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Summary

Coronary computed tomography angiography (CCTA) is conducted by inject-
ing an intravenous iodine based contrast material into the bloodstream to high-
light the lumen of the coronary arteries. This allows anatomically assessment
of the geometrical characteristics of obstructive atherosclerotic plaques, i.e.
stenoses. This CCTA can be used to identify the severity of a stenosis and it
helps to achieve decisions on clinical intervention. However, CCTA does not
provide any information about hemodynamic characteristics such as flow or
pressure drops across the stenosis that are better variables to base decisions
on.

Over the past years, fractional flow reserve (FFR) has been used in clin-
ical decision making when treating coronary artery disease. FFR is defined
as the ratio between the pressure distal to the stenosis and the reference aortic
pressure under conditions of maximal flow induced by a vasodilator. Measur-
ing FFR requires fluoroscopic guided invasive catheterization and the inser-
tion of a pressure wire to a location in the vessel distal to the lesion. How-
ever, the same metric can be obtained by using computational fluid dynamics
(CFD) models. These non-invasive CFD models are created by segmenting a
computational mesh of the coronary circulation from the CCTA together with
boundary conditions based on scaling laws utilizing patient specific geometry.
Although these CFD models have proven to provide a good diagnostic value
an improvement could be achieved by inferring the hemodynamic and geo-
metrical information embedded in the contrast intensity found in the CCTA
image.

During CCTA at the entrance of the coronary circulation (aorta), a rise
and decay of the intravenous contrast concentration over time can be indi-
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rectly measured via dynamic image acquisition. This rise and fall describes
the arterial input function (AIF). The contrast material is transported by the
coronary blood flow (CBF) through the coronaries. The combination of AIF,
CBF and coronary geometry results in a contrast agent distribution visible on
the CCTA image. The information of this distribution can be described by the
advection diffusion equation. By solving this equation a direct link between
all the parameters is obtained. This enables to solve the inverse problem of
extracting CBF based on the measured contrast intensity. Existing methods
show mixed success caused by oversimplifying the advection diffusion equa-
tion and because the intensity measured on the CCTA image is not always
well correlated with the real concentration of the contrast material. In this
thesis, we propose an improved method for extracting CBF called advection
diffusion flow estimation (ADFE) by improving the solution of the advection
diffusion equation.

However, to verify this new method, we need data that does not contain
imaging effects. Clinical CCTA data sets are not suitable for verification as
the error caused by the solution used and errors induced by imaging effects
are impossible to separate. In order to circumvent this, we created software
phantom data consisting of geometries on which the transport of contrast was
simulated. The computations and creation of these simulations was done by
our spectral element method (SEM) solver described in Chapter 2. SEM uses
higher order elements combined with optimal integration which enables the
computation of situations without the use of stabilization methods of the tra-
ditional finite element method (FEM). In the result section we show the higher
convergence rate of SEM compared to FEM and discuss the ability to compute
difficult to simulate convection dominated situations. All mentioned software
phantoms in this thesis were computed by this SEM solver.

In Chapter 3, we formulated and verified the improved version of the ad-
vection diffusion equation and we derived a semi-analytical solution of the
2D axi-symmetric advection diffusion equation. The verification was done
on 2D axi-symmetric software phantoms by checking the agreement between
our semi-analytical solution and simulated concentration. This solution forms
the base for our new ADFE method. ADFE is also verified on the 2D axi-
symmetric software phantom data set by comparing computed flow with in-
ferred flow. Finally we compared ADFE against the current golden standard
called transluminal attenuation flow encoding (TAFE) and show a significant
improvement in predicted flow from ADFE compared to TAFE.

In Chapter 4, we extended ADFE to be able to compute CBF from patient
specific coronary trees. Compared to simple axi-symmetric geometries, a sec-
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ond optimization step in ADFE was necessary to ensure a robust and accurate
computation of CBF. The verification was again performed on software phan-
toms extracted from clinical CCTA data sets and the results show excellent
agreement between computed and inferred flow. In order to make sure that
the improvement of ADFE compared to TAFE also holds for complex tree
geometries, we again compared the two methods and showed that it is still
evident.

Finally, in Chapter 5, a computed tomography (CT) correction function
was derived to add the effects of blur to the semi-analytical solution embedded
in ADFE. This enables ADFE to compute flow from blurred contrast intensity
found in the CCTA image. In order to verify ADFE with this CT correction
function, a simple virtual CT method was used to add blur and noise to the
contrast data from the software phantoms of Chapter 4. Although the accuracy
of ADFE on this virtual CT data set was reduced compared to the original data
set used in Chapter 4, it is still a significant improvement compared to TAFE
and usable for clinical applications. Overall ADFE shows great potential to
become an accurate method to estimate CBF from CCTA images.





CHAPTER 1

Introduction

1.1 Coronary Artery Circulation

The main task of the cardiovascular system is to supply oxygen and nutrients
to each organ system. This is achieved by the contraction of the myocardium
(heart muscle), which causes blood flow through the arteries. These contrac-
tions are periodic and result in a pulsatile pressure and flow pattern, which is
gradually damped due to the compliance and viscous loss of the arterial sys-
tem. Consequently, most organs receive a more or less continuous supply of
oxygen and nutrient enriched blood. In order to contract, the heart itself also
needs a continuous supply of oxygen. There are two main arteries that branch
alongside the myocardium to supply it with blood - the Left Coronary Artery
(LCA) and Right Coronary Artery (RCA) (Figure 1.1). Furthermore, the LCA
is split into two main arteries - the Left Anterior Descending coronary artery
(LAD) and Left Circumflex coronary artery (LCX). Due to the relative short
distance of the coronary arteries to the aortic outflow of the heart and the in-
fluence of the myocardial contraction, coronary blood flow (CBF) is highly
pulsatile. The time averaged CBF therefore determines the final supply of
oxygen to the myocardium and thus the ability of the heart to contract suffi-
ciently.

Generally, the total amount of time averaged CBF depends on the demand
of the myocardium. A scaling law governs the relationship between the total
volume of the myocardium and total CBF (Choy & Kassab, 2008). However,
the amount of CBF through each segment of the coronary arterial tree differs



10 | 1.1. CORONARY ARTERY CIRCULATION

Figure 1.1: Coronary circulation including the arteries and veins surrounding the heart. Figure
adopted from http://healthjade.com/what-is-heart-disease.
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per individual due to varying demands for blood from different parts of the
myocardium as well as differences in coronary anatomies. The right ventricle
myocardium is responsible for the pulmonary circulation (lungs) and the left
ventricle myocardium is responsible for the systemic circulation (the rest of
the body). This means that the left ventricle needs to produce a higher blood
pressure than the right ventricle because of the larger resistance in the part
of the circulatory system it supports and consequently, needs more oxygen to
support its function. Genetic differences between people can cause drastic dif-
ferences in anatomy; however, one general classification in coronary anatomy
is right vs. left dominant circulation. In right dominant circulations, the RCA
encircles the right ventricle and even supplies parts of the left ventricle, which
reduces the size and myocardial territory of the LCX. In left dominant circu-
lations, it is the other way around. Though these are distinct classifications,
each person is different in how right or left dominant they are. All of these
differences eventually cause patient-level differences prescribing the CBF in
the coronary arteries.

The periodic contraction of the myocardium causes time-dependent or
pulsatile blood flow. During systole the myocardium contracts and the
intramyocardial pressure increases squeezing the microcirculation inside the
myocardium. This temporarily reduces the amount of CBF. During diastole
the myocardium relaxes and the intramyocardial pressure decreases and
thus, the amount of CBF increases. The amount of reduction depends on
the intramyocardial pressure, which itself is a function of the blood pressure
generated inside the ventricles. On the time-dependent scale, this constitutes
yet another contributor to differences in arterial and patient level coronary
blood flow.

1.2 Coronary artery disease

Coronary artery disease (CAD) characterized by a narrowing of the coronary
arteries can impair this demand of CBF. The process of CAD causing the ab-
normal narrowing of arteries, i.e. stenosis, is known as atherosclerosis and
occurs when fatty substances get deposited inside the arterial wall (Stary et
al., 1995). This sudden change of diameter causes an additional pressure loss
which would lower the CBF if left unaddressed. However, by relaxing the
smooth muscles inside the wall of especially the arterioles and capillaries in
the myocardial micro-circulation, less pressure difference is needed to move
blood through these downstream regions or in other words the resistance of
this region is decreased. This mechanism is typically used to regulate the
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changing myocardial oxygen demands for instance during exercising. In con-
trollable situations, the additional pressure loss by the stenosis will not exceed
the positive pressure difference gained by lowering the resistance which in-
creases the CBF back to a healthy level. When the coronary arterioles and cap-
illaries are fully dilated, the maximal hyperemic CBF is reached. The stenosis
can cause the demanded CBF to exceed the hyperemic CBF causing a deficit
of oxygen inside the myocardium. The lack of oxygen to support the heart
muscle (ischemia) is usually presented as chest pain or discomfort; however,
when not treated properly can lead to myocardial infarction (MI/heart attack)
or death (Stary et al., 1995). In the United States, CAD is the most common
type of heart disease, and about 20.1 million adults age 20 and older have
CAD (about 7.2%). This high number of patients contributes in 2 out of 10
deaths happen from CAD in adults less than 65 years old (Tsao et al., 2022).
This makes CAD one of the leading causes of death in the Western world, de-
spite years of research focus, and billions of dollars research and development
investments.

1.3 Current clinical practice

In order to diagnose CAD, coronary computed tomography angiography
(CCTA) is an important non-invasive imaging modality that has been adopted
as the first choice in many clinical guidelines when a patient shows possible
symptoms of CAD. This imaging is conducted by measuring 3D x-rays
attenuation of a patient’s heart while injecting an intravenous Iodine based
contrast agent into a patient’s circulatory system. This highlights the arterial
lumen of the coronary arteries, with the correct timing of the contrast agent.
This CCTA image is then used to visually identify the severity of the CAD
and aids in making decisions on patient treatment, and if necessary, coronary
intervention. However, this assessment does not provide any information
about the functional severity of the stenosis, i.e. the hemodynamics (blood
flow or pressure drops) within the coronary arteries, which have been shown
as important indicators when assessing the severity of CAD (Pijls et al., 2010;
Tonino et al., 2009).

An invasive metric that has become the golden standard for diagnosing the
severity of CAD is fractional flow reserve (FFR), defined as the ratio between
pressure distal to a stenosis and aortic pressure (Pijls & Sels, 2012). FFR has
been shown to improve patient outcomes when used to decide whether or not
percutaneous coronary intervention is performed (Pijls et al., 2010). Obtaining
FFR requires a fluoroscopic guided invasive catheterization procedure where
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a wire is inserted into either the brachial or femoral artery of a patient and
guided all the way up to the patient’s coronary arteries where the lesion is
present to measure the pressure drop across the lesion.

Recently, computational advances have provided the ability to compute a
non-invasive equivalent to FFR called FFRCT (Taylor et al., 2013). In order
to calculate FFRCT, the coronary geometry is extracted from the CCTA image
and computational fluid dynamics (CFD) is used to approximate solutions of
the governing equations of fluid flow. The accuracy of this approximation de-
pends not only on the spatial resolution and correct segmentation of the coro-
nary arterial lumen but also on the boundary conditions that control the CBF
through each vessel. While geometrical parameters such as coronary artery di-
ameter andmyocardial volume can be readily extracted from the CCTA image,
boundary conditions are difficult to estimate due to complex, patient-specific
physiological conditions. FFRCT results, calculated using boundary conditions
derived from anatomical information have demonstrated high diagnostic ac-
curacy when compared to FFR (Taylor et al., 2013). However, these methods
overlook the functional information that is implicitly embedded in the CCTA
image itself. Recently, there has been growing interest in inferring coronary
flows or assessing stenosis severity by analyzing the contrast intensity gradi-
ents along the coronary vessels (Bae et al., 2018; Choi et al., 2012; Fujimoto
et al., 2018; Lardo et al., 2015; Park et al., 2016; Steigner et al., 2015; Stu-
ijfzand et al., 2014). These techniques have the potential to further improve
the estimation of boundary conditions and the diagnostic accuracy of FFRCT.

1.4 Contrast gradient found in CCTA

Within the aorta, a rise and decay of the concentration of intravenously-
injected contrast can be indirectly measured via temporal image acquisition
using CCTA. This rise and decay describes the arterial input function (AIF),
being the concentration of the contrast at the level of the aorta over time.
The contrast material is transported by the coronary blood flow (CBF) into
the coronary vessels. When the CTA image is acquired before the peak of
the AIF, a linear function can be fitted through the intensities along the paths
of the arteries. The slope of this linear function is called the Transluminal
Attenuation Gradient (TAG) and in the same artery it is higher at lower flow
and lower at higher flow (Choi et al., 2012; Park et al., 2016; Steigner et al.,
2015). Computation of TAG is facilitated by the advent of 256 and 320
row detector scanners such as the Toshiba Aquilion One, GE Revolution or
Arineta Cardiographe that can image the full heart in a single cardiac cycle
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ensuring that the error due to sampling over multiple cardiac cycles can be
avoided. In recent work, TAG was computed in healthy subjects and patients
with CAD (Bae et al., 2018; Choi et al., 2012; Fujimoto et al., 2018; Park
et al., 2016; Steigner et al., 2015; Stuijfzand et al., 2014) and was found to be
not significantly different across cardiac phases in the LAD. However, these
differences were significant in the LCX and RCA. Moreover, TAG was also
found to be lower in the RCA−6.5±4.1HU/cm than in the LAD−13.7±8.0
HU/cm or LCX −12.5 ± 7.8 HU/cm (Steigner et al., 2015). Park et al. used
a phantom study to show that TAG may be affected by the secondary effect
of vessel tapering which is lower in the RCA compared to the LAD and LCX
(Park et al., 2016).

The relationship between TAG and CBF was derived by Eslami et al. by
solving the 1D advection diffusion equation. They concluded that the effects
of diffusion and Taylor dispersion could be neglected (Eslami et al., 2015).
Eslami et al. also assumed that the vessel does not change much in cross-
sectional area over the path length and that the AIF can be approximated by
means of an analytical function. Using these assumptions, they derived a cor-
relation between TAG and CBF called transluminal attenuation flow encod-
ing (TAFE) and found a reasonably good correlation between TAFE and CBF
measurements using micro spheres on 9 canine hearts (Lardo et al., 2015).
TAFE’s accuracy on clinical data was validated by Bae et al. (Bae et al., 2018),
who also introduced the TAFE correlation coefficient k to compensate for the
tendency of TAFE to underestimate flow, caused by imaging dependent ef-
fects on the contrast signal and simplification of the velocity field embedded
inside TAFE (Eslami et al., 2022). In order to validate TAFE, with the correc-
tion coefficient k, Bae et al. used CCTA data with a range of lesion severities
together with a perfusion data set for estimating k. For the patient group hav-
ing no occlusions the correlation between TAFE and the measured flow is as
high as in the perfusion study. However, the slope in the correlations in the
diseased patient groups decreased with increasing stenosis severity (1.018 for
0 % diameter stenosis, 0.832 for 1 - 49 % diameter stenosis, 0.819 for 50 - 79
% diameter stenosis and 0.541 for 70 - 99 % diameter stenosis) (Bae et al.,
2018).

The predictions of lower CBF in the rest state (TAG is computed in this
state) from the TAG and TAFE studies contradict the measurements done by
Gould et al. (Gould & Lipscomb, 1974), who measured flow and pressure
in canine coronary arteries in both rest and hyperemic states. During rest no
reduction in CBF was observed until the reduction of arterial diameter was
greater than 85%. The required CBF at rest can be attained because myocar-
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dial perfusion is regulated by dilating the coronary arterioles thereby lowering
the microvascular resistance. We hypothesize that the higher negative TAG
extracted from stenosed arteries can only be explained by a lower CBF when
the reduction of arterial diameter is severe.

There are multiple possible explanations for the difference in TAG be-
tween healthy and stenosed arteries. Our first hypothesis is that the intensity
measured on the CCTA image is not always well correlated with the real con-
centration of the contrast material. This may be due to low-pass filtering of the
measured attenuation in the CT reconstruction and the partial volume effect.
Another hypothesis is that there are dynamic effects caused by diffusion on
the contrast concentration that cannot be explained by pure advection.

1.5 Aim and thesis outline

In this thesis, a new flow estimation method based on a CCTA image is pro-
posed called advection diffusion flow estimation (ADFE) method. For ver-
ifying ADFE we use a spectral element solver which is developed to obtain
numerical approximations of the velocity and concentration field with the re-
quired accuracy. This enables approximating the contrast distribution found
in an actual CCTA image and a direct comparison of the obtained flow from
ADFE with the one used as input to the solver. This one-to-one comparison
makes it possible to quantify different sources of error compared to only val-
idating on actual CCTA images. The methodology of this spectral element
method solver is shown in Chapter 2 together with examples and verifica-
tion problems to prove proper implementation. All other chapters utilized
this solver for verification of ADFE and all these models are explained in
detail in Chapter 2. For Chapter 3 a semi-analytical solution of the 2D axi-
symmetric advection diffusion equation was derived and implemented in the
ADFE method. This was verified on numerical 2D axi-symmetric software
phantoms and finally compared to the best method currently available, i.e.
TAFE, to demonstrate its improvement. In Chapter 4, ADFE was extended
from simple axisymmetric vessels to 3D coronary trees. Similar to Chapter 3,
this tree-based ADFE was verified using patient specific software phantoms
and compared to TAFE. The imaging effects causing the non-linear mismatch
between concentration contrast agent and measured intensity are explained in
Chapter 5. By examining virtual CT images of the software phantoms used in
Chapters 3 and 4, a correction term for this mismatch was derived and verified
using ADFE.
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CHAPTER 2

Spectral element solver

Abstract

In this chapter, we provide a derivation of our spectral element method (SEM)
solver specialised for tubular shaped geometries. The necessary mathemati-
cal formulas for SEM and the spectral element formulation for the advection
diffusion and Navier-Stokes equations in both axi-symmetric cylindrical and
Cartesian coordinates are derived and verified. For meshing tubular geome-
tries element structures are explained together with how to mesh bifurcations
for tree geometries. Finally, in order to show the added benefit of SEM over a
traditional finite element method we compare them in a benchmark problem.

