met analytische benade-
ringen en Monte Carlo-simulaties. Een uitgebreide uitleg van de experimentele
beperkingen die een absolute meting en een exacte overeenkomst met de model-
len voorkomen, wordt gegeven. Met name de P1 en P3 benaderingen slagen er
niet in om overeen te komen met de waargenomen trends in Φ, terwijl de Monte
Carlo-simulaties en de P3 + δE(4) benadering een relatief goede overeenkomst
vertonen met de gemeten trends van Φ. Voortzetting van het onderzoek dat in
dit hoofdstuk is uitgevoerd, moet beginnen met het verbeteren van de instabilitei-
ten en beperkingen van de metingen, zoals vermeld in Hoofdstuk 5. Het gebruik
van een grotere integrerende bol met een kleiner poortfractie maar een groter
poortoppervlak om al het doorgelaten en gereĆecteerde licht te vangen, zal de
fouten bij de bepaling van de (a, g)-parameters van de monsters verminderen. Bo-
vendien maakt het gebruik van bekende monsters in experimenten de bepaling
van de (a, g)-parameters en de fasefunctie voor de modellen mogelijk via Mie-
berekeningen, op voorwaarde dat de brekingsindex en de grootte van de deeltjes
bekend zijn. Een meer stabiel ontwerp voor de houder van de sonde, dat ervoor
zorgt dat de capillair verticaal blijft en het uitgezonden licht van de quantum-
dots efficiënt koppelt aan de vezel van de detector, zou de schalingswaarde K in
vergelijking 5.4 verminderen. Het effect van de sonde binnenin het monster moet
verder worden gekarakteriseerd om te bepalen hoe het door de sonde verstrooide
licht Φ(z) binnenin het monster verandert, vooral omdat het monster eindig is
en interne reĆecties een belangrijke rol spelen. Mogelijke manieren om dit effect
te karakteriseren, zijn metingen en simulaties van de hoekafhankelijkheid van de
verstrooide intensiteit door de sonde.

Ten slotte rapporteert Hoofdstuk 6 de voorlopige resultaten van positie-
afhankelijke quasi-2D-energiedichtheidsmetingen op quasi-2D-monsters van wil-
lekeurig gepositioneerde pilaren die geëtst zijn op een siliciumwafer. De ener-
giedichtheid wordt onderzocht door het meten van uit-plane verstrooiing vanaf
de bovenkant van de monsters, wanneer de verlichting wordt gedaan door een
IR-laser met richting loodrecht op de lange assen van de pilaren. De laser wordt
gefocust op het monsteroppervlak met behulp van een cilindrische lens om ervoor
te zorgen dat de verlichting alleen op de pilaren en niet op de eindpunten van de
pilaren plaatsvindt. Deze eerste resultaten komen overeen met de verwachtingen
van dergelijke anisotrope en meervoudig verstrooiende monsters, maar de expe-
rimenten moeten worden verbeterd om betere conclusies te kunnen trekken. Een



129

gespecialiseerde monsterhouder moet worden ontworpen om de monsters nauw-
keurig te positioneren op de gewenste focusplek en om de positioneringsfouten
besproken in Hoofdstuk 6 te voorkomen. Bovendien zou een objectief met een
grotere NA meer van het verstrooide licht kunnen verzamelen. Een uitgebreid
onderzoek is nodig om de gebreken van de monsters te verminderen. Met name
de vorming van ondiepe tunnels in het midden van de pilaren moet worden voor-
komen. Deze tunnels worden waarschijnlijk veroorzaakt door de uitlijning van
het etsmasker. Bovendien moeten grotere monsters worden gefabriceerd die meer
metingen van niet-overlappende panelen mogelijk maken. Nadat de experimenten
zijn verbeterd, moeten de nieuwe resultaten worden vergeleken met theoretische
verwachtingen, vergelijkbaar met Hoofdstuk 5, maar voor monsters met cilindri-
sche deeltjes. ReĆectiemetingen van het vooroppervlak van de monsters kunnen
helpen om de monsters beter te karakteriseren en kunnen worden gebruikt om de
experimentele resultaten verder te vergelijken met theoretische modellen. Der-
gelijke monsters zijn ook uiterst interessant voor metingen van terugverstrooiing
en lokaliseringsstudies.

In dit proefschrift hebben we het lichttransport bestudeerd binnenin monsters
met anisotrope verstrooiing en absorptie, speciĄek de positie-afhankelijke ener-
giedichtheid in dergelijke monsters. Onze resultaten bieden een beter begrip van
deze monsters, waar gangbare benaderingen falen om het lichttransport te be-
schrijven, en geven een richtlijn voor de toepasbaarheid van analytische modellen
als alternatief voor Monte Carlo-simulaties.
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