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The scientific man does not aim at an immediate result.
He does not expect that his advanced ideas will be readily
taken up. His work is like that of the planter—for the
future. His duty is to lay the foundation for those who are
to come, and point the way. He lives and labors and hopes.

Nikola Tesla
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Summary

Anticipativemodel predictive control for linear parameter-varying systems

This thesis presents several contributions to tube-based model predictive control (MPC) for
linear parameter-varying (LPV) systems. A common feature of the presented approaches

is their anticipative capability: that is, the capability of exploiting available information on the
possible future trajectories of the scheduling variable to improve control performance.
The LPV system concept can be used to model physical systems whose dynamics depend

on an external parameter or on the current operating point. In an LPV system, the dynamical
mapping between the control input and the output is linear, but this mapping depends on a
so-called scheduling variable. The dynamics of an aircraft, for instance, can vary with its
airspeed and altitude: these two quantities can therefore considered to be scheduling variables.
It is also possible to “embed” a non-linear system in an LPV representation. In that case, the
scheduling variable is used to capture the non-linear behavior.

In engineering, systems are often subject to constraints. These constraints can include hard
limitations on the control actuation inputs that can be applied, and limitations on the allowed
resulting behavior of the system. MPC is a control design approach that can ensure that the
constraints will not be violated. A central feature of MPC is its explicit use of a mathematical
model to predict the future response of the system. At each sampling instant, this prediction
model is used in an optimization procedure to decide which control input should be applied.

In the LPV setting that is adopted in this thesis, the current value of the scheduling variable
can be measured, but its future evolution is considered uncertain. Therefore, at each sampling
instant, an LPV MPC must compute a control action that guarantees closed-loop stability with
respect to all possible future realizations of the scheduling variable. In some applications,
however, future scheduling trajectories are not completely uncertain, but some knowledge
about their possible future behavior is available. In this thesis, a thermal control problem from
semiconductor lithography is considered in which the scheduling variable corresponds to an
exposure trajectory that is approximately known in advance. Because the temperature which is
to be controlled depends on the scheduling variable, to achieve the best possible performance, it
is necessary to use this information in predicting the future response of the system and deciding
which control input should be applied.

Unfortunately, it is observed that existingLPVMPCapproaches are limited in their capabilities
for exploiting available information on possible future scheduling trajectories. Therefore, to
improve upon this situation, an “anticipative” control concept is proposed in this thesis. In

vii



Summary

anticipative control, the controller can use information about the possible future scheduling
trajectories that might become available on-line while the system is operational. In this way,
the future response of the system can be predicted with less uncertainty, and better control
performance can be attained.
It is shown in this thesis that a tube-based approach can be used to construct anticipative

LPV model predictive controllers. The practical implementation of these controllers requires
the solution of a linear program (LP) with a number of variables and constraints that scales
linearly in the prediction horizon. LPs can be solved efficiently, and therefore the controllers
developed in this thesis can be considered to be computationally tractable. Within the proposed
framework for anticipative control, several distinct contributions to the literature on tube-based
MPC for LPV systems are subsequently made. These are summarized next.
To ensure recursive feasibility and closed-loop stability in MPC, typically an invariant

terminal set is employed. The first main contribution of this thesis is to show that this
condition can be relaxed into the requirement that the terminal set must be finite-step contractive
instead. Finite-step contractive sets have been employed before in nominal MPC and in certain
robust MPC approaches, but not yet in tube-based MPC. To achieve this, a new periodic tube
parameterization is proposed which yields recursive feasibility. Closed-loop stability is ensured
through the construction of an associated terminal cost based on a periodic Lyapunov-like
function that is decreasing along set-valued closed-loop trajectories.
Next, a so-called heterogeneous tube parameterization structure is proposed. Instead of

parameterizing all tube cross-sections in the same way as is usual in currently available ap-
proaches, this setup allows to use different parameterizations for each cross-section. Conditions
under which this combination of parameterizations leads to a recursively feasible algorithm,
are presented. The combination of different parameterizations into one tube has similarities
to the well-known concept of “move blocking” in nominal MPC. A specific parameterization
that satisfies the developed conditions and corresponds to a combination of scenario MPC
and homothetic tube MPC, is also proposed. The heterogeneous tube has the potential to
improve the trade-off between the complexity of the parameterization, and achievable control
performance as measured by the size of the corresponding domain of attraction.