2.1 Introduction

In recent years, numerical methods have become more and more relevant in
the study of complex systems and are now consistently used to find approxi-
mated solutions of complex partial differential equations (PDEs) representing
a physical system. PDEs allow us to investigate biological phenomena that
are difficult to investigate experimentally. Additionally, PDEs can provide
highly detailed information computationally that is sometimes impossible to
get experimentally. This stimulates the research done in improving numerical
methods for solving PDEs to be faster, more accurate and more robust.

A popular method, which subdivides the domain of interest into elements,
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is the finite element method (FEM). In each domain, a discretization of the
function space into piecewise polynomials defined per element is used to de-
scribe an approximate solution. By connecting the elements, a large system
of equations is constructed that can be solved by appropriate direct or itera-
tive methods. The ability of the discretized function space to describe the real
solution partially determines the accuracy of the approximation. The spectral
element method (SEM) increases accuracy and convergence of the solution
by using higher-order polynomial functions combined with optimal numeri-
cal integration methods. The spectral convergence rate by increasing the or-
der of the polynomials (p-convergence) is higher than the convergence rate
achieved by adding the same amount of points by subdividing the elements
(h-convergence). However, some geometries need a certain amount of ele-
ments to be represented geometrically. This leads to a trade off between the
order of the polynomial functions and the geometric representation of the do-
main.

In this chapter, a SEM solver specific for our purpose is described in de-
tail. It is used for calculating fluid flow and solute transport. This solver is
specialised for applications in tubular shaped domains. Furthermore, it com-
putes stable solutions for problems having a high Peclet number, i.e. which
are characterized by strong advection and as a result high gradients in the so-
lute concentration field. In general, for high Peclet numbers, FEM requires
stabilisation methods to cope with the high gradients impeding the accuracy.
By utilising higher-order elements in the SEM, we avoid the need for stabili-
sation methods. To illustrate this, a comparison between linear FEM and SEM
is made in Section 2.7.

2.2 Pseudo spectral approximation

For finding an approximated solution uh of solution u the L2-error ||u− uh||
can be described by Céa’s lemma. It states that this error does not depend on
the problem itself, but only on the way u is close to the function space of uh,
or i.e. on how well u can be interpolated on this function space. This means
that improvements in accuracy and convergence can be expected when uti-
lizing higher order polynomials to describe uh. the spectral element method
uses higher order orthogonal polynomials together with optimal interpolation
and integration to maximize convergence rate of ||u− uh|| or i.e. reach spec-
tral convergence. In this study, we use a pseudo-spectral approximation based
on Legendre polynomials. The pseudo approximation refers to the usage of
Lagrange polynomials instead of Legendre polynomials. The spectral conver-
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gence is preserved when a Legendre-Gauss quadrature is used and the inter-
polation points correspond with the quadrature points. For proofs and more
details, we refer to the book of Canuto et al. (1988), Sections. 2.2 and 2.3. This
results in a linear set of equations with spectral convergence of ||u−uh|| by in-
creasing the orderN of the Legendre polynomials PN . In this section, we give
a brief description of PN and forms of the Legendre-Gauss quadrature types
used in this study. Finally, we derive the basis function based on Lagrange
polynomials for each Legendre-Gauss quadrature for a reference element and
show how to map these to a local element.

2.2.1 Legendre Polynomials

The Legendre polynomial of degreeN PN(x) is defined as the solution of the
differential equation

(1− x2)P ′′
N(x)− 2xP ′

N(x) +N(N − 1)PN(x) = 0. (2.2.1)

PN can also be calculated more easily by Bonnet’s recursion formula

PN(x) =
2N − 1

N
xPN−1(x)−

N − 1

N
PN−2(x), N = 2, 3, ... (2.2.2)

with P0(x) = 1 and P1(x) = x. Note that for calculating derivatives of PN

this formula can also be used.

2.2.2 Legendre-Gauss quadrature

The Legendre-Gauss quadrature is a fast and accurate method for numerical
integration of a definite integral by the following formula∫ 1

−1

f(x)dx ≈
N∑
i=1

wif(ξi), (2.2.3)

with f(x) a function, wi and ξi the respectively i-th weight and Gauss quadra-
ture point. Depending on the choice on having points at the boundaries x =
±1, there are three types of Legendre-Gauss quadratures, namely Legendre-
Gauss (no boundary points), Legendre-Gauss-Radau (one boundary point) and
Legendre-Gauss-Lobatto (two boundary points). Note that N involves both
the order of the Legendre polynomial and the total number of Gauss quadra-
ture points.
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Legendre-Gauss

The Legendre-Gauss quadrature has no quadrature points at the boundary. Its
quadrature points are equal to the roots of PN(x) and the weights can be cal-
culated by

wi =
2

(1− ξ2i )P
′
N(ξi)

2
for i = 1, ..., N. (2.2.4)

Legendre-Gauss-Radau

If only one point is needed at the boundaries, specifically at x = −1, then the
Legendre-Gauss-Radau is used. The quadrature points are equal to the roots
of PN−1(x) + PN(x) and the weights are equal to

wi =
1− ξi

N2PN−1(ξi)2
for i = 1, ..., N. (2.2.5)

Legendre-Gauss-Lobatto

Finally, the Legendre-Gauss-Lobatto quadrature contains both boundary
points and all quadrature points are equal to the roots of (1 − x2)P ′

N−1(x),
for N ≥ 2. The weights are equal to

wi =
2

N(N − 1)PN−1(ξi)
for i = 1, ..., N and N ≥ 2. (2.2.6)

2.2.3 Lagrange interpolation polynomials

The basis functions ϕ used in our SEM are based on a Lagrange interpolation
polynomial. In order to still achieve spectral convergence using Lagrange
polynomial, ϕ has to be defined at one of the three Legendre-Gauss quadrature
points described above. Matching the interpolation and integration points also
adds the benefit that the i-th computed Lagrange coefficient uhi is equal to the
solution at this point

uhi = uh(ξi) for i = 1, ..., N. (2.2.7)

In general for Lagrange polynomials it can be derived that when the interpo-
lation points are equal to the roots of a function f(x) that a general formula
for ϕ can be derived as

ϕi(x) =

{
f(x)

f ′(ξi)(x−ξi)
if x ̸= ξi

1 if x = ξi
for i = 1, ..., N. (2.2.8)
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For SEM a first order derivative of ϕ is also required which can be calculated
by

dϕi

dx
=


f ′(x)(x−ξi)−f(x)

f ′(ξi)(x−ξi)2
if x ̸= ξi

f ′′(ξi)
2f ′(ξi)

if x = ξi

for i = 1, ..., N. (2.2.9)

Legendre-Gauss-Lagrange

Substituting f(x) = PN(x) for the Legendre-Gauss-Lagrange results into

ϕi(ξj) =

{
0 if i ̸= j

1 if i = j
for i = 1, ..., N (2.2.10)

and

dϕi

dx

∣∣∣
x=ξj

=


P ′
N (ξj)

P ′
N (ξi)(ξj−ξi)

if i ̸= j

P ′′
N (ξi)

2P ′
N (ξi)

if i = j

for i = 1, ..., N. (2.2.11)

Legendre-Gauss-Radau-Lagrange

Substituting PN−1(x) + PN(x) for the Legendre-Gauss-Radau-Lagrange re-
sults into

ϕi(ξj) =

{
0 if i ̸= j

1 if i = j
for i = 1, ..., N (2.2.12)

and

dϕi

dx

∣∣∣
x=ξj

=


P ′
N−1(ξj)+P ′

N (ξj)

(P ′
N−1(ξi)+P ′

N (ξi))(ξj−ξi)
if i ̸= j

P ′′
N−1(ξj)+P ′′

N (ξj)

2(P ′
N−1(ξi)+P ′

N (ξi))
if i = j

for i = 1, ..., N.

(2.2.13)

Legendre-Gauss-Lobatto-Lagrange

Substituting f(x) = (1 − x2)P ′
N−1(x) for the Legendre-Gauss-Lobatto-

Lagrange results into

ϕi(ξj) =

{
0 if i ̸= j

1 if i = j
for i = 1, ..., N (2.2.14)
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and

dϕi

dx

∣∣∣
x=ξj

=


PN−1(ξj)

(ξj−ξi)PN−1(ξi)
if i ̸= j

P ′
N−1(ξi)

2PN−1(ξi)
if i = j

for i = 1, ..., N. (2.2.15)

2.2.4 Isoparametric Mapping

For utilising the Gauss quadratures and basis functions described above, a
mapping needs to be done from the local coordinates x with element points
at xi to the reference coordinates x0 with element points at ξi. The following
relationship is used to map the integration dx = dx

dx0
dx0. As for derivative the

chain rule is used d
dx

= ( dx
dx0

)−1 d
dx0

. For computing the deformation term we
utilise the same basis function for x

x =
N∑
i=1

xiϕi (2.2.16)

and derive
dx

dx0
=

N∑
i=1

xi
dϕi

dx0
. (2.2.17)

2.2.5 Higher dimensions

The extension of Section 2.2.4 to two or three dimensional problem is easily
achieved as the integration points, weights and basis functions can be written
as a tensor product which for three dimensional problems results into

wi = wxwywz,

ξi = (ξx, ξy, ξz),

ϕi = ϕxϕyϕz. (2.2.18)

For the isoparametric mapping the deformation matrix between the reference
and local element, which is called the Jacobian matrix J , needs to be com-
puted. In three dimension for mapping at (xi, yi, zi), Ji is equal to

Ji =
N∑
j=1


∂ϕi

∂x0

∣∣∣
x=ξj

xj
∂ϕi

∂x0

∣∣∣
x=ξj

yj
∂ϕi

∂x0

∣∣∣
x=ξj

zj

∂ϕi

∂y0

∣∣∣
x=ξj

xj
∂ϕi

∂y0

∣∣∣
x=ξj

yj
∂ϕi

∂y0

∣∣∣
x=ξj

zj

∂ϕi

∂z0

∣∣∣
x=ξj

xj
∂ϕi

∂z0

∣∣∣
x=ξj

yj
∂ϕi

∂z0

∣∣∣
x=ξj

zj

 . (2.2.19)
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The mapping of the integral and first order derivative can then be written as
follow

dxdydz = det(J)dx0dy0dz0,
∇ = J−1∇0. (2.2.20)

For two dimensional problems the same equations can be used where all terms
involving the z component are removed.

2.3 Spectral element formulation

In this section we formulate the linear set of equations, which are used in either
FEMor SEM, for the advection diffusion equation andNavier-Stokes equation
for both the Cartesian and axi-symmetric basis. Note that for implementing
these equations in the SEM solver, we take advantage of the fact that ϕ is equal
to the unity matrix which will reduce the number of summations in the final
equations where present.

2.3.1 Advection diffusion equation

The passive advection diffusion equation with no source or reaction term is
written as

∂C

∂t
+ v⃗ · ∇C = D∇2C. (2.3.1)

with C the concentration, t the time, v⃗ the velocity and D the diffusion coef-
ficient. In order to solve this equation we first apply the Galerkin weighted
residual method to write the strong form of this equation

N∑
i=1

N∑
j=1

∫
Ω

ϕiϕj
dCj

dt
+ ϕiv⃗ · ∇ϕjCj −Dϕi∇2ϕjCjdΩ = 0, (2.3.2)

with Cj the j-th expansion coefficient. Integration by parts is then used on the
second order term to derive the weak form and Neumann boundary condition
of the equation

N∑
i=1

N∑
j=1

∫
Ω

ϕiϕj
dCj

dt
+ ϕiv⃗ · ∇ϕjCj+

D∇ϕi · ∇ϕjCjdΩ = D

∫
Γ

ψi∇C · n⃗, (2.3.3)
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with n⃗ and ψ the normal and basis functions on surface Γ. The added∇C · n⃗
term represents the amount of flux through Γ. We then divide the domain into
K elements and on each element apply the pseudo spectral methods described
in Section 2.2. Substituting this into Equation 2.3.3, we derive the following
linear set of equations

MdC̃

dt
+KC̃ = hΓ, (2.3.4)

with C̃ a vector containing C on every mesh node, hΓ a vector containing the
Neumann boundary conditions and the following element matrices calculated
as

Me
ij =

N∑
k=1

ϕi(ξk)ϕj(ξk)wk det(Jk),

Ke
ij =

N∑
k=1

(ϕi(ξk)v⃗k · ∇ϕj(ξk)+

D∇ϕi(ξk) · ∇ϕj(ξk))wk det(Jk), (2.3.5)

where ∇ is mapped by Equation 2.2.20. For computing the full set of linear
equations, the element matrices are added up based on the connectivity of the
entire mesh.

2.3.2 Axi-symmetric advection diffusion

If we assume an axi-symmetric velocity and concentration field we can write
the advection diffusion equation in the cylindrical setting as

∂C

∂t
+ vz

∂C

∂z
+ vr

∂C

∂r
= D(

∂2C

∂z2
+

1

r

∂

∂r
(r
∂C

∂r
)), (2.3.6)

with r the radial direction and z the axial direction. Similar to Cartesian ad-
vection diffusion equation we can derive the weak form of Equation 2.3.6 as

N∑
i=1

N∑
j=1

∫
Ω

ϕiϕj
dCj

dt
+ (ϕivz

∂ϕj

∂z
+ ϕivr

∂ϕj

∂r
)Cj+

D(
∂ϕi

∂z

∂ϕj

∂z
− 1

r
ϕi
∂ϕj

∂r
+
∂ϕi

∂r

∂ϕj

∂r
)CjdΩ =

D

∫
Γ

ψi(
∂C

∂z
nz +

∂C

∂r
nr)dΓ (2.3.7)
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and also we substitute the pseudo spectral element from Section 2.2 to derive

MdC̃

dt
+KC̃ = hΓ, (2.3.8)

but now the element matrices are equal to

Me
ij =

N∑
k=1

ϕi(ξk)ϕj(ξk)wk det(Jk),

Ke
ij =

N∑
k=1

(ϕivz
∂ϕj

∂z
+ ϕivr

∂ϕj

∂r
+

D(
∂ϕi

∂z

∂ϕj

∂z
− 1

r
ϕi
∂ϕj

∂r
+
∂ϕi

∂r

∂ϕj

∂r
))wk det(Jk), (2.3.9)

with the mapping of all derivative computed by Equation 2.2.20.

2.3.3 Navier-Stokes equation

The Navier-Stokes equation for an incompressible Newtonian material is writ-
ten as

ρ(
∂v⃗

∂t
+ v⃗ · ∇v⃗) = −∇p+ µ∇ · D,

∇ · v⃗ = 0, (2.3.10)

with ρ the fluid density, v⃗ the velocity field, p the pressure, µ the fluid viscosity
andD = ∇v⃗+(∇v⃗)T the viscous stress tensor for a Newtonian fluid. Similar
to the advection diffusion equation we discretize both v⃗ and p by respectively
ϕ and χ

v⃗ =
Nv∑
i=1

ϕiv⃗i,

p =

Np∑
i=1

χipi, (2.3.11)
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to derive the weak form
Nv∑
i=1

Nv∑
j=1

∫
Ω

ρ(ϕiϕj
dv⃗j
dt

+ ϕiv⃗j · ∇ϕj v⃗j) + µ(∇ϕi · ∇ϕjI +∇ϕj∇ϕi) · v⃗jdΩ−

Nv∑
i=1

Np∑
j=1

∫
Ω

∇ϕiχjpjdΩ =

∫
Γ

ψi(−pI + µD) · n⃗dΓ,

Np∑
i=1

Nv∑
j=1

∫
Ω

χi∇ϕjdΩ = 0, (2.3.12)

with I the unity matrix. Finally the pseudo spectral approximation from Sec-
tion 2.2 is substituted to derive inmatrix notation the following set of equations(

M 0
0 0

)(
dṽ
dt
o

)
+

(
K BT

B 0

)(
ṽ
p̃

)
=

(
hΓ
0

)
(2.3.13)

with the element matrices calculated by

Me
ij = ρ

N∑
k=1

ϕi(ξk)ϕj(ξk)wk det(Jk)I,

Ke
ij =

N∑
k=1

(ρϕi(ξk)v⃗k · ∇ϕj(ξk)I+

µ(∇ϕi(ξk) · ∇ϕj(ξk)I +∇ϕj(ξk)∇ϕi(ξk)))wk det(Jk),

Be
ij =

N∑
k=1

∇ϕi(ξk)χj(ξk)wk det(Jk), (2.3.14)

and the mapping of all derivative computed by Equation 2.2.20.