Subsequently, an alternativemethod for optimizing the aforementioned complexity/performance
trade-off is proposed. Given a pre-specified domain of attraction, an off-line optimization
procedure determines which degrees of freedom can be eliminated from the tube parameteriza-
tion without affecting feasibility. The procedure relies on reweighted one-norm optimization
to construct a parameterization that is as “sparse” as possible. The degrees of freedom that
correspond to zeros in this sparse parameterization can be removed as decision variables from
the on-line tube synthesis problem. In this way, the number of decision variables can be
reduced. A significant reduction is obtained especially when the sets specifying the shape of
the tube cross-sections are described in a vertex representation.
The next topic addressed is the tracking of constant, but non-zero, references. In an LPV

system, variations in the scheduling signal can lead to unavoidable tracking errors. Existing
tracking algorithms ensure offset-free tracking when the scheduling signal converges to a
constant value, but do not give guarantees on the error when the scheduling signal keeps varying.
In this thesis, an alternative is proposed through the construction of so-called bounded-error
invariant sets. By using these sets in the tube-based framework, an a-priori bound on the

viii



tracking error induced by the scheduling variations can be guaranteed. This development can
be seen as a first step towards an approach for the bounded-error tracking of a larger class of
reference signals in constrained LPV systems.
As the last main contribution of the thesis, it is shown how the previously developed tube

MPC solutions can be applied to non-linear systems described by an LPV embedding. As part
of the initialization of the controller, sequences of state constraints are constructed to bound the
predicted state trajectories. Corresponding scheduling sets are computed based on the relation
between the state and scheduling variables that exists in an LPV embedding. This can be seen
as a particular way of obtaining a description of possible future scheduling realizations, that
are subsequently used in the anticipative control framework. The construction guarantees that
the assumed possible evolutions of the scheduling variable are consistent with the realized
closed-loop state trajectories. Therefore, the controller is recursively feasible and stabilizes the
original non-linear system.
Finally, the developed methods are applied to the control of a simple one-dimensional

thermal system. The considered example represents a simplified version of a thermal control
problem from semiconductor lithography. In this system, the scheduling signal corresponds
to an exposure trajectory that is approximately known in advance and this future information
can be included in the framework of anticipative control. The effect of including the available
knowledge on approximate future trajectories is investigated for different system configurations.
For the considered system, it is found that there are situations in which anticipative control can
give a performance improvement as measured in terms of the simulated closed-loop cost.
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Chapter 1

Introduction

1.1 Control, constraints, and models
In the theory of systems and control, a system is often thought of as a “box” which takes a
control input and produces an output in response (Figure 1.1). This mapping between inputs and
outputs can be dynamical, which means that the output not only depends on the current value
of the input, but also on its past trajectory. The car depicted in Figure 1.2 can be considered as
a simple illustrative example of a system. The depression of the accelerator pedal is an input,
and the resulting forward speed of the vehicle is an output. Clearly, the speed depends not
only on the instantaneous position of the pedal, but also on the length of time for which it was
depressed. Thus, the car is a dynamical system.

Control can be defined as “the adjustment of the available degrees of freedom (manipulated
variables) to assist in achieving acceptable operation of a system (process, plant).” (Skogestad
and Postlethwaite 2005). This adjustment can be performed by a controller, which is a device
that is connected to the input of the system whose behavior shall be influenced. The control
design problem is to determine, for a given system, a suitable controller such that “acceptable”
operation results.
The meaning of “acceptable” can be defined by specifying a so-called reference. The

reference corresponds to a desired value or trajectory of the output of the system. Typically
one of two objectives is of interest: either regulation or tracking. In a regulation problem,
the reference is a constant signal, and the purpose of the controller is to attenuate the effect
of disturbances so as to keep the output of the system near this constant value. In a tracking
problem, the reference is a time-varying signal, and the controller must make the output follow
(“track”) this reference as closely as possible.