2.3.4 Axi-symmetric Navier-Stokes equation

If we assume an axi-symmetric velocity and pressure field we can write Equa-
tion 2.3.10 as

ρ(
∂v⃗

∂t
+ v⃗ · ∇v⃗) = −∇p+ µ(∇ · D + (

1

r

∂vr
∂r

− vr
r2
)r + (

1

r

∂vz
∂r

)z),

∇ · v⃗ + vr
r

= 0, (2.3.15)



CHAPTER 2. SPECTRAL ELEMENT SOLVER | 29

with v⃗ = [vr, vz], ∇ = [ ∂
∂r
, ∂
∂z
] and the subscript indicating the component

of v⃗ or equations for the terms between parentheses. We can utilise the re-
semblance of these equations to the 2D form of Equation 2.3.13 to derive
a similar linear set of equations. The differences are derived by substitut-
ing

∫
Ω
dxdydz = 2π

∫
Ω
rdrdz, which result in scaling the weights with r

w∗
k = rkwk and adjusting the following matrices

Ke∗
ij =Ke

ij;w∗
k
+

N∑
k=1

µ

rk
ϕi(ξk)ϕj(ξk)wk det(Jk),

Be∗
ij =Be

ij;w∗
k
+

N∑
k=1

ϕi(ξk)χj(ξk)wk det(Jk). (2.3.16)

2.3.5 Neumann Boundary condition

Both advection diffusion and Navier-Stokes equations contain Neumann
boundary terms for respectively setting the amount of flux f⃗ = ∇C or stress
tension σ = −pI + µD at a given surface. For calculating the normal vector
n⃗ we can use a surface basis function ψ(s1, s2), with surface coordinates s1
and s2, to calculate two vectors tangent to the surface as

t⃗1,i =
N∑
j=1

∂ψi

∂s1

∣∣∣
s=ξj

xj,

t⃗1,2 =
N∑
j=1

∂ψi

∂s2

∣∣∣
s=ξj

xj (2.3.17)

and compute n⃗ = t⃗1×t⃗2
∥t⃗1×t⃗2∥

. Mapping the surface integral to the reference sur-
face element is also related to t⃗1 and t⃗2

dΓ = ∥t⃗1 × t⃗2∥dΓ0. (2.3.18)

This results in both Neumann boundary conditions at the i-th point to be equal
to

hΓ,i =
N∑
j=1

wjψi(ξj)f⃗j · (⃗t1,j × t⃗2,j),

hΓ,i =
N∑
j=1

wjψi(ξj)σj · (⃗t1,j × t⃗2,j). (2.3.19)



30 | 2.4. SOLVER

Similar derivation can also be performed for the 2D Cartesian or axi-
symmetric Neumann boundary conditions.

2.4 Solver

For solving the final set of equations we use the Generalised-alpha method
for the time integration (Jansen et al., 2000). For the Navier-Stokes equation
the Simplec method is used as a fast iterative solver (Cyr et al., 2012). For
deriving the Newton iteration the velocity inside of K is assumed to be con-
stant and at each new iteration equal to the previous iteration. Furthermore, to
guarantee the Ladyzhenskaya–Babuška–Brezzi condition we restrict the poly-
nomial order of the velocity Nv to be higher than the polynomial order of the
pressure Np. For solving the linear set of equations we either perform a LU
factorization, if we can reuse the inverse matrix, or the BiCGSTAB method if
the solved matrix changes after each iteration.

2.5 Mesher

The use of higher order hexahedron elements requires a structured mesher
compared to tetrahedral elements which can be meshed using a unstructured
mesher. This means a predefined orientation of elements or i.e. a element
structure that is repeated and deformed to fit the meshed object. For the un-
structured mesher a tessellation method is used to fill a surface mesh with
elements while ensuring proper shaped elements. This is done by iteratively
adding or removing elements to meet a certain requirement on the general
shape of the elements. Comparing the two methods it can already be con-
cluded that the structured mesher is much faster and more robust compared to
unstructured however a new element structure will need to be defined for each
new general shape, which can be time consuming. In this thesis beside the
straightforward cube or square shape meshes we define three different kind of
meshes, namely the 2D axi-symmetric mesh, 3D tubular mesh and an arterial
tree mesh.

2.5.1 2D axi-symmetric mesh

For solving differential equations in axi-symmetric coordinates special care
needs to be taken for the singularity at r = 0 caused by the 1/r term inside
the differential equation. This means that using a simple square mesh with
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Figure 2.1: Schematics of the cylindrical structure before and after transforming the square into a
circular shape. In this schematic two elements are chosen in radial direction and four in circumferential
direction.

Gauss-Lobatto elements will end up with points at this singularity. Gauss-
Radau integration in the radial direction with the boundary point at the wall
and Gauss-Lobatto in the axial direction circumvents this singularity and for
retaining connectivity only one element is therefore present in the radial di-
rection. Using this element structure an accurate solution is still achieved by
using a high order polynomial in the radial direction.

2.5.2 Tubular mesh

For a tubular mesh a circular structure needs to be defined that is repeated in
the axial direction. If we define a square between−1 and 1 in x and y direction
we can transform this square into a circle using

x = x0

√
1− y20

2

y = y0

√
1− x20

2
. (2.5.1)

When examining the inverted Jacobian of this transformation it can be con-
cluded that this will go to infinity at (x0 = ±1, y0 = ±1) or in other words
the four corners of the original square. To prevent this from happening in the
computation of the linear set of equations we place the element boundaries
at these four corners ending up with the schematic structure shown in Figure
2.1. The number of elements in the radial and circumferential directions can
be added, however increasingN in the polynomial order is more beneficial in
the convergence of the solution.
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2.5.3 Arterial tree mesh

An arterial tree mesh consists of several vessel segments merged together with
bifurcations. Our arterial tree mesh input data consists of centerline point co-
ordinates combined with normal direction, radius and distance to the previous
point for each vessel segment. By adding to each segment which two daughter
vessels are connected to its outlet, if present, we achieve the full connectivity
and geometry of the arterial tree mesh. Firstly, the individual segments are
meshed using the tubular mesher, described above, with the same amount of
elements as centerline points. These meshes can then be deformed to match
the input data. This is performed by first translating each circle to match its
center with the centerline point. Next each circle is rotated around this center
to match the respective normal and stretched or compressed to match the input
radius. If the order of the polynomial in the axial direction is higher than one
or optionally more elements are required between centerline points, a cubic
Hermite spline is used to interpolate between two centerline points. The cubic
Hermite spline uses the position and normal of two consecutive points as input
and smoothly transits between them, which ensures a smooth mesh.

For the bifurcation element structure the cross-sectional structure of each
vessel segment needs to be split in half in order to connect the parent vessel
to two daughter vessels. The inspiration for defining the bifurcation element
structure was taken from De Santis (2011). From Figure 2.1 it can be con-
cluded that the two lines (at x = 0 and y = 0) are perfectly splitting the struc-
ture in half thus resulting into four different splitting configurations. Each
segment is therefore rotated in circumferential direction to line up a possible
configuration with the least amount of rotation required to prevent highly de-
formed elements. On the bifurcation plane, which is defined by the centers of
each cross-section connected to the bifurcation, three functions indicating the
wall are defined which connect the three vessel segments. This wall function
is defined again using cubic Hermite splines. A visualisation of these func-
tions and element configurations are shown in Figure 2.2a. Next a predefined
number of elements are connected to the parent vessel on which each half of
the cross-sectional element structure runs perpendicular to its respective wall
function, which is shown in Figure 2.2b. This is repeated for the second and
third step of connecting each daughter vessel, which is shown in Figures 2.2c
and 2.2d. Finally, we can set the resolution of the bifurcation higher using a
higher order polynomial in the radial or axial direction or add more elements
in each of the three steps resulting in a smoother mesh shown in Figure 2.2e. A
zoomed out representation of the entire mesh of each step is shown in Figure
2.3.
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(a) (b)

(c) (d)

(e)

Figure 2.2: Figures show a visualisation of the meshing a bifurcation inside a LAD tree mesh. Start-
ing with Figure a showing the cylindrical meshes of each vessel segment and the bifurcation plane points
used to define the interpolation of the bifurcation wall. Next Figure b shows the mother vessel being
split into two vessels and Figures c and d connects the mother vessel to each daughter vessel. Finally
Figure e shows the same mesh but with a higher resolution, namely a fifth order in radial direction and
second order in axial direction together with three axial elements between each centerline point inside
the bifurcation 3x8 total elements. Note that in order to visualize this mesh each element was subdivided
into linear elements resulting in the non-equidistantly spacing between points.
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(a) (b)

(c) (d)

(e)

Figure 2.3: Figures show a visualisation of the meshing of all the bifurcation inside a LAD tree
mesh. Starting with Figure a showing the cylindrical meshes of each vessel segment. Next Figure b
shows the mother vessel being split into two vessels and Figures c and d connects the mother vessel to
each daughter vessel. Finally Figure e shows the same mesh but with a higher resolution, namely a fifth
order in radial direction and second order in axial direction together with three elements between each
centerline points and inside the bifurcation 3x8 total elements.
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2.6 Software verification

We verified our spectral element solver to ensure correctness of it and its im-
plementation. A fabricated solution of the Navier-Stokes is used to test all
terms at once. This was done by assuming an infinite differentiable veloc-
ity field with a pressure field. By filling this function into the Navier-Stokes
equation a force vector f⃗ was derived and substituted to ensure that the equa-
tion still holds. For the Cartesian Navier-Stokes a 2D mesh of 2x2 elements
with a length of 4 was used to solve the fabricated solution. The following
divergence free fabricated solution was used

vx(t, x, y) = −t cosx sin y
vy(t, x, y) = t sinx cos y
p(x, y) = xy (2.6.1)

To verify the axi-symmetric Navier-Stokes, a 2D axi-symmetric mesh of 4
elements in the axial direction with a radius of 0.5 and length of 20 was used.
The following divergence free axi-symmetric fabricated solution was used

vr(t, r, z) = tr4 cos z
vz(t, r, z) = −5tr3 sin z
p(t, r, z) = tr3z (2.6.2)

In both computations a time step of 0.01 was used and both simulations ran for
1000 steps. TheL2 norms for the Cartesian Navier-Stokes are shown in Figure
2.4 And for the Cylindrical Navier-Stokes are shown in Figure 2.5. From these
plots it can be shown that our implemented spectral element solver performs
adequately.

2.7 SEM vs FEM

For illustrating the advantages of the spectral convergence and usage of a
structured mesh we want to compare our SEM solver with a standard FEM
solver using linear tetrahedral elements. For a direct comparison we used the
solution of the advection diffusion equation described in Chapter 3 which we
calculated on a cylindrical mesh, with a length of 20 mm and a radius of 1 mm,
created based on Chapter 2.5.2. A parabolic velocity field was prescribed with
an average velocity of 10 mm/s andD was set to 0.05 mm2/s. For the spectral
element mesh the cross-sectional structure was the same as Figure 2.2.20 and
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Figure 2.4: Verification results for the Cartesian Navier-Stokes using the fabricated solution from
Equation 2.6.1. At each plot a normalized L2 norm between the computed and actual solution is plotted
against Nv .
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Figure 2.5: Verification results for the Cylindrical Navier-Stokes using the fabricated solution from
Equation 2.6.2. At each plot a normalized L2 norm between the computed and actual solution is plotted
against Nv .
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the number of axial element was set to 12. For the order of the polynomial this
was varied from 1 to 5 in all directions. As for the FEM mesh the SEM sur-
face mesh with a fifth order polynomial was used for creating a volume mesh.
This was done by using Tetgen which uses Voronoi tessellation and restricted
the volume of each element to be roughly 0.005, 0.002, 0.0007 and 0.0001
mm3. For computing the integration of FEM the Gauss quadrature was used
from Section 2.2.3. The boundary condition at the inlet was set to f(t) = t
and the other boundaries consist of a no-flux boundary conditions. The entire
solution started at zero and was simulated for 10,000 steps using a time step
of 0.001 s. The normalized L2-norms between the analytical derived concen-
tration Ca and SEM or FEM computed concentration Cd are shown in Figure
2.6 as function of the number of points inside the mesh Nn and the time the
entire computation takes ts. From these two plots it can be shown that for sim-
ulating contrast transport benefits from the usage of SEM compared to FEM.
Additionally, the improvement in accuracy did not lead to an increase of com-
putationally cost resulting in no reason to use FEM for these kind of problems.
Furthermore, D was attempted to set lower than 0.05 mm2/s for a more ad-
vection dominated problem but the FEM solver was unable to converge even
with the smallest element volume used, which was not the case for our SEM
solver.

2.8 Conclusion

In this chapter, we successfully derived our SEM solver and verified it. In
our comparison with the FEM solver we showed a large improvement in ac-
curacy with the added ability to simulate complex advection dominated prob-
lems, which were previously not possible without stabilization methods. This
provides many possibilities for utilising these detailed solutions for research.
However, as SEM requires a structured description of your mesh many com-
plex geometries will still need to rely on the standard FEM method.
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Figure 2.6: Figures show a comparison between SEM and FEM for a contrast transport problem
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CHAPTER 3

Image-based blood flow estimation using a semi-analytical
solution to the advection diffusion equation in cylindrical

domains

Abstract 1

We propose a semi-analytical solution for the advection diffusion equation in
cylindrical domains, with an aim towards extracting blood flow rates from
contrast variations in a coronary computed tomography angiography (CCTA)
image. The solution proposed in this work, in contrast with existing methods,
which only consider advection, incorporates both radial velocity variation and
diffusion. By means of a Galerkin approach using Bessel functions a solution
for a 3D concentration field at a single time point is obtained after a Laplace
transformation. This semi-analytical solution forms the basis for a novel Ad-
vection Diffusion Flow Estimation (ADFE) method. ADFE is derived, vali-
dated through numerical spectral element method computations, and shown to
exhibit improved accuracy against the state-of-the-art method for image-based
blood flow extraction.

1This chapter is based on: Bakker, L. M.M. L., Xiao, N., van de Ven, A. A. F., Schaap, M., van de Vosse,
F. N., & Taylor, C. A. (2021). Image-based blood flow estimation using a semi-analytical solution to
the advection-diffusion equation in cylindrical domains. Journal of Fluid Mechanics, 924, A18. https:
//doi.org/10.1017/jfm.2021.596
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3.1 Introduction

A variety of transport phenomena can be characterized by solving the Ad-
vection Diffusion Equation (ADE) using numerical methods such as the fi-
nite element method, but these methods are computationally costly and do
not necessarily provide insight into the underlying physics. To model trans-
port in a particular problem domain, often there is a need for analytic forms
that can be calculated rapidly and that can help elucidate the relationship be-
tween the advection and diffusion processes and associated parameters, see
e.g. Gelderblom et al. (2011). Prior work in this area concerned with deriv-
ing general solutions to the ADE include the work of Kim (2020) and Pérez
Guerrero et al. (2009). For a cylindrical shaped domain it is beneficial to con-
sider the ADE in cylindrical coordinates and this specific problem requires
special treatment in order to derive an analytical solution. Previous studies
concerning the axisymmetric cylindrical domain include the work of Chen et
al. (2011), in which constant velocities are assumed and a method for treat-
ing radial diffusion by using the Hankel transform is proposed. However, this
method cannot be applied when a radially-varying velocity field is considered.
Aris (1956) considers the 1D advection diffusion equation with added Taylor
dispersion, assuming that enough time has elapsed such that radial diffusion
can be neglected. The Taylor dispersion is included in the form of additional
axial diffusion in the 1D advection diffusion equation for which an analytical
solution can be obtained. This treatment of radial diffusion will likely be in-
valid when a time varying input concentration is present at the inlet. Namely,
radial equilibrium in the concentration will not be reached when the change
in concentration over time is significant.

In this paper we address the problem of characterizing the dynamics of
contrast agent transport in contrast-enhanced medical imaging, specifically,
coronary computed tomography angiography (CCTA), which is a diagnostic
procedure for imaging the coronary arteries that provide the blood supply to
the muscle of the heart. Advances in CCTA imaging technology have en-
abled the acquisition of high resolution images of the coronary arteries that
can be used to quantitatively assess the severity of coronary artery disease
- the primary manifestation of heart disease and the leading cause of death
worldwide. CCTA is performed in conjunction with an intravenously-injected
contrast agent, and the observed intensities in the CCTA image scale linearly
with concentration of the contrast agent. Previous clinical studies have ex-
plored the utility of quantifying intensity gradients along the vessel path as a
potentially useful indicator of physiological function that may be used to help
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diagnose disease severity (Choi et al., 2012; Fujimoto et al., 2018; Steigner et
al., 2015; Stuijfzand et al., 2014). A recently-proposed method for indirectly
quantifying coronary blood flow from the observed contrast variations along
vessels in a CCTA image is known as Translumninal Attenuation Flow En-
coding (TAFE) (Lardo et al., 2015). TAFE is based on the solution of the 1D
advection equation, where neglecting radial diffusion was justified by the ob-
servation that the radial variation in contrast appears minimal (Eslami et al.,
2015). This however is a flawed observation since the spatial resolution of
a CCTA image is not sufficient to adequately reveal variations in concentra-
tion near the vessel wall. A clinical validation of TAFE was later performed
by Bae et al. (2018), where perfusion CT was used to provide ground-truth
per-vessel flow values. In that study, the authors proposed a modification to
the original TAFEmethod by introducing an empirically-calibrated correction
constant k for scaling the TAFE flow estimation. This correction constant was
necessary to improve the correlation of the estimated flow with perfusion CT-
based flow, which suggests that the original TAFE method does not always
accurately estimate per-vessel flow. In order to obtain more accurate esti-
mates, a higher-fidelity forward model is needed. Indeed, it is possible to use
three-dimensional finite element methods to estimate the per-vessel flow by
properly adjusting relevant parameters to match the observed contrast gradi-
ents. For simulating the contrast agent transport in the coronary circulation
a highly refined mesh and multiple finite element solutions are needed for
the blood flow estimation resulting in a computationally expensive method.
Examples of these finite element-based estimation methods can be found in
(Funke et al., 2019; Lassila et al., 2013). More recently, neural network meth-
ods such as physics-informed neural nets (Raissi et al., 2020), which produce
estimates of solution fields that are constrained to follow physical relation-
ships, have been proposed to study fluid and transport phenomena. These
methods perform best when provided with highly resolved temporal and spa-
tial data. However, CCTA data typically only contains a few high-spatial-
resolution snapshot in time and this spatial data can contain significant levels
of noise and artifacts. There is a need for a general solution to the ADE that
can be obtained efficiently and that allows for the exploration of the advection
and diffusion processes governing the dynamics of the contrast agent and their
relationships to the underlying coronary blood flow.