A controller can be connected to the system in the feedforward or open-loop manner of
Figure 1.3. For a given reference input, the controller uses a mathematical model of the system

Input Output

u y
System

Figure 1.1: A system.
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Forward speed
(output)

Gas pedal
(input)

Figure 1.2: A motorized vehicle is a simple example of a system.

System
Control
input

Disturbances

OutputReference

r u y

d

Controller

Figure 1.3: The principle of feedforward control. The controller does not make use of the
output measurement.

to select an appropriate control input that should lead to acceptable behavior. In this setting,
the controller is not aware of the true value of the output of the system. Therefore, if significant
disturbances are acting on the system or if the used mathematical model is not accurate, the
controller will not be able to achieve its tracking- or regulation-objective.
To overcome this problem, the inclusion of feedback is necessary. In feedback control, a

measurement of the output is fed back into the controller, so that this measurement can be
used in determining the control input. The feedback control concept is illustrated in Figure 1.4.
Because a loop is “closed” between the output of the system and the controller, the overall
interconnection is called a closed-loop system. Due to the inclusion of feedback, the controller
can attenuate the effect of disturbances acting on the system, and can compensate to a certain
degree for modeling uncertainties.

System

Controller

Control input

Disturbances

Measured output

Reference

u
y

d

r

Figure 1.4: The principle of feedback control. The usage of the output measurement allows the
controller to compensate the effects of unknown exogenous disturbances.
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The governor (controller) sets
valve position (control input)

Rotates with the speed of the engine
(measured output)

Steam to the engine (system)

Figure 1.5: Watt’s centrifugal governor, patented in 1788. An increase in rotational speed (the
measured output) pushes the steel balls outwards. This motion acts on a lever which
reduces the opening of the steam valve (the control input), decreasing the flow of
steam into the engine and lowering its speed. If the governor is well-designed,
an equilibrium will eventually be reached and the engine will run at a constant
(reference) pace.

Besides this obvious advantage, a difficulty in feedback design is that the controller can also
have a destabilizing effect if it is not designed properly. Roughly speaking, the closed-loop
is called stable if, in the feedback interconnection of Figure 1.4, the output is guaranteed to
converge to—or remain in a small neighborhood of—the reference value. If the closed-loop is
unstable, the output continually diverges and reaches an arbitrarily large amplitude, which is
clearly undesirable and can have disastrous effects.
An important early industrial feedback control system was the so-called governor (Kang

2016). Governors were mechanical devices used to regulate the running speed of steam engines
(Figure 1.5). Before the invention of the governor, an engine would slow down or speed up
whenever its attached mechanical load was changed. By removing this unwanted effect, the
governor greatly improved the steam engine’s usefulness for industrial applications. However,
sometimes governors caused the speed to oscillate or to continually increase. In search of a
solution to this problem, the workings of the governor were analyzed mathematically by J.C.
Maxwell in the 19th century (Maxwell 1868). His work provided a theoretical answer to how
a governor should be designed such that the speed of the engine is guaranteed to reach the
desired constant value (i.e., such that the closed-loop system displays a stable behavior). It can
be seen as one of the early foundations of the modern field of systems and control.
The analysis of Maxwell showed that when designing a controller, it is essential to be

aware of the relevant characteristics of the system that is to be controlled. This concerned
knowledge of the dynamic response—i.e., the dynamical relationship between input- and output
variables—of the governor and of the machine that it was attached to, which can be described
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Figure 1.6: Semiconductor lithography machine (left) and silicon wafer (right). The wafer has
a diameter of 30 cm.

Point of illumination
Wafer

Exposure trajectory

Figure 1.7: Basic concept of semiconductor lithography.

mathematically in terms of differential equations.
For advanced systems that are encountered in engineering today, being able to describe their

dynamics mathematically in terms of a model is still equally important to achieve successful
control design. Another feature that frequently occurs and must be accounted for, are constraints.
Constraints represent hard limitations on the possible or allowed behavior of a system that may
not be violated at any cost. Clearly, a controller must be designed with such limitations in mind.
One type of constraints are the so-called input constraints. These result from physical

actuator limitations, causing restrictions on the control inputs that can be applied to the plant.
For instance, a steam valve can not be used to increase the flow rate if it is already fully opened,
and an electric motor used to drive a car can not provide more than its rated torque.