In this paper, we propose an accurate semi-analytical solution to the ad-
vection diffusion equation for straight cylindrical vessels and axi-symmetric
radially-varying velocities and concentration profiles. We use this approach
to specifically highlight the potential deficiencies arising from certain simpli-
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fying assumptions used by the TAFE method, namely neglecting the impact
of radial velocity and diffusion, which we capture in our solution to varying
degrees of fidelity. We verify the semi-analytical solution against a numerical
solution obtained using a spectral element method. Finally, based on the semi-
analytical solution, a new method for flow estimation from contrast gradients,
Advection Diffusion Flow Estimation (ADFE), is derived and compared with
the current TAFE methodology.

3.2 Methods

3.2.1 Problem formulation

The transport of a solute can be modeled using the ADE, and for the contrast
material used in CCTA we assume that transport is passive. This is justi-
fied when the volume fraction of the solute, or concentration, is low enough.
Passive implies that the solute does not impact the material properties of the
carrying fluid (here, blood), that the velocities of the solute and the carrier are
equal and that no mixing of the two fluids occur.
The concentration of the solute C = C(x, t) is described by

∂C

∂t
+ v · ∇C = D∇2C, (3.2.1)

where v is the velocity andD the diffusion constant. We introduce cylindrical
coordinates (r, ϕ, z) with r the radial, ϕ the circumferential and z the axial
coordinate and further assume that both the velocity and concentration fields
are axi-symmetric. The ADE (3.2.1) can then be written as

∂C

∂t
+ vz

∂C

∂z
+ vr

∂C

∂r
= D

(
∂2C

∂z2
+

1

r

∂C

∂r
+
∂2C

∂r2

)
, (3.2.2)

with the subscript indicating the corresponding component of v. Finally, we
assume a steady developed velocity field where vr = 0 and vz(z, r, t) = v(r).
This results in the following equation:

∂C

∂t
+ v(r)

∂C

∂z
= D

(
∂2C

∂z2
+

1

r

∂C

∂r
+
∂2C

∂r2

)
. (3.2.3)

To make the formulation dimensionless we apply a scaling analysis using

t = T t̂, r = ar̂, z = Lẑ, v(r) = V v̂(r̂), C(t, z, r) = C0Ĉ(t̂, ẑ, r̂), (3.2.4)
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where T is the time delay between arrival contrast and reaching maximum
concentration, V is the cross-sectional averaged velocity, a is the radius, L is
a characteristic length in the axial direction and C0 is a characteristic concen-
tration. With the hat to indicate a dimensionless parameter, we derive:

St
∂Ĉ

∂t̂
+ v̂(r̂)

∂Ĉ

∂ẑ
=

1

Pe

(
1

r̂

∂Ĉ

∂r̂
+
∂2Ĉ

∂r̂2
+
( a
L

)2 ∂2Ĉ
∂ẑ2

)
, (3.2.5)

where St is the Strouhal number St = L/V T and Pe the radial Pèclet number
Pe = V a2/DL. For completeness, an estimate for each of the characteristic
physiological values during CCTA is shown in table 3.1. For slender cylindri-
cal domains, such as the coronary arteries we consider here, a≪ L, and thus
we can neglect the axial diffusion in (3.2.5), yielding

St
∂Ĉ

∂t̂
+ v̂(r̂)

∂Ĉ

∂ẑ
=

1

Pe

(
1

r̂

∂Ĉ

∂r̂
+
∂2C
∂r̂2

)
. (3.2.6)

To complete the problem formulation for Ĉ(r̂, ẑ, t̂), the equation must be sup-
plemented by the initial and boundary conditions. Initially, i.e. for t ≤ 0, no
solute is present in the fluid. At the inlet, z = 0, input solute concentration is
prescribed by the product of a time-varying function f(t) and a radial variation
g(r). At the wall, the radial flux of C is zero. This leads to the conditions

Ĉ(r̂, ẑ, 0) = 0, Ĉ(r̂, 0, t̂) = f(t̂)g(r̂),
∂Ĉ

∂r̂
(1, ẑ, t̂) = 0. (3.2.7)

The axial velocity is assumed to be fully-developed, implying that v(r) has a
parabolic profile. Choosing V = Q/πa2, the averaged velocity, with Q the
total flow rate, we obtain for the dimensionless velocity

v̂(r̂) = 2(1− r̂2). (3.2.8)

Unless otherwise noted, from here onwewill always refer to the dimensionless
formulation while omitting the hats.

3.2.2 Galerkin method

We first decompose C(r; z; t) as a series of Bessel functions according to

C(r, z, t) =
∞∑

m=1

Cm(z, t)J0(ξmr), with J1(ξm) = 0, (3.2.9)
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a 1 mm
V 100 mm/s
D 0.001 mm2/s
T 10 s
L 100 mm
C0 500 HU
St 0.1
Pe 1000

Table 3.1: Order estimates of the characteristic physiological values found in CCTA data.

where J0 and J1 are the zeroth and first-order Bessel function of the first kind
with a parameter ξm to enforce the no-flux boundary condition. Substituting
this equation into (3.2.6), we obtain

St
∂Cm

∂t
J0(ξmr) + v(r)

∂Cm

∂z
J0(ξmr) +

ξ2m
Pe
CmJ0(ξmr) = 0, (3.2.10)

and for the boundary conditions

Cm(z, 0) = 0, Cm(0, t) = f(t)gm, (3.2.11)

with gm resulting from separating g(r) in the same way as C. We employ the
Galerkin method by multiplying (3.2.10) with J0(ξnr)r and integrating the
result with respect to r from r = 0 to 1. For practical calculations we truncate
the infinite sum (3.2.9) at a finite numberN , lettingm run from 1 toN . Thus,
we derive

St
∂Cn

∂t
+

N∑
m=1

Znm
∂Cm

∂z
+
ξ2n
Pe
Cn = 0, 1 ≤ n ≤ N, (3.2.12)

with

Znm =
2

J0(ξn)2

∫ 1

0

v(r)J0(ξmr)J0(ξnr)rdr. (3.2.13)

Substitution of v(r) = 2(1− r2) results for Znm in

Znm =


1 for n = m = 1,
4
3

for n = m ̸= 1,

−8 (ξ2m+ξ2n)J0(ξm)
(ξ2m−ξ2n)

2J0(ξn)
for n ̸= m.

(3.2.14)
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3.2.3 Laplace transform

We proceed by using the Laplace transform L{Cm(z, t); t, s} = CmL(z; s) in
time to simplify (3.2.12) to

N∑
m=1

Znm
∂CmL

∂z
+(

ξ2n
Pe

+ St s)CnL = 0, CnL(0; s) = gnfL(s), n ∈ (1, N),

(3.2.15)
with fL(s) the Laplace transform of f(t). Introducing the N -vectors
CL = {CnL} and g = {gn}, and the N × N -matrices Z = {Znm} and
S = Diag{ξ2n/Pe+St s}, a diagonal matrix, we can write (3.2.15) in matrix
notation as

Z
∂CL

∂z
+ SCL = 0. (3.2.16)

The solution of the first-order ODE (3.2.16) is constructed with the eigenvec-
tors and eigenvalues of Z−1S, resulting in

CL(z, s) =
N∑
k=1

fL(s)ckAk(s)e
−Bk(s)z, (3.2.17)

where Ak is the kth eigenvector and Bk is the kth eigenvalue of Z−1S. More-
over, the coefficients ck are constants that can be determined by the boundary
conditions

c = A−1g, (3.2.18)

where A is the N × N -matrix with columns Ak, i.e. the eigensystem repre-
sentation of Z−1S. Following Abate and Whitt (2006), for the inverse Laplace
transform we approximateC by the finite linear combination of the transform
values:

C(z, t) ≈
K∑
k=1

ωk

t
CL(z,

αk

t
), (3.2.19)

with K the number of Laplace evaluations, while ω and α are defined by the
fixed Euler summation method for non-negative real values from Abate and
Whitt (2006). This approach speeds up the inversion compared to calculating
the integral with a trapezoidal rule since fewer computations ofCL are needed.
Note that as stated by Abate et al. a high numerical precision is needed for the
inverse Laplace transform.
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3.2.4 ADFE method

For the ADFE method we utilise the solution described in sections 3.2.1-3.2.3
to solve the inverse problem of recovering the flow rate Q given an observed
concentration field Cd at time of observation td. For this, ADFE only requires
cross-sectional averaged concentration data C̄d(z, td) along the vessel. Time-
dependent concentration data at the inlet of the vessel needs to be available
to construct f(t). A schematic example of such data is shown in figure 3.1.
The motivation for using the cross-sectional averaged concentration is due
to the spatial resolution of CCTA; it is typically inadequate to measure the
radial concentration distributions especially near the coronary artery walls.
For straight vessels, we can calculate the semi-analytical C̄a as

C̄a(z, t) = 2

∫ 1

0

C(r, z, t)rdr = C1(z, t). (3.2.20)

using the computed f(t) and t = td. We define the least-squares error Em

between C̄d and C̄a as follows:

Em = ||C̄d(z, td)− C̄a(z, td)||2, (3.2.21)

and compute Q that minimizes Em via an iterative minimization method. In
this work the limited memory Broyden–Fletcher–Goldfarb–Shanno Bounded
algorithm available in the SciPy ‘minimize’ function is used for the minimiza-
tion of Em (Jones et al., n.d.).

3.2.5 Spectral element solver

The reference solutions Cd used in this work are computed using 2D meshes
on which (3.2.5) with the boundary conditions from (3.2.7) and velocity field
from (3.2.8) is solved numerically by the spectral element method with high-
order Legendre polynomials as the shape functions. The integration and inter-
polation points are chosen to be the same and are the Gauss Lobatto Legendre
points in the z-direction and Gauss Radau Legendre points in the r-direction in
order to avoid singularities at r = 0 (Bernardi et al., 1999; Shen et al., 2011).
Only one high-order element is used in the radial direction to ensure connec-
tivity. For time integration the generalized-αmethod is used from Jansen et al.
(2000). The implementation is tested through benchmark problems to ensure
proper computation of solutions.
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Figure 3.1: Schematic example of the input concentration function f(t) (left) and snapshot of the
cross-sectional averaged concentration at t = 1, i.e. C̄a(z, 1), (right). The blue dots indicate specific
concentration values evenly spaced over time and serve to show the non linear relationship between
f(t) and C̄a(z, 1).

3.3 Results

To compare the semi-analytical solution with the reference solution computed
with the spectral element solver described in Section 3.2.5, we create a data
set of 48 simulations with Pe ranging from 1.67 to 1.6 × 105 and St val-
ues of [0.025, 0.0375, 0.075, 0.15]. These ranges are deliberately large in
order to verify the solution over a large parameter space. For the boundary
conditions we used a flat concentration profile g(r) = 1 and input function
f(t) = 0.5(1−cos(πt)), which is the input function used in the original TAFE
study by Lardo et al. (2015). For the computational results a time step of
0.0001 is used and the mesh consists of 200 elements with a radial polynomial
order of 30 and axial order of 2. A mesh independence test was performed to
confirm that these parameters were adequate for computing Cd.

3.3.1 Verification of the semi-analytical solution

We calculated the numerically-simulated concentration Cd and the semi-
analytical concentration Ca on the same grid points of the spectral element
mesh for the TAFE data set. To obtain Ca we used M = 8 for the com-
putation of the inverse Laplace transform. An example solution is shown
in figure 3.2, where it can be seen that near the wall a high concentration
gradient appears that changes with t and z. The relative error is defined as
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E = ||Cd − Ca||2/||Cd||2. figure 3.3 shows E as function of Pe for selected
values of N and St. Here it is seen that for increasing Pe, more terms, N ,
in the Bessel series are needed to maintain an acceptable value of E, and in
general as N increased, E decreased. The effect of St turns out to be rather
small.

3.3.2 ADFE results

To benchmark the ADFE method described in section 3.2.4, we computed the
velocity Va by both the TAFE and ADFE method and compared them against
the ground-truth velocity Vd used in the spectral element simulations. The
velocity Va computed by ADFE and TAFE as function of Pe is shown in figure
3.4. From this figure we conclude that ADFE more accurately predicts the
velocity Vd compared to TAFE, and the accuracy of the prediction increases
with increasing N . On the other hand, TAFE can greatly underestimate Vd.
Since the lack of radial diffusion has a larger impact on the concentration field
C for increasing Pe, TAFE’s accuracy declines for increasing Pe.
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Figure 3.2: Comparisons between the numerical solution Cd (markers) and the semi-analytical so-
lutionCa (lines) for the concentration field with Pe = 2667 and St = 0.15 at three time points, t = 0.6
(orange crosses), t = 0.8 (blue squares) and t = 1.0 (red circles), using the concentration input func-
tion from the original TAFE study. Part (3.2a) shows concentration profiles for the numerical solution
and the semi-analytical solution as functions of axial position at radii r = 0.0015 (left) and r = 1
(right), and part (3.2b) shows the radial concentration profiles at z = 0.2 (left) and z = 0.6 (right).
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Figure 3.3: log log plots of the relative error E = ||Cd − Ca||2/||Cd||2 at t = 1 as a function
of Pe with N = 5 (red circles), N = 20 (blue squares), N = 50 (orange crosses), N = 70 (black
diamonds), g(r) = 1 and f(t) = 0.5(1− cos(πt)). Relative errors corresponding to four different St
values are shown in the individual subplots.
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Figure 3.4: Va computed by ADFE withN = 5 (red circles),N = 20 (orange crosses) andN = 50
(black diamonds) and TAFE (blue squares) as a function of Pe.
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3.4 Discussion

We derived and verified a semi-analytical solution for the axi-symmetric ad-
vection diffusion equation. This solution was compared against numerical
solutions from a spectral element method. The evaluation data set consisted
of a wide range of values for Pe and St. We conclude that, provided that N ,
the number of terms in the series expansion, is sufficiently large, the semi-
analytical solution accurately matches the numerical solutions. We showed
that with increasing Pe, a larger N is needed to maintain a low error against
the numerical solution, which suggests that resolving the radial variation in C
becomes more important when Pe is large. The change in the error against the
numerical solution when holding N constant was less when varying St com-
pared to varying Pe. This suggests that for a coronary tree where the flow
is divided after each bifurcation, an adequate value of N could be estimated
based only on the geometry and on the properties of the contrast agent.

The semi-analytical solution forms the basis of the ADFE method, which
allows for the estimation of the underlying flow rate,Q, based on the observed
concentration field, C̄d at a fixed time td. The estimated Q from ADFE was
compared with that from the TAFE method, where the latter does not consider
any form of diffusion. This comparison showed that ADFE estimatesQmore
accurately than TAFE for a wide range of Pe, highlighting the importance
of representing the effects of radial variations in the concentration and radial
diffusion.

In order to apply this solution in a setting with real CCTA images, we note
that the current method does not account for some important phenomena. In
reality, the velocity field v is pulsatile and is developing near the entrance of
the coronary circulation. The current method can be modified for different
steady or pulsatile developed v by updating Z. However for a non-developed
flow, vr would not be zero and both vr and vz would depend on z and t. Thus
it would be necessary to quantify the error due to assuming a developed v in
the semi-analytical solution. Furthermore, the coronary vessels are typically
not perfectly straight cylindrical vessels and are often slightly tapered, curved,
and with non-circular cross-sections. Additionally, the vessels have distensi-
ble walls and deform and translate due to the beating myocardium. While it
is difficult to account for the combined impact of these effects, it is possi-
ble to estimate the impact of radius variations in the vessel on the prediction
accuracy of ADFE compared with the straight cylinder setting: it can be de-
rived that perturbation to the ADFE prediction from radius variation scales
with ξn, having a larger impact on Cn for increasing n. From the structure of
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Z it can be deduced that the dependency of C1 on Cn decreases for increasing
n, indicating that with large Pe, the contribution of the ξ2n/Pe term to C1 is
limited. This implies that even without precise knowledge of Pe and the vari-
ations in the vessel radius, we may still accurately predict C̄d by estimating
St. Moreover, real coronary arteries contain bifurcations and stenoses, which
may introduce sudden changes in the concentration field either by suddenly
splitting the concentration field beyond a bifurcation or by radially increasing
or decreasing the concentrations when passing a stenosis. Instead of applying
the semi-analytical solution over the entire vessel, one can use the solution in
segments between bifurcations or stenoses. However, at the start of each seg-
ment a significant jump in concentration or change in axial gradient compared
to that in the proximal vessel can occur. This effect should be incorporated
in the radial variation g(r) prescribed at the inlet to ensure an accurate ADFE
method. Future work should investigate how this can be performed correctly.
All the segments should be combined such that conservation of mass of both
the flow and concentration field is ensured.

Future work aims at quantifying the impact of the described limitations
on the performance of the ADFE method. It needs to be ensured that the
extracted cross-sectional averaged CCTA intensities correlate well with the
contrast agent concentration. Here, a linear relationship between the intensity
and concentration of the contrast agent is used. However, the CCTA image
modality causes blurring, noise and additionally artifact which can lead to
non-linearities. Bae et al. (2018) stated that the underestimation of TAFE was
due to these imaging artifacts. However, the amount of underestimation is in
the same order of what was found in our results. We therefore expect that the
additional accuracy of ADFE will still be seen in clinical CCTA data when
compared to TAFE.