Illumination

Wafer

Thermally-induced deformations

Control input: heat

Figure 1.8: Example of a constrained control problem: wafer temperature control.
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A second type of constraints corresponds to limits on the behavior of the system that results
after applying the controls. This type of constraints are known as output constraints. Examples
of this type are the maximal allowed acceleration of a vehicle, the maximum temperature in a
chemical reactor, or obstacles restraining the range of motion of a mechanical system.
A relevant example of a constrained system can be found in semiconductor immersion

lithography, which is a central step in the production of integrated circuits (ICs) (Lawson and
Robinson 2016; Moreau 1988; Singh et al. 2013) (Figure 1.6). In the lithography step, a pattern
specific to the IC that is being produced is projected onto a silicon wafer that is coated by a
photosensitive material. In this process, the exposure location is moving with respect to the
wafer according to a prescribed trajectory (Figure 1.7). It is required that this projection is
extremely accurate, with a margin of error within the sub-nanometer range. To achieve this, it
is necessary to eliminate all possible factors that can contribute to imaging errors. One such
factor are deformations at the wafer surface that are caused by a non-uniform temperature
distribution in the wafer (Figure 1.8). This can be avoided by regulating the temperature of the
wafer, and for this purpose the system is equipped with heaters.

The heaters in this system can supply positive heat to the wafer, but can not actively cool
it down. Furthermore they can supply a certain maximum amount of heating power. Thus,
the input constraint in this system is that only non-negative control inputs can be physically
applied. In addition, the magnitude of these inputs must be limited to a given maximum value.
A controller must be aware of these constraints: otherwise it might, for instance, attempt to
meet its performance objective by requesting a negative heat input— causing poor performance
and potentially even destabilizing the system.
Another constraint comes from the fact that the controller is not allowed to heat the wafer

beyond a given maximum temperature, in order to prevent excessive deformation of the material.
This corresponds to an output constraint.

One way of designing a controller that avoids constraint violations such as requesting
negative heat, is by making it “cautious”, i.e., to have it operating sufficiently far away from the
constraints under all expected operating conditions. However, this limits the performance that
can be achieved.

MPC is an advanced control methodology which can explicitly take into account the presence
of constraints (Maciejowski 2002; Rawlings and Mayne 2009). A model predictive controller
can therefore operate a constrained system safely and within its physical limitations, without
being overly cautious. A central feature of MPC is that it relies on a mathematical model of the
system to be controlled. This prediction model is used to explicitly predict the response of
the system to changes to its manipulated variables, and these predictions are used as part of a
decision-making process which decides what is the “best” control action that should be applied
to the plant. This process often corresponds to a mathematical optimization problem whose
numerical solution must be computed many times per second while the system is in operation
(“on-line”). Thus, increased computational resources are required for the implementation of
MPC in comparison to many other control approaches. This is a price that has to be paid to
benefit from its constraint handling capabilities.
Furthermore, because MPC relies on a mathematical model to predict how the system

will respond to changes in its control inputs, it is important that this model is an accurate
representation of reality. If there is a large discrepancy between the predicted and realized
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responses, the closed loop may behave poorly, and constraints may be violated. Arguably the
most popular approach in control theory is to describe the system using a linear time-invariant
(LTI) model (Dorf and Bishop 2011; Franklin et al. 2014; Schetzen 2002). In such a model, the
dynamical relationship between input and output variables is linear and this relationship does
not change with time or with any other parameter. Due to its relative simplicity, it is possible to
formulate efficient control design approaches working on this class of models. This includes
MPC, as the optimization problem that must be solved as part of the MPC algorithm has a
relatively simple structure in the linear case (Rawlings and Mayne 2009). The assumption that
a system can be well-described by an LTI model is often reasonable in practice, because even a
strongly non-linear system behaves approximately linear in a sufficiently small region around a
fixed operating point (Dorf and Bishop 2011, Chapter 2).
Problems arise when a non-linear system is to be controlled over a larger operating regime,

or when the dynamical response of the system depends on an external parameter that can not
be influenced by the controller. These two situations are illustrated in Figure 1.9.
The steady-state output y of some non-linear system in response to an applied input u is

depicted in Figure 1.9.(a). In a small neighborhood of a single operating point (corresponding
to a pair of values (ū, ȳ)), the non-linear response can be well approximated by a single linear
function. However, if the non-linear behavior is to be represented accurately over a larger set of
operating conditions, this is no longer sufficient. Indeed, for the non-linear function from the
figure, the linear approximation changes significantly depending on the operating point.