3.5 Conclusion

In this paper a semi-analytical solution describing the transport of solute
through a cylindrical shaped domain was successfully derived and validated.
Based on this solution, a novel method ADFE, was developed. It presents
an inverse solution for the flow rate based on snapshots of the concentration
field in a cylindrical domain. A nearly perfect correspondence between this
semi-analytic solution and a numerical spectral element method solution was
found. Moreover, the ADFE solution was benchmarked against the existing
TAFE method. The comparison demonstrated that ADFE has improved
accuracy compared with the TAFE method for extracting flow rates from
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contrast gradients.
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CHAPTER 4

In-silico validation of the advection diffusion flow estimation
method using computational patient specific coronary tree

phantoms

Abstract 1

Coronary computed tomography angiography (CCTA) does not allow the
quantification of reduced blood flow due to coronary artery disease (CAD). In
response, numerical methods based on the CCTA image have been developed
to compute coronary blood flow and assess the impact of disease. However
to compute blood flow in the coronary arteries, numerical methods require
specification of boundary conditions that are difficult to estimate accurately
in a patient-specific manner. We describe herein a new non-invasive flow
estimation method, called Advection Diffusion Flow Estimation (ADFE),
to compute coronary artery flow from CCTA to use as boundary conditions
for numerical models of coronary blood flow. ADFE uses image contrast
variation along the tree-like structure to estimate flow in each vessel. For
validating this method we used patient specific software phantoms on which
the transport of contrast was simulated. This controlled validation setting
enables a direct comparison between estimated flow and actual flow and a

1This chapter is based on: Bakker, L. M. M. L., Xiao, N., Lynch, S., van de Ven, A. A. F., Updegrove,
A., Schaap, M., Buls, N., de Mey, J., van de Vosse, F. N., & Taylor, C. A. (2022). Preclinical validation
of the advection diffusion flow estimation method using computational patient specific coronary tree
phantoms [Under review]. International Journal for Numerical Methods in Biomedical Engineering
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detailed investigation of factors affecting accuracy. A total of 10 CCTA image
data sets were processed to extract all necessary information for simulating
contrast transport. A spectral element method solver was used for computing
the ground truth simulations with high accuracy. On this data set, the ADFE
method showed a high correlation coefficient of 0.998 between estimated
flow and the ground truth flow together with an average relative error of only
1%. Comparing the ADFE method with the best method currently available
(TAFE) for image-based blood flow estimation, which showed a correlation
coefficient of 0.752 and average error of 20%, it can be concluded that the
ADFE method has the potential to significantly improve the quantification of
coronary artery blood flow derived from contrast gradients in CCTA images.

4.1 Introduction

Coronary computed tomography angiography (CCTA) is conducted by inject-
ing an intravenous iodine based contrast material into the bloodstream to high-
light the boundary of the coronary arteries and can be used to anatomically
assess the severity of obstructive atherosclerotic plaques, i.e. stenoses. CCTA
was recently given a Class 1 recommendation with level of evidence of A
for patients with stable and acute chest pain in the 2021 American College
of Cardiology / American Heart Association guidelines (Gulati et al., 2021).
However, CCTA does not directly provide information about hemodynamics
such as flow or pressure loss across the stenosis, which are important func-
tional indicators of Coronary Artery Disease (CAD). An invasive metric that
has become the gold standard for evaluating the severity of CAD is Fractional
Flow Reserve (FFR), which is calculated as the ratio between the pressure dis-
tal to the stenosis and the reference aortic pressure (Pijls & Sels, 2012). FFR
has been shown to improve patient outcomes, when used to decide whether or
not surgical intervention is performed (Pijls et al., 2010). FFR requires fluo-
roscopy guided invasive catheterization and the insertion of a pressure wire to
a location in the vessel distal to the lesion.

Computational fluid models based on CCTA images are now used in rou-
tine clinical practice to non-invasively approximate FFR. The non-invasive
analogue of FFR derived from computational fluid dynamics and CCTA im-
ages is called FFRCT (Taylor et al., 2013). In order to calculate FFRCT, the
coronary geometry is extracted from the CCTA image and a finite element
method is used to solve the equations of fluid flow. The accuracy of this so-
lution depends not only on the spatial resolution and correct segmentation of
the coronary vessel lumen but also on the boundary conditions that control the
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hemodynamic flow rates through each vessel. While geometrical parameters
such as coronary artery diameter and myocardial volume can be readily ex-
tracted from the CCTA image, boundary conditions are difficult to estimate
due to complex, patient-specific physiological conditions. While FFRCT cal-
culated using boundary conditions derived from anatomical information has
demonstrated high diagnostic accuracy when compared to FFR (Taylor et al.,
2013), these methods do not leverage the functional information that is im-
plicitly embedded in the CCTA image itself. Recently, there has been growing
interest in inferring coronary flows or assessing stenosis severity by analyzing
the contrast intensity gradients along the coronary vessels (Bae et al., 2018;
Choi et al., 2012; Eslami et al., 2022; Fujimoto et al., 2018; Lardo et al.,
2015; Park et al., 2016; Steigner et al., 2015; Stuijfzand et al., 2014; Wong
et al., 2013). These techniques have the potential to further improve the esti-
mation of boundary conditions and thereby increase the diagnostic accuracy
of FFRCT.

Within the aorta, a rise and decay of the concentration of intravenously-
injected contrast can be indirectly measured via multiple CT acquisitions over
time. This rise and fall describes the arterial input function (AIF), which is the
concentration of the contrast at the level of the aorta over time. The contrast
material is transported by the coronary blood flow (CBF) into the coronary
vessels. When the CCTA image is acquired before the peak of the AIF, a lin-
ear function can be fitted to the intensities along the paths of the arteries. The
slope of this linear function is called the Transluminal Attenuation Gradient
(TAG) and is inversely correlated to the CBF within the same artery: a higher
slope relates to a lower flow and vice versa. (Choi et al., 2012; Park et al.,
2016; Steigner et al., 2015). Computation of TAG is facilitated by the advent
of 256 and 320 row detector CT scanners, such as the Toshiba Aquilion One
or GE Revolution, scanners that can image the full heart in a single cardiac
cycle ensuring that the error due to sampling over multiple cardiac cycles can
be avoided. In recent work, TAG was computed in healthy subjects and pa-
tients with CAD (Bae et al., 2018; Choi et al., 2012; Fujimoto et al., 2018;
Park et al., 2016; Steigner et al., 2015; Stuijfzand et al., 2014) and was found
to be relatively constant across cardiac phases in the left anterior descending
(LAD). However, these differences in TAGwere significant in the left circum-
flex (LCx) and right coronary artery (RCA). Moreover, TAG was found to be
lower in the RCA −6.5 ± 4.1 HU/cm than in the LAD −13.7 ± 8.0 HU/cm
or LCx −12.5 ± 7.8 HU/cm (Steigner et al., 2015). Park et al. (2016) used a
phantom study to show that TAG may be affected by vessel tapering which is
lower in the RCA compared to the LAD and LCx.
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The relationship between TAG and CBF was derived by Eslami et al.
(2015) by solving the advection diffusion equation. In this work, the effects
of diffusion and Taylor dispersion were neglected. Eslami et al. (2015) also
assumed that the vessel does not change much in cross-sectional area over the
path length and that the AIF can be approximated by means of an analytical
cosine function. Using these assumptions, they derived a correlation between
TAG and CBF called Tomography Transluminal Attenuation Flow Encoding
(TAFE) and found a reasonably good correlation between TAFE and CBF
measurements using micro spheres on 9 canine hearts (Lardo et al., 2015).
TAFE’s accuracy on clinical data was validated by Bae et al. (2018), who also
introduced the TAFE correlation coefficient k, derived using perfusion CT
data, to compensate for the tendency of TAFE to underestimate flow. For the
patient group having no occlusions TAFE showed good performance. How-
ever, the slope in the correlation lines between TAFE and measured flow in
the diseased patient groups decreased with increasing stenosis severity (1.018
for 0% diameter stenosis, 0.832 for 1 - 49% diameter stenosis, 0.819 for 50 -
79% diameter stenosis and 0.541 for 70 - 99% diameter stenosis) (Bae et al.,
2018).

There are multiple possible explanations for the difference in TAG be-
tween healthy and stenosed arteries. Our first hypothesis is that the intensity
measured on the CCTA image is not always well correlated with the real con-
centration of the contrast material. This may be due to low-pass filtering of the
measured attenuation in the CCTA reconstruction resulting in contrast blurring
outside of the vessel and the partial volume effect. Another hypothesis is that
there are dynamic effects caused by diffusion on the contrast concentration
that cannot be explained by pure advection.

In previous work, we introduced the Advection Diffusion Flow Estimation
(ADFE) method which is an improvement to TAFE in straight axi-symmetric
vessels (Bakker et al., 2021). This improvement is the result of including ra-
dial diffusion compared to only advection in the TAFE method. In this paper
we extend and validate the ADFE method for complex patient-specific coro-
nary trees. This is done in a controlled setting, since the intensity measured
on the CCTA image is not always well correlated with the real concentration
of the contrast material. Under this controlled setting, we again illustrate the
critical importance of fundamental diffusion phenomena captured by ADFE
that is not directly accounted for in the TAFE methodology.
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4.2 Methods

In order for ADFE to compute flow from a CCTA image, several steps are nec-
essary. A schematic of the workflow is shown in Figure 4.1. This workflow
starts from two image data sets obtained during CCTA; the so-called bolus
tracking series and the CCTA image itself. The bolus tracking series is ac-
quired before triggering the scanner to image the full 3D CCTA image and
consists of single slice images containing the ascending and descending aorta.
Its main purpose is tracking the contrast agent over time in order to correctly
time the CCTA acquisition when the highest intensity in the coronary vessels
is expected. This data set is not used for diagnostic purposes, but can be used
for reconstructing the AIF. From the CCTA image, the coronary arteries are
segmented and the cross-sectional average intensity from the coronary ostia
to the visible outlets are computed. This cross-sectional averaged intensity
over the path length representing the spatial data and the AIF representing the
temporal data are then input to the ADFEmethod to estimate the CBF through
each vessel.

The controlled workflow used in this paper is shown in the bottom half
of Figure 4.1 with each component described below. Compared to the CCTA
workflow, we replaced the CCTA image with patient-specific software phan-
toms to simulate the transport of the contrast agent. This removes the scanner
specific effects on the measured contrast intensity and allows us to directly
compare the estimated flow from ADFE with the flow prescribed in the sim-
ulation.
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Figure 4.1: (top) Workflow of ADFE for CCTA images. The bolus tracking series is acquired before
triggering the scanner to image the full 3D CCTA image. In each bolus tracking image, the ascending
(red) and descending (blue) aorta are then segmented and the cross-sectional averaged intensity over
time is computed and shown on the plot as dots with error bars indicating the mean and standard de-
viation of the intensities respectively. Using this sparse data, a continuous parametrized description of
the AIF is fitted. This AIF function is then used as input for the ADFE method. Using the 3D CCTA
image the coronary arteries are segmented to obtain the concentration field. The cross-sectional aver-
aged intensity over the path length representing the spatial data and the AIF function representing the
temporal data are then linked using the ADFE method which does so by estimating the CBF through
each vessel. (bottom) Workflow of ADFE for the patient-specific software phantoms, which is used as
a proof of concept for the ADFE method. We prescribe a synthetic AIF which serves as input to both
the ADFE method and the software phantom. In the software phantom, contrast transport is simulated
using this AIF and a three-dimensional velocity field.
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4.2.1 Patient Collective

Patient data used in this study consists of anonymized CT data from 10 patients
with suspected coronary artery disease (CAD) who received routine CCTA
scans at the Universitair Ziekenhuis Brussel. The scans were retrospectively
obtained from a previous study with approval from the local research ethics
committee (BUN 143201524614) (Van Gompel et al., 2022). All scans were
performed on a 256-slice CT scanner (Revolution CT, GE Healthcare).

4.2.2 AIF

In clinical practice, there are two commonly-used methods of timing the
CCTA acquisition. The first method is using a test bolus, which is executed
by injecting a small volume (mL) of contrast agent with similar injection
parameters compared to the actual CCTA scan. The average intensity at the
aorta after injection is then tracked and plotted over time. The time until the
test bolus reaches maximum intensity has a strong correlation with the time
the main bolus reaches a threshold of around 50, 100, 150 or 200 HU (Platt
et al., 1999; van Hoe et al., 1995). This time to peak intensity can therefore
be used to estimate the acquisition time of the CCTA. The second method
is using a bolus tracking mentioned above; in this method, only the main
bolus is injected and therefore does not require two scans. Again the average
intensity at the aorta is tracked over time but this is done until a threshold
value is reached (around 200 HU) and the scanner will then switch modes to
acquire the CCTA.

We obtained bolus tracking data, from the patient data set described in
Section 4.2.1. This data consists of images acquired at multiple time points at
the same anatomical position so that both the ascending and descending aorta
are shown on the images. Time stamps record when the images are acquired.
The first time stamp after the start of the injection is set at the zero time point.
An image is taken before the injection of the contrast agent is started and a
region of interest (ROI) is placed on this image at the ascending aorta. Within
this region the average intensity of the bolus is computed. At the start of the
injection, a monitoring delay occurs before the bolus, after which a sequence
of single image slices is acquired until the average intensity of the ROI reaches
a threshold or a manual start is performed by the operator. The time between
each image slice is called the monitor interscan delay. After either reaching
the threshold intensity or a manual command to start the scan, the scanner
switches modes and pauses until the designated time between the last slice
and the actual CCTA scan, called the diagnostic delay, elapses.
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To sample the intensities in the ascending and descending aorta, we first
segment the aorta on the CCTA and AIF series by placing a seed on the aorta
to start a threshold-based region growing algorithm. In certain situations we
may also manually segment the aorta. The intensities within the aorta lumen
are then extracted and averaged. We then fit an AIF on the combined aver-
aged intensity over time of the ascending and descending aorta. The AIF is
parameterized as

C(tn) = Cmaxt
α
ne

α(1−tn) + C0,with tn =
t− t0
tm − t0

(4.2.1)

where C is the average intensity in HU, Cmax is the maximal intensity, t is
time, t0 is the time the contrast enters the aorta, tm is the time the maximal
intensity is reached, tn is the normalized time,C0 = C(t0) andα is a parameter
that determines the shape of the AIF. This formula is a simplified version of
the gamma variate function (Madsen, 1992). In this form, the parameters have
no dependencies on each other, thus improving the quality and robustness of
the fit, which we performed using least-squares.

4.2.3 Patient specific software phantoms

Each patient case is processed by an automated program which segments and
labels themyocardium, aorta, and visible coronary arteries from the CCTA im-
age. The centerlines of the segmented aorta and coronary arteries are extracted
from the image which includes at each centerline position the tangent-normal
vector and the average radius of the corresponding cross-section. Each case
includes the 3 major vessel trees namely the right coronary artery (RCA), left
circumflex coronary artery (LCx), and left anterior descending coronary artery
(LAD).

4.2.4 Spectral element solver

We used a spectral element solver to compute the contrast concentration fields
for the software phantoms. This solver was validated and benchmarked in our
previous study using 2D axisymmetric meshes (Bakker et al., 2021). For the
volumetric meshes, structured cylindrical segments consisting of 12 elements
are created at each centerline point. These 12 elements are placed in such a
way that the singularity in the Jacobian caused by mapping a square to a circle
is avoided. Additional elements and/or points for higher order elements in the
axial direction can then be placed between centerline points. A cubic Hermite
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spline is used to ensure a smooth transition between two centerline points and
their respective tangents.

The Navier-Stokes equations are then solved, treating blood as an incom-
pressible, isotropic, Newtonian fluid. The Neumann resistance boundary con-
ditions at all outlets are based on the coronary geometry and a parabolic ve-
locity profile is prescribed at the inlet of the vessel. The total input flow is
scaled on the myocardial mass based on the concept of myocardial supply and
demand (Taylor et al., 2013). Finally, a no-slip boundary condition is pre-
scribed at the lumen wall. The time-stepping iterations are continued until
the velocity field converges. After convergence, the velocity field is substi-
tuted into the advection diffusion equation. Using the AIF shown in Equation
4.2.1, which is used as the boundary condition on the vessel inlet and zero flux
boundary conditions on all other surfaces, we then calculate the final solution
of the concentration field. For post processing, the cross-sectional average
value of the concentration field can be computed via numerical integration on
the structured mesh.

4.2.5 TAFE

For the derivation of the TAFE method, a scaling analysis was used to justify
the use of the 1D advection equation Eslami et al., 2015

∂C

∂t
+
Q

A

∂C

∂z
= 0, (4.2.2)

with Q the flow, A the cross-sectional area and z the axial coordinate. Nor-
malized TAG G∗

TA = 1
Cmax

GTA is introduced by using the following simpli-
fication:

G∗
TA ≈ 1

Cmax

∂C

∂z
. (4.2.3)

G∗
TA is substituted into the 1D advection equation together with the 1D ad-

vection solution for the remaining ∂C
∂t

term. Many derivations of Q exist in
the TAFE literature each with a slightly different formula for Q based on the
assumptions used. In this paper the clinically tested formulation was usedBae
et al., 2018; Lardo et al., 2015:

Q =
Âπ

tm

√
L

−4G∗
TA

, (4.2.4)

with Â the average area of the vessel and L the vessel length. This single
vessel formula was used to compute flow through each outlet by computing
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G∗
TA starting from the inlet of the coronary tree to each outlet. Computing

flow through each vessel segment was done by combining these outlet TAFE
flows by enforcing conservation of mass.