The thermal control problem introduced previously in Figure 1.8 represents a system whose
dynamical behavior is dependent on a set of external parameters that can not be influenced
by the controller. In immersion lithography, before hitting the wafer, the light first passes a
layer of water that is held in between the wafer and the so-called immersion hood (IH). This
water acts as a heat sink, and thereby influences the temperature distribution in the wafer and
the resulting deformations at the surface. Because the IH is moving with respect to the wafer
according to the exposure trajectory, this effect is position-dependent.

In the two cases illustrated above, the LTI assumption can not offer an accurate description of
reality, and if high control performance and guaranteed constraint satisfaction is to be achieved,
a more elaborate mathematical model structure is needed. The paradigm of LPV systems
offers such a structure (Shamma 2012). In an LPV system, the relationship between control
inputs and outputs is still linear, but this relationship is now allowed to depend on an external
scheduling variable. This scheduling variable can, for instance, represent the operating point
of a non-linear process, or any other parameter that influences the dynamical behavior of the
system (Rugh and Shamma 2000; Shamma 2012). The class of systems that can be accurately
described by LPV models is thus significantly larger than the class of systems that can be
accurately described by LTI models.

Because the LPV system class retains the property of linearity between inputs and outputs, it
is still possible to formulate computationally efficient design algorithms for LPV systems. Also,
many results on LPV systems can be viewed as generalizations of results from the extensively
studied LTI case (Tóth 2010).

The remainder of this introductory chapter is structured as follows. First, in Section 1.2, an
overview of the LPV system concept is provided. The principles of MPC for LPV systems
are discussed in Section 1.3 and a survey of the relevant literature is given. In Section 1.4, it
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Approximately linear
behavior

Operating point
(ū, ȳ)

u

y

(a)

(b)

Wafer

Exposure trajectory

Water (heat sink)

Illumination

Immersion hood (IH)

Control input: heat

Figure 1.9: (a) The response of a non-linear system can be considered approximately linear
in a small region around an operating point. If the system is operated around
multiple operating points, a single linear model can no longer describe its behavior
accurately. (b) In immersion lithography, the thermal distribution in the wafer is
affected by the exposure location, because the water that is in contact with the wafer
surface acts as a heat sink.
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θ

LPV system

Scheduling variable
(measured)
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(a)

u y

θ

LPV system

Controller
r

(b)

Figure 1.10: LPV system concept (a) and LPV feedback control (b).

is pointed out that there exist certain systems for which the existing LPV MPC approaches
are not fully adequate. Based on this observation, a number of research questions that will be
addressed in this thesis are stated. Finally, in Section 1.5, the chapter concludes with an outline
of the rest of the thesis.

1.2 The linear parameter-varying paradigm

This section gives a more detailed overview of the LPV system concept, which was briefly
introduced in the previous section. An overview, including some history, is provided in
Section 1.2.1. The issue of uncertainty in future scheduling trajectories is discussed in
Section 1.2.2. To conclude, Section 1.2.3 gives an overview of the principal differences between
LPV systems and other types of linear systems.

1.2.1 History and overview

Linear parameter-varying systems are a special class of dynamical systems. In an LPV system
the dynamical mapping between the control input u and the output y is linear. However, this
linear relationship depends on an external and possibly time-varying scheduling variable θ.
In the LPV setting that is considered in this thesis, it is assumed that the current value of the
scheduling variable can be measured. Conceptually, it is also assumed that θ is an exogenous
variable that is independent of u and y. Because a measurement of θ is available, a controller
can—and preferably should—make use of this information. These concepts are illustrated in
Figure 1.10.
The LPV system concept was first introduced to enable formal analysis of the industrial

practice of gain scheduling (Shamma 2012). Gain scheduling can be viewed as a “divide
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Scheduling space