4.2.6 ADFE for coronary trees

The ADFE method was developed for straight axi-symmetric vessels and pro-
vides an accurate estimation of the ground truth flow. In the ADFE method a
semi-analytical solution of the axi-symmetric advection diffusion is fitted on
concentration data by adjusting the amount of flow through the vessel. This
semi-analytical solution assumes a parabolic shaped velocity field together
with a constant radius of the vessel segment Bakker et al., 2021. However,
a coronary tree consists of multiple connected vessel segments and on each
segment the radius can vary over the vessel path. 3D geometric features, such
as curvature, are not explicitly accounted for in the ADFE methodology, and
some vessel segments can be too short to reliably fit all parameters indepen-
dently. This is evident when examining the least square error landscape as the
parameters are related and a relative flat minimum exists; this phenomenon
is less pronounced with increasing vessel segment length. These errors on
individual segments can be largely avoided by linking the vessel segments
via the conservation of mass. However, not all segments should have an
equal contribution to the total minimization error as this may result in out-
liers for certain segments in the estimated flow. We use the following two
step optimization methodology: First, starting with the semi-analytical solu-
tion for the 2D-axisymmetric advection solution described in Bakker et al.
(2021), we describe the cross-sectional averaged concentration C̄ as function
of the non-dimensional Peclet number Pe = Qa2/DV and Strouhal number
St = V /Qtm, with Q the flow, a the average radius, D the diffusion coeffi-
cient of the solute and V the accumulated volume in the axial direction, in both
time t and axial coordinate z. Note that in this work we use the flow notation
instead of cross-sectional averaged velocity as the latter is not constant over a
radially varying vessel. All parameters can be measured from the geometry or
AIF data except forD andQ. By estimatingD we can use the ADFE method
to estimateQ. This is done by iteratively minimizing the least-squares errorE
between the semi-analytical solution and the data by adjusting Q. Setting the
boundary conditions in the semi-analytical solution is less trivial compared to
the straight single vessels used in our previous work. With the exception of
the input vessel, the time-shift ts in the AIF and concentration input profile g
at z = 0 is not known for the other vessel segments. Currently we address this
by using the concentration profile at the end of the upstream vessel segment
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and fitting ts together with Q. Thus starting at the inlet and working down-
stream, the first step is applying the ADFE method for each vessel segment
separately.

In the second and final optimization step we enforce the conservation of
mass by setting the total flow of a vessel segment to be equal to the sum of
the downstream vessel segments. This implies that we only need the flow at
the outlet vessel segments to calculate the flow on all vessel segments. How-
ever, because of the axi-symmetric assumptions underlying the current ADFE
method, an outlier in the flow estimation may occur at an outlet vessel seg-
ment. We address this issue by defining weights for each segment: for each ith
segmentwi = (logEi)

2 withEi the error from the first step of the ith segment.
The total error is then the sum of all N segments in each tree:

E =
N∑
i=1

wiEi. (4.2.5)

Note that we do not average Ei over the segments to ensure that larger seg-
ments contribute more to the total error. Furthermore, wi is chosen such that
the contribution of any single segment does not dominate the total error E, as
shorter segments tend to have relatively smaller Ei. Similar to the first step
we iteratively minimize E by adjusting each Q at the outlets and ts at each
segment, starting from the optimized values from step one. All minimizations
of E are performed using the limited memory Broyden–Fletcher–Goldfarb–
Shanno Bounded algorithm available in the SciPy ‘minimize’ function (Jones
et al., n.d.).

4.3 Results

In order to validate the ADFE method for tree-like structures we used the
anonymized data described in Section 4.2.1. The data for each patient in-
cluded the images used to compute the AIF, as described in Section 4.2.2.
The 3D CCTA image data was segmented and processed to extract the cen-
terline data for creating the volumetric meshes (Section 4.2.3). The final data
set was created by simulating the contrast transport and performing the post
processing at a time point where a flattening in the gradient of the AIF oc-
curred, or in other words, the moment the start of the plateau of maximum
intensity is reached (Section 4.2.4). Our tree-based ADFE method and the
TAFE method (Eslami et al., 2015) are applied to this set for validation and
benchmarking. In total this data set consist of 366 vessel segments on which



70 | Chapter 4. In-silico validation ADFE

the ADFE and TAFE flows could be compared to the ground truth flow. For
reference the measured TAG was on average in the RCA−10.4±5.0HU/cm,
LAD−8.8±5.4HU/cm and LCX−9.9±7.2HU/cm which is the same order
as reported in literature Steigner et al., 2015.

4.3.1 AIF example

Two AIF examples from case 1 and 10 are both shown in Figure 4.2. The AIF
from case 1 is a typical example containing a set of data points before arrival
of the bolus and a few data points, usually two or three, when the bolus has
arrived at the aorta. The last AIF data point was sampled from the actual CCTA
image, which was acquired 8 seconds after the last tracking bolus image, at
roughly the same location where the bolus tracking images were acquired
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Figure 4.2: AIF examples from case 1 (left) and 10 (right). The red dots are sampled from the
corresponding bolus tracking data set at the ascending aorta and the blue line is the corresponding
fit of the AIF using Equation 4.2.1. The correspondence between between this set and the AIF one is
excellent.

4.3.2 ADFE vs TAFE

We compare ADFE and TAFE by examining the correlation and relative error
between Qm, the flow computed by either ADFE or TAFE, and Qd, the input
flow used to simulate C (Figures 4.3 and 4.4). ADFE has an average error
of 1% and a high correlation coefficient R = 0.998. The benefit of using the
two optimization steps in the tree-based ADFEmethod is that the relative error
changes from−0.015±0.154 after the first step to 0.014±0.084 after the sec-
ond step. The large improvement in the standard deviation of the relative error
is caused by combining information from all vessel segments to mitigate the
impact of segments where the single-segment ADFEmethod results in high er-
ror. These are typically segments that conform the least to the axi-symmetric
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assumptions underlying ADFE or that are too short. TAFE produced a cor-
relation coefficient of 0.752, with a relative error of −0.204 ± 0.662. Qm

computed with ADFE is more accurate compared to TAFE even after the first
ADFE optimization step which only uses the single-vessel ADFE method on
each segment.
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Figure 4.3: Correlation plot betweenQd and Qm for ADFE (red dots) and TAFE (blue dots) of 366
vessel segments. The correlation coefficient R for each method is shown.
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Figure 4.4: Relative difference plots for ADFE first optimization step (a), ADFE second optimization
step (b) and the TAFE method (c) of 366 vessel segments. The difference is calculated as Qd−Qm

Qd
and

for each figure the mean difference (black line) and 95% confidence interval (dotted line) are shown.

4.3.3 Specific cases

Figure 4.5 shows the ADFE results from the LAD of case 2. A combination
of low curvature and straight segments results in a velocity field which aligns
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well with the assumptions underlying the ADFE method, contributing to high
accuracy in the estimated flow. Figure 4.4b illustrates outliers, i.e. data points
outside the confidence interval, where the accuracy of ADFE decreases. Two
categories of segments exhibited a high relative error. The first category is
short and relatively low-flow segments that have high curvature. An exam-
ple of this is the LAD of case 5 shown in Figure 4.6. In Figure 4.6c four
of these segments are labeled with a different severity of curvature. Specif-
ically, segments 1 and 2 have the largest curvatures with a relative error in
the flow estimation of −0.28 and −0.35 respectively. Segments 3 and 4 are
straighter vessels comparatively and have lower relative flow errors of −0.11
for both segments. The second category consists of segments with relatively
large flows together with large axial variations in radius and curvature. An
example of this is the LCx of case 4 shown in Figure 4.7. From Figure 4.7a
a good fit between the ADFE concentration solution and the intensity data
can be seen. However, the estimated flow still resulted in an overestimation.
The cause of the overestimation in this case is due to a non-parabolic veloc-
ity field especially in the proximal segments. Due to the high velocity and
axially-varying geometry, the velocity field becomes more flat and the con-
trast transport is faster. An overestimation of the ADFE flow is expected due
to the parabolic velocity profile assumption of the ADFE method.
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Figure 4.5: ADFE results for the LAD of case 2 with (a) the fit of the semi-analytical solution after the
final optimization step for the LAD tree (black dashed lines) and cross-sectional averaged concentration
(dotted lines with each color representing a different segment), (b) the relative difference plot for this
case and (c) the concentration data present at the surface of the LAD mesh.
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Figure 4.6: ADFE results for the LAD of case 5 with (a) the fit of the semi-analytical solution after the
final optimization step for the LAD tree (black dashed lines) and cross-sectional averaged concentration
(dotted lines with each color representing a different segment), (b) the relative difference plot for this
case and (c) the concentration data present at the surface of the LAD mesh. Additionally four segments
are labeled to illustrate the impact of vessel curvature.
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Figure 4.7: ADFE results for the LCx of case 4 with (a) the fit of the semi-analytical solution after
the final step for the LAD tree (black dashed lines) and cross-sectional averaged concentration (dotted
lines with each color representing a different segment), (b) the relative difference plot for this case and
(c) the concentration data present at the surface of the LCx mesh.
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4.4 Discussion

In this study, we successfully extended the ADFE method from simple ax-
isymmetric vessels (Bakker et al., 2021) to coronary trees. We used patient-
specific software phantoms which ensures a fully controlled setting compared
to actual CCTA images. The flows estimated by ADFE resulted in a 1% av-
erage error compared to the ground-truth flows used in the contrast transport
simulations. Central to the ADFE method is the fitting of a semi-analytical
solution of the advection diffusion equation to the contrast intensity data, and
the tree-based ADFE method relies on a sequence of two optimization steps
described in Section 4.2.6 that leverages information from all of the vessel
segments in the coronary tree. Overall, a small standard deviation (8%) in
relative error was found in the 10 cases we investigated, which highlights the
robustness of the ADFE method. The ADFE method is also fast and compu-
tationally inexpensive; the total computation time per case is 1-10 minutes on
a single processing core depending on tree size and convergence criteria.

We have previously compared ADFE with TAFE in axi-symmetric vessels
(Bakker et al., 2021), where we showed significant improvements in accuracy.
In this study involving patient-specific coronary vessel trees, the 1% flow es-
timation error of ADFE was found to be a significant improvement compared
to the 20% average error of TAFE. The major difference between ADFE and
TAFE is the inclusion of radial transport phenomenon, i.e. the velocity pro-
file and radial diffusion that is considered in the ADFE method. In a recent
study involving TAFE, a correction for the radial velocity profile has been
proposed in the form of a constant correction term (Eslami et al., 2022). The
experimental CCTA setup in this study involved scanning a 3D printed vessel
in which a contrast solution was pumped through using different flow rates.
Similar to our results, underestimation of the TAFE flow estimate compared
to the true flow was found. The correction term resulted in an accurate TAFE
flow estimation but the correction is specific to the tested vessel geometry.
Choosing a constant correction term would be insufficient for a more general
data set as there is a non-linear relationship between the radial transport and
the flow rate. Additionally, TAFE requires the CCTA acquisition to be be-
fore the AIF plateau to ensure a negative TAG can measured. In the ADFE
method a semi-analytical solution is fitted on the concentration which can be
performed at every point in time. Although the greater concentration gradient
when acquiring the CCTA before the plateau would improve the robustness of
the ADFE fit, it can still be performed when the CCTA timing is off. Overall
we showed that ADFE accurately estimates flow from simulated contrast data
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extracted from multiple different patient specific coronary vessel trees.
We have identified two distinct situations for which the accuracy of ADFE

may decrease. ADFE underestimates flow in small segments with high cur-
vature bifurcating from a relative larger parent vessel. It is possible that this
could be the result of numerical artifacts from using a zero flux boundary con-
dition at the outlets. However, for these small segments, the absolute flow
error in the individual segments is low compared to the total flow of the tree
(less than 1%). The second category of outlier segments is where the velocity
field significantly differs from the assumed parabolic profile. This is caused
by a combination of significant axial variations in radius and a relatively high
flow resulting in a flat velocity profile. In these cases, a significant overesti-
mation of the flow may occur. It should also be noted that the coronary trees
used in this research are without CAD, which are extreme situations, where
this can occur. Special care should be taken when computing ADFE on vessels
with CAD, with even excluding the diseased section from the ADFE fit

Before utilizing ADFE with real CCTA images, additional considera-
tions are necessary. Ideally, fitting the AIF would require more complete
temporally-resolved image data than is currently available in the investigated
cases. Currently the timing images are only used for tracking the arrival of
the bolus and timing the actual 3D CT scan. There is a large gap in timing
data between the bolus tracking data set and the time of the CCTA scan, and
this may result in non uniqueness of the AIF fit. By reducing the diagnostic
delay and extending the bolus tracking, more points could be added on the
AIF curve, thus increasing the reliability of the fitted AIF.

Compared to the axi-symmetric vessels in our previous study, realistic AIF
data and patient specific geometries were used in the present study to validate
the ADFE method for extracting flow from contrast gradients in CCTA im-
ages. However, compared to using intensity data from actual CCTA images,
we still do not account for important phenomena related to the imaging pro-
cess and the underlying physiology. The most important consideration with
real CCTA images is determining an accurate correlation between the mea-
sured image intensity samples from the CCTA images and the actual contrast
concentrations. The CCTA imaging process involves blurring, partial volume
effects and the presence of imaging artifacts which affect the measured image
intensity (HU). Blurring results in a lower measured cross-sectional averaged
intensity. The partial volume effect also contributes to lower measured inten-
sities as the intensities of voxels at the lumen boundary which are both inside
and outside of the vessel will be averaged out. Correcting these effects is a nec-
essary preprocessing step in utilizing ADFE or TAFE. In their CCTA phantom
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study the authors of the TAFE method also investigated a correction function
based on the area of each cross-section (Eslami et al., 2022). This was done by
scanning a tapered vessel with a constant contrast concentration. Despite the
constant concentration, a decreasing intensity along the vessel path was found
due to imaging effects correlating with the cross-sectional area. A correction
function was then fitted on the ratio between the true constant intensity and
measured cross-sectional averaged intensity as a function of the area of each
cross-section.

Additionally, the pulsatility in the contrast transport caused by the beat-
ing heart is not explicitly accounted for. As the contrast is injected intra-
venously the contrast is mixed inside the heart chambers and pumped into
the aorta, producing oscillations in the AIF. The velocity field is also pulsatile
and still developing at the entrance of the coronary circulation. Both phenom-
ena could be accounted for by adjusting the semi-analytical solution that the
ADFE method relies on; more details about this procedure can be found in
Bakker et al. (2021).

4.5 Conclusion

We have demonstrated that a tree-based ADFEmethod can be used to estimate
flows on a set of software phantoms based on patient specific geometries with
realistic AIF data. This work represents a significant step toward a general
and robust method for estimating blood flow from actual CCTA images.
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CHAPTER 5

Verification before clinical validation ADFE

Abstract

The contrast intensity measured on coronary computed tomography angiogra-
phy (CCTA) images contain imaging effects which results in a non-linear rela-
tionship between themeasured and actual contrast concentration. This impairs
the advection diffusion flow estimation (ADFE) workflow, described in Chap-
ter 4, in accurately estimating coronary blood flow. In this study, we therefore
propose a computed tomography (CT) correction function to be added to the
ADFEmethod in order to improve accuracy in estimating coronary blood flow
from clinical CCTA images. To verify this CT correction function, we used a
controlled setting where we mimic CCTA-like effects on the patient specific
software phantoms fromChapter 4with a simple virtual CT (vCT)method. On
this vCT data set, we compute flow using both ADFE and the best method cur-
rently available, called transluminal attenuation flow encoding (TAFE). These
results show that adding the imaging effects caused an underestimation of the
computed ADFE flow with a relative error between it and the ground truth
flow decreasing from 1% to -16%. Although the accuracy decreased more
for ADFE compared to TAFE, ADFE can still be considered an improvement
over TAFE as it produces more consisted and accurate results. Furthermore,
the verification made it possible to identify sections within ADFE to improve
in order to reverse the reduced accuracy of ADFE due to imaging effects. By
improving these sections, ADFE has the potential to provide an accurate esti-
mation of coronary blood flow based on the CCTA image.
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5.1 Introduction

Coronary computed tomography angiography (CCTA) is currently the first
choice method for diagnosing coronary artery disease. Afterwards if a steno-
sis is visible on the CCTA image, fractional flow reserve (FFR) is then used
for deciding if intervention is necessary. However, measuring FFR does al-
ready involve a minimal invasive procedure to place a pressure wire at the
location of the stenosis. FFRCT computed from CCTA images has therefore
been developed to reduce the number of unnecessary invasive procedures by
non-invasively calculating FFR using numerical methods (Taylor et al., 2013).
These numerical methods require an accurate segmentation of the mesh from
the CCTA image and flow boundary conditions in order to be accurate. Im-
provements to the segmentation of the coronary arteries or flow boundary con-
ditions will, for that reason, possibly improve the accuracy of FFRCT.

The current flow boundary conditions are derived using population-based
flow estimations which require geometrical measurements, such as my-
ocardial mass or coronary vessel diameters, as input. Although these flow
boundary condition have proven to provide high diagnostic value (Taylor
et al., 2013), an improvement could be achieved by utilizing advection
diffusion flow estimation (ADFE) to estimate patient specific coronary blood
flow based on the contrast gradient found in CCTA images (Bakker et al.,
2022; Bakker et al., 2021). The accuracy of the ADFE concept was proven in
Chapter 4, however the data set used did not included imaging effects which
affect the measured contrast intensity. These effects are mostly caused from
blurring the image which blooms the contrast intensity outside of the vessel
causing a decrease in measured contrast intensity. This will subsequently
cause a significant decrease in performance for ADFE if not corrected.