Scheduling functions
(interpolation)

Figure 1.11: The principle of gain scheduling. A set of local models is obtained by linearizing
a non-linear system around a number of operating points in the scheduling space,
and an LTI controller is designed for each of these points. A global controller is
then constructed by interpolating between these local controllers as a function of
the measured operating point (i.e., the scheduling variable).

and conquer” design approach, in which a complex non-linear control problem is divided
into a number of linear subproblems (Leith and Leithead 2000b). Specifically, a collection
of operating points of the non-linear system is selected, and for each operating point a single
LTI controller is designed which works well in a neighborhood around its corresponding point.
While the system is in operation, an interpolation between these individual controllers takes
place based on the current measured operating point (Figure 1.11). This can be done according
to different possible interpolation schemes, e.g., input-, output-, and coefficient interpolation
(Bachnas et al. 2014).

Perhaps the earliest successful applications of this concept can be found in military flight
control systems that were being developed after World War II (Rugh and Shamma 2000).
The dynamical behavior of an aircraft changes significantly over its flight envelope, which is
characterized by parameters such as the airspeed, angle of attack, and altitude. Therefore, a
single time-invariant controller could not provide satisfactory performance over the full range
of flight conditions, and it became necessary to vary (i.e., “schedule”) the controller based on
the current flight conditions.
This type of “classical” gain scheduling enables the use of relatively simple linear design

tools to address complex non-linear problems. Its primary disadvantage is that it is difficult to
obtain theoretical guarantees on the resulting behavior (e.g., stability) of the closed-loop system
(Leith and Leithead 2000a; Shamma and Athans 1990, 1991, 1992). There are difficulties
associated with the selection of the operating points, and guaranteeing stability is typically
only possible for “sufficiently slow” variations in the scheduling signal—where the meaning of
“sufficiently” is not straightforward to quantify.

Instead of gain scheduling, it is also possible to apply a global modeling approach called
embedding (Abbas et al. 2014; Kwiatkowski et al. 2006; Scherer et al. 1997; Tóth et al. 2011).
In gain scheduling, a global model or controller is constructed by interpolating between several
distinct local models. In contrast, in the embedding case, a single LPV model is constructed in
such a way that variations in the scheduling variable can represent the non-linearities in the
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Non-linear
system

u y LPV systemu
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θ
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LPV systemu y

θ ∈ Θ

(c)

Figure 1.12: The principle of constructing an LPV embedding.

original model.
A non-linear system, as depicted in Figure 1.12.(a), defines a non-linear dynamical relationship

between its input and output. The process of constructing an LPV embedding proceeds roughly
as follows. A scheduling variable θ corresponding to some internal signals of the system is
introduced that allows to equivalently represent this relation in terms of a linear dynamical
map u 7→ y that depends on θ (Figure 1.12.(b)). The signal θ is subsequently converted into an
exogenous signal by “cutting the loop” and by confining the values of θ to some suitable set Θ.
This gives an LPV embedding of the non-linear system (Figure 1.12.(c)). Later, in Section 2.3,
a more detailed explanation of embeddings and their construction is provided.
A fundamental property of an LPV embedding is that its associated set of admissible

trajectories (i.e., the set of input and output signals that are compatible with the dynamics of the
system) is a superset of the set of trajectories of the original non-linear system. This property
ensures that a controller which stabilizes the embedding is guaranteed to stabilize the original
non-linear system as well, something that can not be guaranteed when the local gain-scheduling
approach is used.
As sketched above, the original development of the LPV paradigm was motivated to a

large extent by the desire of being able to apply linear design methods to difficult non-linear
problems. Besides capturing the effect of non-linearities, the scheduling variable can also be
employed to model the effect of varying exogenous parameters of the system. This was the
case in the lithography example introduced previously in Section 1.1, where the scheduling
variable corresponds to the position of the IH. In summary, it can therefore be said that the
scheduling variable can fulfill one or both of the following roles:

Modeling non-linearities The system has non-linear dynamics, and a scheduling variable is
being introduced as an abstraction so that the non-linear system can be (over-)approximated
by an LPV model. This is done in the gain scheduling- and embedding approaches
described above.

Modeling the effect of external parameters The system has linear dynamics, but these dy-
namics depend on one or more external, measurable, parameters. For instance, this is
the case with the wafer of Figure 1.9.(b) as its dynamical behavior is dependent on the
exposure location. This position can therefore be regarded as a scheduling variable.

Nowadays, LPV modeling and control has expanded into many different application domains.
A few examples of applications where LPV techniques have been considered are listed below:
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1.2 The linear parameter-varying paradigm

• Aerospace applications, such as flight control (Hjartarson et al. 2014; Lhachemi et al.
2015; Papageorgiou et al. 2000; Scherer et al. 1997), jet engines (Falugi et al. 2001;
Richter 2012), and missiles (Gahinet et al. 1995);

• Automotive applications, e.g., engine control (Castillo et al. 2015; Majecki et al. 2015;
Wei et al. 2008) and active suspension systems (Do et al. 2013; Tudón-Martínez et al.
2015);

• Applications in power systems, such as the control of wind turbines (Bianchi et al. 2007;
Shirazi et al. 2012);

• Electromechanical applications, e.g., a high-precision positioning stage (Groot Wassink
et al. 2005), a control-moment gyroscope (Abbas et al. 2013; Theis et al. 2014), and a
CD player (Dettori and Scherer 2001);

• Chemical process control, such as the modeling of a distillation column (Bachnas et al.
2014) and a polymerization reactor (Rahme et al. 2016);

• Biomedical applications in, e.g., artificial pancreases (Colmegna et al. 2018; Kovács
2017) and blood pressure regulation (Luspay and Grigoriadis 2015).

More applications of LPV modeling and control can be found, e.g., in the book (Moham-
madpour and Scherer 2012) and in the survey paper (Hoffmann et al. 2014). It is also worth
mentioning that LPV models of physical systems can be obtained through the use of data-driven
identification approaches (Cox and Tóth 2016; Gunes et al. 2017; Rizvi et al. 2018; Tóth
et al. 2012; Wingerden et al. 2009), or through conversion of first-principle non-linear models
(Donida et al. 2009; Kwiatkowski et al. 2006; Rugh and Shamma 2000).

1.2.2 Scheduling dynamics

As stated before, in the considered LPV framework, it is assumed that at every time instant the
scheduling value θ(k) is known. In MPC, it is necessary to be able to predict the response of
the LPV system for some time steps ahead into the future. Although the current scheduling
value is known, the future scheduling values are usually not known exactly. Therefore, some
assumption on the future scheduling trajectories is necessary. Although the scheduling signal
is assumed to be exogenous, some assumption on its possible behavior can typically be made,
e.g., based on physical insight. This section discusses some types of knowledge on the possible
future scheduling trajectories that might be available.
The first and obvious type of information consists of bounds on the possible scheduling

values. The position of the IH in Figure 1.9.(b) for example must be somewhere on the
wafer. Also, in an LPV embedding, the scheduling variable that is introduced to represent the
non-linearities is assumed to belong to a bounded set.

A common type of further knowledge concerns bounds on the rate-of-variation (ROV) of the
scheduling. This means that the scheduling variable can only change at a limited bounded rate,
which follows from the physical properties of the process that is being modeled. The IH in the

11



Chapter 1 Introduction

Set of possible future
exposure trajectories

Wafer

Thermal dynamics depend
on the exposure trajectory
(scheduling variable)

Current exposure location
(immersion hood)

Actuators (heaters)

Figure 1.13: In the wafer temperature control problem, the future evolution of the scheduling
variable can be predicted with high confidence.

lithography machine for instance can not jump instantaneously from one end of the wafer to the
other, but instead its movement is bounded by a certain maximum velocity.
In the lithography application, as explained before using Figure 1.9.(b), the response of

the wafer temperature to an input from one of the heaters depends on the current point of
illumination. The position of the IH can therefore be considered as a scheduling variable.
When manufacturing an IC, the point of illumination will follow approximately a pre-defined
reference trajectory. Based on this nominal path and starting from the current IH position (the
scheduling variable), all possible future scheduling trajectories are known to belong to a set
around a nominal path. This situation is depicted in Figure 1.13. Hence, in this application,
much more detailed information on possible future scheduling trajectories is available that can
not be described by assuming just a bounded ROV.