In this Chapter, a first attempt of correcting ADFE for imaging effects ob-
served on the CCTA image is proposed. This image correction function for
ADFE will be derived and verified on synthetic data. As actual virtual com-
puted tomography (vCT) is quite complex and our current goal is not quanti-
fying every CT effect, we have chosen a simplified workflow for mimicking
CCTA intensities from our patient specific spectral element method (SEM)
results shown in Chapter 4. On this data set transluminal attenuation flow en-
coding (TAFE) flow was also computed and compared with ADFE to examine
if the improvement in accuracy of ADFE over TAFE, showed in Chapters 3
and 4, is still present on this vCT data set.
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5.2 Methods

In this section, we propose a vCT method for increasing the agreement be-
tween the concentration extracted from our software phantom data and the
actual CCTA image. For our vCT method described below we propose a
simple method that only mimics the total measurable effects caused by the
imaging modality on the measured contrast intensity. Secondly, a CT cor-
rection function is proposed, which will be added to ADFE to ensure that the
semi-analytical solution embedded in it can properly describe the blurred con-
centration data.

5.2.1 Virtual computed tomography

vCT methods create CT images based on numerical data. This enables the
optimization of scanning protocols but can also be used for verifying image
based methods such as ADFE. When creating vCT images, projections of the
X-ray attenuation are computed by tracking the rays through the numerical
mesh and mimic physics-based phenomenon affecting the measured attenu-
ation (Abadi et al., 2018). For reducing complexity of this method, we will
only model the two most significant imaging effects related to ADFE, namely
blur and noise. Blur can be modeled by convolving your original image with
the scanner specific point spread function (PSF). The PSF of CT has a com-
plex shape that differs in all three directions and even changes shape based on
image location (Schwarzband & Kiryati, 2005). Experimental measurements
of CT PSF have shown that the PSF could be modeled with a Gaussian shape
(Wang et al., 1998). Schwarzband and Kiryati (2005) opted against this claim
stating that the apparent Gaussian PSF was caused by either an averaging ef-
fect on large structures or pure coincidence as PSF is location dependent. We
still have chosen to model blur using a Gaussian PSF as there is an apparent
resemblance between the actual and measured PSF.

CT noise measurements done on phantoms have shown a complex noise
distribution, however this distribution converges to a Gaussian one for high
intensities (Vegas-Sánchez-Ferrero et al., 2017). Since the typical contrast in-
tensities are in that high rangewe also use a Gaussian distribution formodeling
noise.

For setting the standard deviation σ for both noise and blur we utilized
local CCTA image measurements. For the noise σ, we use the contrast in-
tensities found in the aorta as the cross-sectional averaged value should be
roughly constant. this resulted in an average σ of around 35 HU. For the PSF
σ, we can use the sharp boundary found on the edge of the lung. This sharp
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transition from high to low attenuation is smoothed out because of the blur and
the length going from air (lung) to tissue is roughly 6σ. Measuring at multiple
location resulted in an average σ of approximately 0.6 mm. Computing the
blurred values can be done by discrete convolution of the concentration field
with a Gaussian kernel. In this research, we found a 11x11x11 kernel with
equidistant placed points ranging from −3σ to 3σ to be sufficient enough to
reach convergence of the blurred concentration. The interpolation of the con-
centration on each corresponding kernel point is done by using the interpola-
tion functionality of the SEM solver and setting the value to zero if the point
resides outside the mesh. For simulating noise random generated values based
on the Gaussian noise distribution is added to each mesh point.

5.2.2 Computed tomography correction function

The cross-sectional averaged image intensity measured is not linearly corre-
lated to the actual cross-sectional averaged contrast concentration C̄ due to
the imaging effects described above. A correction is therefore needed in order
for ADFE to compute flow from this blurred data. This correction function β
should specifically add the effects of blur to compute a blurred C̄b = βC̄. For
β, the assumption is made that compared to the width of the PSF the contrast
concentration is constant in the axial direction z. This means that β can be
calculated on each plane perpendicular to the centerline. We can then define
β as

β(z) =

∫
A(z)

C(z) ∗G(σ)dA∫
A(z)

C(z)dA
. (5.2.1)

with A the area inside the vessel perpendicular to the centerline, C the con-
centration, G the 2D Gaussian kernel with a standard deviation of σ, ∗ the
convolution operator. The convolution integral on this 2D plane is by defi-
nition not axi-symmetric and therefore can only be calculated with numerical
convolution. However, an approximation can be derived for a constant con-
centration over the cross-section. An axi-symmetric simplification in describ-
ing the convolution in only local radial coordinate r can be made as follow:

C(z) ∗G(σ) ≈
∫ a(z)

0

1√
2πσ

e−
(r−y)2

2σ2 dy =
erf( a(z)√

2σ
)− erf( r−a(z)√

2σ
)

2
. (5.2.2)

Note that this integral only is valid when the kernel is not overlapping at the
center of the area and by increasing a/σ the relative contribution of this error
decreases. Integrating this equation over the entire area using dA = 2pirdr,
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we can simplify β for every a to:

β =

√
2σ

a
√
π
(e−

a2

2σ2 − 1) + erf(
a√
2σ

). (5.2.3)

We can also computationally compute β on a grid by numerical convolution
and integration. A comparison between this and Equation 5.2.3 is shown in
Figure 5.1. From this we can see that Equation 5.2.3 starts to deviate from the
actual blur loss when a/σ < 1.5, which is caused by the asymmetrical convo-
lution. When computing β on a coarse grid, the partial volume effect can be
modelled, however when taking into account the exact geometry of the vessel
the difference between it and using a refined enough image grid is roughly
less than 1%. This means that partial volume effect when intensity adjacent
to the wall and exact geometries are known, can be neglected. For real CCTA
images, partial volume effect is therefore an error introduced by estimating
the position of the wall and by averaging out the contrast and objects adjacent
to the wall. This means that correcting partial volume effect is case depended
and therefore no general correction can be modelled.

0.5 1.0 1.5 2.0 2.5 3.0 3.5
a
σ

0.2
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0.8

β
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Computational β

Figure 5.1: Comparison between analytical computed β using Equation 5.2.3 (red line) and com-
puted on a grid (black dots). Note that the grid was refined enough for a converged solution.

For computing β for a radial varying contrast field, we utilize the semi-
analytical solution from Chapter 3. This solution consist of a series of zeroth
order Bessel function of which the first function is the cross-sectional averaged
concentration C̄. For the remaining functions the cross-sectional integral are
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zero, however the convolution with the Gaussian kernel can cause this integral
to be non-zero. This means that the blurred semi-analytical C̄a,b is equal to:

C̄a,b = βC̄a +
N∑
i=1

Ci

∫
A

bi ∗G(σ)dA, (5.2.4)

with Ci, the i-th Bessel series coefficient and and bi the Bessel series function
on A.

5.3 Results

5.3.1 CT correction straight vessel

For validating the vCT and CT correction function, we utilised straight tubular
software phantoms on which the transport of contrast was simulated. A selec-
tion of three software phantoms with a radius of 0.5 mm, 1.0 mm and 2.0 mm
were used in order to include all different sized vessels typically found in a
coronary tree. For the vCT, blur described in Section 5.2.1 was added to each
point of all three software phantoms. Afterwards C̄d,b was calculated by the
SEM solver. For comparison the semi-analytical C̄a,b, described by Equation
5.2.4, was also computed and compared in Figure 5.2. From this we can see
a good agreement between C̄a,b and C̄d,b. This means proper implementation
was done on both blurring methods and the size of the Gaussian kernel in the
vCT method was sufficient enough to accurately compute C̄d,b for all typical
radii found in a coronary tree.
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Figure 5.2: Comparisons between vCT and CT correction function for three straight vessels with
different radii. The blue squares and red dots respectively represent C̄d and C̄d,b computed by the SEM
solver. The black lines represent the semi-anlytical solution before (dashed line) and after blurring
(solid line). Each column shows the results for a = 0.5 mm (a), a = 1.0 mm (b) and a = 2.0 mm (c).
In all simulations Q = 150 mm3/s, D = 0.01 mm2/s and the AIF was set to case 1 of Chapter 4. Note
that the first and last data point for the blurred numerical results were not included as these points have
artificially loss concentration by blurring outside of the inlet or outlet.
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5.3.2 CT correction vessel tree

In order for ADFE to accurately compute flow from CCTA images the mea-
sured intensity needs to be corrected for blur to linearly match the actual con-
trast concentration. For this the CT correction function to correct the semi
analytical equation embedded in the ADFE method, shown in Equation 5.2.4,
was verified in the above section for straight vessels. In chapter 4, a workflow
for ADFE for tree-like geometries was derived and verified against patient
specific software phantoms. On each vessel segment a L2-norm between the
semi-analytical C̄a and C̄d extracted from the software phantom is minimized
as function of Q. This means that the concentration profile is already calcu-
lated by the semi-analytical solution but not used in the ADFE workflow of
Chapter 4. This ADFE workflow can therefore be used to compute flow from
CCTA images by substituting C̄a with the blurred semi-analytical solution C̄a,b

and keeping all other steps the same. An example showing theADFE fit on C̄d,
C̄d,b and for reference the actual measured CCTA intensity from the segmenta-
tion the numerical model was based on are shown in Figure 5.3. Verifying this
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Figure 5.3: Figures show C̄ over the path length z examples based on the RCA of case 1 and extracted
from the software phantom (a), the software phantom with the vCT added (b) and the original CCTA
on which the software phantom is based on (c). Each color represents C̄d of a vessel segment and for
Figures a and b the dashed black line represents the fitted semi-analytical solution C̄a after performing
ADFE. Note that the original CCTA image is acquired later in time compared to the software phantom
which explains the higher concentration at the inlet.

CCTA ADFE workflow was done on the same in-silico patient data sets from
chapter 4. vCT, described in Section 5.2.1, was again used to add blur and
noise to each point of each software phantom. Next, ADFE and TAFE flow
was computed on the original concentration data, blurred concentration data
and blurred concentration data with added noise. The comparison between the
computed flow Qm of either ADFE or TAFE and Qd, the input flow used to
simulate C are shown in Figures 5.4 and 5.5. From these results it can be seen
that ADFE decreases in accuracy when applied to blurred concentration data
and a small decrease in robustness with the additional noise added to the data.
Overall ADFE starts to underestimate the amount of flow seen from the aver-
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age error dropping from 1% to -16%. The confidence intervals of the relative
error also significantly worsen for the vCT ADFE results with the increased
standard deviation in relative error from 8% to 40% for the blurred concentra-
tion and further to 50% with the added noise. Although this is mostly due to
the high relative error in vessel segments with a low amount of flow, which
by examining Figure 3.4, can be seen that the absolute error is comparable
with the higher flow vessel segments. The TAFE results on the blurred data
also shows an overall reduced amount of flow being computed as the average
relative error is reduced from −20% to −34%. The error distribution is less
affected by blurring the signal with even a slight improvement in the tight-
ness of the confidence interval which dropped from 66% to 62%. TAFE is
also hardly affected by the added noise as it produced almost identical results.
Finally, it can be concluded that although ADFE is relatively impacted more
by the effects of blur and noise, it still offers a significant improvement over
TAFE. This is demonstrated by the tighter confidence interval and the higher
correlation coefficient of ADFE compared to TAFE, which was made possible
with the CT correction function implemented in ADFE.
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Figure 5.4: Comparison between ADFE and TAFE on software phantoms from Chapter 4 containing
no effects (a), blur (b) and blur with additional noise (c) on the original simulated contrast data. Each
figure shows a correlation plot betweenQd andQm for ADFE (red dots) and TAFE (blue squares). The
correlation coefficient R for each method is shown in each respective plot.
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Figure 5.5: Relative difference plots for ADFE (red dots) on software phantoms from Chapter 4
containing no effects (a), blur (b) and blur with additional noise (v) and similar for TAFE (blue squares)
with no effects (d), blur (e) and blur with additional noise (f). The relative error is calculated as Qd−Qm

Qd

and for each figure the mean difference (black line) and 95% confidence interval (dotted lines) are
shown.
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5.4 Discussion

In this study, we developed and added a CT correction function to ADFE in
order to make ADFEmore suitable to be used on CCTA images. This function
computes the relative intensity drop after the CCTA blur blooms intensity out-
side of the vessel. Adding this function enables the semi-analytical solution
used in ADFE to better match the blurred concentration data during the opti-
mization steps. The updated ADFE workflow was then verified on vCT soft-
ware phantoms based on the patient specific software phantoms from Chapter
4. Overall the accuracy of ADFE became significant worse with relative er-
ror decreasing from 1% to -16%, however ADFE still showed a improvement
compared to TAFE.

The vCT method transformed the patient specific software phantom data
set of Chapter 4 to be more in agreement with actual CCTA data. This en-
abled us to verify ADFE on more CCTA-like data by doing the one to one
comparison of ADFE flow with the ground truth flow, similar to the verifica-
tion steps done in Chapters 3 and 4. This vCT method is therefore a useful
tool as we can now more easily identify components inside the ADFE method
that need improvement. However by comparing the vCT concentration with
the intensity found in the actual CCTA image, it is clear that some aspects are
missing during the computation of the virtual data. Firstly the CCTA image
intensity appears to be more noisier compared to our virtual intensity. This
could be caused by the possible higher noise reduction when averaging out
the noise added to each mesh point during the cross-sectional averaged con-
centration computations from the SEM solver compared to doing the same
from the CCTA image by averaging out the lesser amount of voxels. Addi-
tionally noise on the CCTA image could also be originated from other sources,
such as errors in the segmentation of the coronary arteries or partial volume
effect. Secondly, the simulations to mimic the transport of contrast are simpli-
fied compared to the actual situation. The pulsatility in the contrast transport
caused by the beating heart adds oscillations to the measured signal but also
adds more mixing of the contrast concentration. This mixing alters the con-
centration profile which impacts the blur loss computed by the vCT. Similarly,
the assumed flat concentration profile at the inlet can also significantly differ
from the actual CCTA concentration profile, which again impacts the concen-
tration profile across the entire tree and thus the blur loss computed by the
vCT.

Partial volume effect can also be significantly affecting ADFE but this
is difficult to model as it is the general effect of being unable to determine
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the composition within a voxel. This means that for vCT on synthetic data
with a constant background the partial volume effect can easily be reversed
as we know the exact composition of objects within each voxel. However,
this is not the case for clinical data as there can be a wide range of different
structures next to the coronary arteries. This means that the effects of partial
volume effects are case depended and can not be modelled for a large patient
population.

At the current state of the vCT, there is already an underestimation of the
computed ADFE flow. Our hypothesis is that there is a significant error in
the concentration profile, which is used in the CT correction function. During
the optimization of ADFE the flow is then artificially lowered to still match
C̄a,b and C̄d,b. Currently, we suspect two phenomenon that are the main rea-
son for this concentration profile error. Firstly, the semi-analytical solution
embedded in ADFE uses the assumption that the velocity field has a parabolic
shape. In Chapter 4 this assumption was verified to be valid, but for some ves-
sel segments the flow was high enough that the velocity was not viscous dom-
inated anymore or i.e. the velocity profile start to transition from a parabolic
shaped profile to a flat profile. This resulted for some coronary trees in a
small overestimation of the computed ADFE flow (see Chapter 4). However,
when correcting for blur this error in the assumed velocity profile becomes
more apparent as this also impacts the computed concentration profile, which
is inputted to the CT correction function. Secondly, after each bifurcation the
concentration profile of the input vessel is split between the two output vessel
segments which alters the concentration profile when transitioning through a
bifurcation. In ADFE the input concentration profile is currently copied to the
two output vessel segments which neglects the effects of the bifurcations on
the concentration profile. This approximation was good enough for achiev-
ing the excellent ADFE accuracy on the original data set, however again the
error in the computed concentration profile adds to the error in the CT correc-
tion function. Overall, it is crucial to both research in correcting the velocity
profile used in the semi-analytical solution and adding a transformation func-
tion for calculating the resulting concentration profile after a bifurcation. If
done accurately, we foresee that it will reverse the current underestimation of
computed flow.

5.5 Conclusion

Building on top of the accuracy of ADFE for coronary trees showed in Chap-
ter 4, a first attempt towards making ADFE suitable for CCTA images was
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taken. A simple vCT was used to transform patient specific software phan-
toms to more CCTA-like data. This enabled the investigation and first verifi-
cation of ADFE with a new build-in CT correction of which the results are al-
ready promising. By improving the semi-analytical solution described above,
ADFE has the potential to provide an accurate estimation of coronary blood
flow based on the CCTA image. This reduces the possibility of needing addi-
tional correction on ADFE when transitioning from these software phantoms
towards actual CCTA image.
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CHAPTER 6

General Discussion

6.1 Current overview

Coronary computed tomography angiography (CCTA) is the leading imag-
ing modality for assessing coronary artery disease (CAD). The injection of a
contrast agent during the CCTA scan highlights the coronary lumen and the
presence of CAD on the CCTA image. Assessing the severity of CAD is done
by the fractional flow reserve (FFR), i.e. the ratio between the pressure distal
to the stenosis and aortic pressure (Pijls et al., 2010; Tonino et al., 2009). FFR
is measured using a pressure wire that is surgically positioned, whereas FFRCT
circumvents the use of a invasive procedure by calculating FFR using com-
putational models. The accuracy of these models heavily rely on the correct
segmentation of the coronary arteries and imposition of coronary blood flow
(CBF) at the in- and outlets. Current methods for determining the bound-
ary conditions consist on power laws which rely on anatomical information
such as myocardial mass. Although these models result in a high diagnostic
accuracy of FFRCT (Taylor et al., 2013), an improvement could be achieved
in inferring the flow information embedded inside the contrast distribution.
A first clinical attempt in extracting diagnostic information from the contrast
opacity is called transluminal attenuation gradient (TAG) and is defined as
the linear contrast intensity gradient across the path length (Steigner et al.,
2015). Transluminial attenuation flow encoding (TAFE) was later developed
to compute CBF from TAG. This was done by linking the arterial input func-
tion (AIF) to TAG using the 1D advection equation (Eslami et al., 2015). This
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addition of the AIF to TAG in TAFE resolves a significant disadvantage of
TAG as it is dependent on the AIF gradient of time. After studying the ac-
curacy of TAFE, the creators included two correction coefficients for linearly
increasing the computed TAFE flow (Eslami et al., 2022). The first term in-
volves solving the non-discrepancy between the measured intensity and actual
contrast concentration. This is caused by imaging effects i.e. blur and partial
volume, which are the result of the radiation and reconstruction protocols used
in CCTA. The second term involves the invalid assumption that radial advec-
tion and diffusion can be neglected. For improving TAFE we included radial
advection and diffusion in our new method called advection diffusion flow
extraction (ADFE). For verifying ADFE and comparing against TAFE a con-
trolled setting is necessary on which no imaging effects are present. This was
done by utilizing software phantoms on which the transport of contrast was
simulated by use of our in house build spectral element method (SEM) solver.

Our SEM solver, explained in Chapter 2, utilizes higher order elements
together with optimal integration to solve conservation equations representing
a physical system. For this it needs less points and elements to achieve a
preset accuracy compared to traditional finite element method (FEM). The
higher order polynomials used are also able to describe ”sharp” boundaries
that are often situations which require stabilizationmethods using FEM. These
stabilization methods can significantly affect the solution in an unpredictable
way which is not desirable for verification studies. The smaller number of
points also reduces the computational power needed as all simulations used in
this thesis were computed on a single laptop.

ADFE and often other inverse optimization problems rely on fitting a
model on measured data of which the computed parameters serve a purpose.
This means that not only a good fit needs to be found, i.e. good agreement
between model and measured data, but the found parameters also should be
the true values. Often the amount of parameters needed to be fitted offer
a too high number of degrees of freedom. The result is then often a wide
range of possible parameters yielding the same amount of agreement between
model and measured data. Restricting the number of fitted parameters and
the interaction between them, we find an increases of uniqueness of the
found fit. In ADFE this was achieved by utilizing a semi-analytical solution
of the 2D axi-symmetric advection diffusion equation that can describe the
contrast transport for vessels with a slowly varying radius. This solution
provides a clear relationship between advection and diffusion and requires
low computational effort. A verification study, shown in Chapter 3, was
done on simple 2D axi-symmetric vessels to demonstrate the accuracy of
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the semi-analytical solution and benchmark ADFE against TAFE. Excellent
agreement could be achieved between the semi-analytical solution and
simulated 2D axi-symmetric data. This also ensured us that ADFE predicts
the imposed flow and gains a great improvement in accuracy compared to
TAFE. This study showed the importance of including radial velocity and
diffusion when modeling contrast transport. Similar results could also be
achieved when using the SEM solver instead of the semi-analytical solution.
However, the computation time for computational models is still substantially
larger compared to the semi-analytical solution. This difference becomes
larger when scaling up to coronary trees as the computation time for one
ADFE optimization iteration can take hours for large cases. This would make
ADFE not practical for clinical usage.

For verifying ADFE for coronary trees a second verification study is nec-
essary as coronary trees are, when compared to the 2D axi-symmetric vessels,
curved, have a non constant radius and also contain bifurcations. In Chap-
ter 4 we derived a new ADFE workflow that combines all vessel segments
and computes CBF on each segment. The verification was again, to exclude
imaging effects, performed on software phantoms. These software phantoms
are patient specific geometries extracted from CCTA images on which con-
trast transport was simulated by our SEM solver. The results show excellent
agreement between imposed and ADFE flow. The new two steps optimization
process ensured a robust fitting of the semi-analytical solution and great ac-
curacy. This updated workflow for coronary trees resulted in a negligible loss
of accuracy when scaling up from 2D axi-symmetric vessels to complex coro-
nary trees and again, compared to TAFE, ADFE showed great improvement
in accuracy of computed flow.

The verification study for coronary trees shows that ADFE does not need
corrections for wrongly simplifying our contrast transport model. However,
the intensity measured from the CCTA contains imaging effects such as blur
and noise. Especially blur lowers the measured cross-sectional averaged in-
tensity of the contrast agent by blooming contrast intensity outside of the ves-
sel. In Chapter 5 we showed that the amount of bloom not only depends on
the size of the vessel compared to the point spread function (PSF) but also
the radial variation of the concentration field. The embedded semi-analytical
solution inside ADFE computes the concentration in both axial and radial di-
rection. These results are used as input to a new CT correction function that
computes the relative intensity drop caused by the blur for each cross-section.
By substituting in this blurred semi-analytical concentration calculated by the
CT correction function, ADFE is able to compute flow from blurred concen-
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tration data. This blurred ADFE method was verified on the same software
phantoms used in Chapter 4 whose contrast data has been transformed to add
the CCTA image effects. This transformation was performed using a simple
virtual CT (vCT) simulator that adds the effects of blur and noise to the simu-
lated concentration data. The verification results, obtained in Chapter 5, show
a decrease in accuracy of ADFE compared to the original data, despite the
added CT correction function. TAFE was less impacted by the added CCTA
imaging effects, however ADFE still showed a big improvement over TAFE.

6.2 Future work

Based on the insights at the end of Chapter 5, future ADFE related studies
should investigate possible improvements of the concentration profile com-
puted by the semi-analytical function. A high dependency was found between
the accuracy of ADFE and the CT correction function which requires these
concentration profiles as input.

Our first suggestion is improving the assumed parabolic velocity profile
in the semi-analytical solution. At the start of the coronary circulation the
flow could be too high to accept a parabolic velocity profile as the viscous
forces are not dominated enough. This already resulted in an overestimation
of ADFE flow in Chapter 4 but also affected the computed concentration pro-
file which could explain the underestimation in ADFE flow found in Chapter
5. In Chapter 3 details on how to adapt this velocity profile are provided. The
second suggestion is related to the oversimplified prediction of the concentra-
tion profile after a bifurcation. Currently, the profile at the end of the input
vessel segment is copied to the two output vessel segments. In Chapter 4 this
approach resulted in an imperceptible decrease in accuracy. However, this
concentration profile error is propagated over the entire vessel segment which
again can be a source of the observed underestimation in computed ADFE
flow. Improvements to the assumed velocity profile could be achieved by uti-
lizing a simplified solution of the Navier Stokes equation. These solutions are
often reduced in order to speed up the computation at the expense of the extent
how detailed the results are. As we are only interested in an approximation of
the velocity profile over the axial length a highly reduced order model could
be functional, which does not add much in the total computational time of
ADFE.

Secondly, a transformation function for approximating the changes of the
concentration profile being transported through a bifurcation, can improve the
computed ADFE flow as this results in a better agreement between the blurred
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semi-analytical solution and measured intensity. The bifurcation is a complex
3D geometry which splits the concentration profile that is rearranged in each
output vessel segment. The resulting concentration profiles depend on many
factors such as the angles between the three vessel segments, radii of the con-
necting vessel segments or the summed effect of multiple bifurcations in a
row. This implies that modeling this transformation is difficult to do for highly
reduced-order models and only possible using full 3D simulations. A hybrid
model that connects the vessel segments based on the axi-symmetric solution
with full 3D bifurcations calculated with the SEM solver would be good first
starting point as this combines low computational effort in the vessel segments
and accurate transformation of the concentration profiles between vessel seg-
ments.

Besides the proposed improvements described above, whichwill hopefully
aid in improving the ADFE results of the in-silico data set used in Chapter
5, there are still some physical phenomenon not included in these software
phantoms which are present in actual CCTA intensity data. First preliminary
ADFE results on actual CCTA have shown a discrepancy in the intensity as-
sumed by the ADFE method and measured at the inlet of the coronary cir-
culation. This discrepancy can cause unpredictable outliers in the computed
ADFE flow as during the ADFE optimization the flowwill be adjusted to over-
come it. We believe that the origin of this lies in the pulsatility of the contrast
transport. Firstly the actual AIF contains pulsatile intensity variation which
when smoothed follow the used description in this thesis. These variation are
smoothed out by diffusion the further away from the aortic valve, however
this could not be enough at the start of the coronary circulation. Secondly,
in ADFE we only model the average velocity contrast transport, however the
measured contrast intensity pulsates around this average caused by the time
varying velocity field. Both effects could contribute to the observed discrep-
ancy in the intensity between ADFE and measured intensity at the inlet of
the coronary circulation and therefore more research is need to quantify and
correct this.

Another not included phenomenon is verifying the ADFEmethod on coro-
nary trees containing CAD. In Chapter 4 and 5 vessel segments were high-
lighted which deviated from the assumed parabolic velocity field. The nar-
rowing of the vessel diameter due to a stenosis is an extreme situation where
this also occurs. Additionally, the concentration profile is piled together inside
of the stenosis and a reorganization occurs distal to the stenosis. With the cur-
rent implementation of ADFE, we would advice to treat a significant stenosis
similar to a bifurcation and fit the semi-analytical solution proximal and dis-
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tal to the stenosis, excluding the diseased area from the ADFE optimization.
More research is needed in when a stenosis becomes significant enough for
excluding it and how to perform the ADFE fit distal to the stenosis.

Clinically validating ADFE could be done by measuring blood flow using
intracoronary thermodilution (Candreva et al., 2021; Gallinoro et al., 2021).
During thermodilution a cold saline solution is injected inside the coronary
vessel together with monitoring the blood temperature. The cold solution
lowers the blood temperature and when the injection is stopped the measured
blood temperature will return to the starting temperature. The pump rate and
relative temperature difference before and after injection are related to the
blood flow through this vessel. Together with these blood flow measurements
at multiple location inside of the coronary tree, a CCTA image together with
AIF makes it possible to compare between the measured and ADFE derived
flow. This comparison could be performed similarly to the comparisons per-
formed in Chapters 4 and 5.

Finally, based on the software phantoms used in this thesis, a lot of insight
has been gained in the contrast distribution generally found in the CCTA im-
age. Specifically each vessel segment contains a concentration boundary layer
in which the contrast concentration increases from almost zero at the wall up to
an almost constant concentration at the center. The thickness of this boundary
layer does not only depend on physical parameters such as the Peclet number
but also on the timing of the AIF. This timing of the AIF is especially impor-
tant as the thickness increases with increasing changes in intensity of the AIF
over the time. It will reach a minimum on top of the AIF plateau just before
the contrast concentration will start to decrease again. Current segmentation
methods rely on a constant intensity over the cross section and thus do not
correct for the underestimation of the radius caused by this boundary layer.
This means that for segmenting the coronary tree it is important to track the
AIF in order to ensure that the optimal condition at the AIF plateau is reached.
For this, it is crucial to obtain the AIF data set to at least check this. An even
better improvement can be reached when utilizing the concentration profile of
the semi-analytical solution found in the ADFE method. This concentration
profile will provide an improved approximation of the actual profile which
will aid in properly segmenting the coronary tree.
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Samenvatting

Bij coronaire computer tomografie angiografie (CCTA) wordt een intra-
veneus contrastmiddel op basis van jodium in de bloedbaan geïnjecteerd om
de grenzen van de kransslagaders zichtbaar te maken. Hiermee kunnen de
geometrische kenmerken van obstructieve atherosclerotische plaques, d.w.z.
stenosen, anatomisch worden beoordeeld. Dit kan worden gebruikt om de
ernst van een stenose vast te stellen en helpt bij het nemen van beslissingen
over klinische interventie. Deze beoordeling geeft echter geen informatie
over hemodynamische kenmerken zoals bloedstroom of bloeddruk verlies
over de stenose, die betere variabelen zijn om beslissingen op te baseren.

De afgelopen jaren is de fractional flow reserve (FFR) gebruikt bij de klin-
ische besluitvorming over de behandeling van coronaire hartziekten. FFR
wordt gedefinieerd als de verhouding tussen de druk distaal van de stenose
en de referentie druk van de aorta. Voor het meten van de FFR is een door
fluoroscopie geleide invasieve katheterisatie en vervolgens het verder inbren-
gen van een drukdraad op een plaats in het bloedvat distaal van de stenose
nodig. Dezelfde metriek kan echter ook worden verkregenmet Computational
Fluid Dynamics (CFD) modellen. Deze niet-invasieve CFDmodellen worden
gecreëerd door een numerieke mesh van de coronaire circulatie uit de CCTA
te segmenteren en samen met randvoorwaarden, gebaseerd op schalingswet-
ten die gebruik maken van patiënt specifieke geometrische eigenschappen.
Hoewel gebleken is dat deze CFD-modellen een goede diagnostische waarde
bieden, zou een verbetering kunnen worden bereikt door de hemodynamis-
che en geometrische informatie af te leiden die verweven ligt in de contrast
intensiteit van het CCTA beeld.

Bij de ingang van de coronaire circulatie (aorta) kan een stijging en daling
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van de intraveneuze contrast concentratie in de tijd indirect worden gemeten
via periodieke beeldvorming. Deze stijging en daling beschrijven de arteriële
input functie (AIF). Het contrastmiddel wordt vervolgens door de coronaire
bloedstroom (CBS) door de coronairen getransporteerd. De combinatie van
AIF, CBS en coronaire geometrie resulteert in een contrastmiddel verdeling
die zichtbaar is op het CCTA beeld. Deze verdeling wordt beschreven door de
advectie diffusie vergelijking. Door deze vergelijking op te lossen wordt een
direct verband tussen al deze parameters verkregen. Hierdoor kan het inverse
probleem van het extraheren van CBS op basis van de gemeten contrast in-
tensiteit worden opgelost. Bestaande methoden hebben wisselend succes, wat
wordt veroorzaakt door een te eenvoudige oplossing van de advectie diffusie
vergelijking en het feit dat de intensiteit die wordt gemeten op het CCTA beeld
niet altijd goed gecorreleerd is met de werkelijke concentratie. In dit proef-
schrift stellen wij een verbeterde methode voor om CBS te bepalen, genaamd
advection diffusion flow estimation (ADFE), door de oplossing van de advec-
tie diffusie vergelijking te verbeteren.

Om deze nieuwe oplossingsmethode te verifiëren hebben wij echter
gegevens nodig die geen beeldvormende effecten bevatten. Klinische CCTA
data sets zijn daarom niet geschikt voor verificatie, omdat de fout die wordt
veroorzaakt door de gebruikte oplossing en de fouten die worden veroorzaakt
door beeldvormende effecten onmogelijk te scheiden zijn. Daarom maken
wij software fantomen die bestaan uit geometrieën waarop het transport
van contrast wordt gesimuleerd. De berekeningen en het maken van deze
simulaties worden uitgevoerd door onze spectrale elementen methode (SEM)
oplosser die in Hoofdstuk 2 wordt beschreven. SEM gebruikt elementen van
een hogere orde in combinatie met optimale integratie, waardoor situaties
kunnen worden berekend zonder gebruik te maken van stabilisatie methoden
die door de traditionele eindige elementen methode (EEM) wordt gebruikt.
In de resultaten sectie tonen we de hogere convergentie snelheid van SEM
in vergelijking met EEM en bespreken we de mogelijkheid om moeilijk te
simuleren convectie gedomineerde situaties te berekenen. Alle genoemde
software fantomen in dit proefschrift zijn berekend met deze SEM oplosser.

In Hoofdstuk 3 wordt de verbeterde oplossing van de advectie diffusie
vergelijking afgeleid en gevalideerd. Dit is een semi-analytische oplossing
van de 2D axi-symmetrische advectie diffusie vergelijking. Vervolgens
is een verificatie uitgevoerd op 2D axi-symmetrische software fantomen
door de overeenstemming tussen onze semi-analytische oplossing en de
gesimuleerde concentratie te vergelijken. Deze oplossing vormt dan de basis
voor onze nieuwe ADFE methode. ADFE is ook geverifieerd op de 2D
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axi-symmetrische software fantoom dataset door de berekende volumestroom
te vergelijken met de verwachte volumestroom. Ten slotte hebben wij ADFE
getoetst aan de huidige gouden standaard, de transluminal attenuation flow
encoding (TAFE), en aangetoond dat de voorspelde volumestroom van ADFE
aanzienlijk beter is dan die van TAFE.

In Hoofdstuk 4 breiden wij ADFE uit om CBS te kunnen berekenen
uit patiënt specifieke coronaire bomen. In vergelijking met eenvoudige
axi-symmetrische geometrieën is een tweede optimalisatie stap in ADFE
nodig om een robuuste en nauwkeurige berekening van CBS te waarborgen.
De verificatie is opnieuw uitgevoerd op software fantomen die wij uit klinis-
che CCTA data sets hebben gehaald en de resultaten tonen een uitstekende
overeenkomst tussen de berekende en de verwachte volumestroom. Een
belangrijke bijdrage hieraan is de extra optimalisatie stap in ADFE. Om er
zeker van te zijn dat de verbetering van ADFE ten opzichte van TAFE ook
geldt voor complexe boom geometrieën, vergelijken wij de twee methoden
opnieuw en tonen aan dat deze nog steeds evident is.

Ten slotte wordt in Hoofdstuk 5 een CT correctie functie afgeleid om
de effecten van onscherpte toe te voegen aan de in ADFE gebouwde semi-
analytische oplossing. Hierdoor kan ADFE de bloedstroom berekenen op ba-
sis van de wazige contrast intensiteit in het CCTA beeld. Om ADFE met deze
CT correctie functie te verifiëren is een eenvoudige virtuele CT methode ge-
bruikt om de contrast data van de software fantomen van Hoofdstuk 4 te ver-
vagen en vervolgens ruis er aan toe te voegen. Hoewel de nauwkeurigheid van
ADFE op deze virtuele CT data set minder was dan die van de oorspronkelijke
in Hoofdstuk 4 gebruikte data set, is het nog steeds een aanzienlijke verbeter-
ing ten opzichte van TAFE en bruikbaar voor klinische toepassingen. Samen-
vattend toont ADFE een groot potentieel om een nauwkeurigemethode te wor-
den voor het schatten van CBS uit CCTA beelden.
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