A comparable situation occurs when controlling a non-linear system that is described in terms
of an LPV embedding. For the purpose of control design, in an embedding, the scheduling
variable is considered independent from other variables in the system. This is a necessary
assumption to ensure linearity of the system representation and to enable the use of linear control
design approaches. However, as can be seen from the sketch of Figure 1.12, the scheduling
variable is actually constructed based on signals from the original non-linear system. Therefore,
when the system is operating in closed loop with the designed controller, the evolution of the
scheduling variable is not free: instead, it is inextricably linked to the input-, output-, and state
trajectories of the real non-linear system.
This implies that also in the embedding case, more detailed information about possible

future scheduling trajectories is available than just global value bounds or bounds on the ROV.
Suppose, for instance, that the scheduling variable in the embedding depends on the system
output and that the output has to satisfy a constraint such as being close to a reference signal.
Then, this information can be used directly to construct more refined sets describing all possible
future trajectories of the scheduling variable1.

1Further details on this approach are provided in this thesis in Chapter 8.
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Linear parametrically uncertain (LPU)

Linear parameter-varying (LPV)

Linear time-varying (LTV)

Linear time-invariant
(LTI)

Figure 1.14: Different classes of linear systems.

A key distinction can be made between the types of knowledge on the scheduling behavior
that were introduced above. The global bound on the allowable scheduling values, for instance,
is a property of the system that does not change after it has been designed. In the lithography
machine, the minimum- andmaximum values of the scheduling variable are fixed by the physical
dimensions of the wafer. On the other hand, the approximate future exposure trajectories are not
fixed a-priori, but are dependent on the specific microchip design that is being manufactured.
Likewise, in an embedding, the future evolution of the scheduling variable is connected to the
future input and output trajectories that are being predicted as part of the MPC optimization
process. Preferably, a controller should be flexible enough to be able to exploit this type of
future information that becomes available while the system is in operation.

1.2.3 Relation to other linear system classes

Besides LPV systems, there exist several other classes of linear systems (Figure 1.14). All
systems in this class share the property of linearity between inputs and outputs, which in turn
leads to similarities between the control design approaches that can be applied. Nonetheless,
there are also several differences that are relevant for the design of predictive controllers. Before
proceeding to the literature overview on LPV MPC approaches, it is important to be aware of
some of these differences.

To highlight the differences between the different system classes, it is convenient to represent
an LPV system mathematically by a state-space (SS) representation of the form

x(k + 1) = A(θ(k))x(k) + B(θ(k))u(k),

y(k) = C(θ(k))x(k) + D(θ(k))u(k),
(1.1)

where k ∈ N denotes the discrete time instant, u(·) is the control input, y(·) is the system
output, x(·) is an internal state variable, and θ(·) is the scheduling variable. The matrices
{A(·),B(·),C(·),D(·)} are functions of the scheduling variable, and are of conformable di-
mensions. A more rigorous exposition of LPV state-space (LPV-SS) representations will be
provided later in Section 2.2.
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Relation to linear time-invariant (LTI) systems

An LTI system admits a state-space realization of the form

x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k) + Du(k).

It is easy to see that this is a special case of (1.1) where the matrices {A,B,C,D} are constant
instead of functions of a scheduling variable. Equivalently, an LPV system in which the
scheduling variable takes a constant value θ(k) = θ̄ for all time k corresponds to an LTI system.

Relation to linear time-varying (LTV) systems

A linear time-varying (LTV) system is a system that has an SS representation of the form

x(k + 1) = A(k)x(k) + B(k)u(k),

y(k) = C(k)x(k) + D(k)u(k),

and can be interpreted as a special case of an LPV system where the parameter θ is equal to
time, i.e., where θ(k) = k (Shamma 2012, Section 1.1.2). A major implication of this difference
is that in the LTV case, there is no uncertainty in the future “scheduling” trajectories as there
was in Section 1.2.2. As will be discussed in Section 1.3.1, this makes the MPC design problem
for LPV systems fundamentally more difficult than that for LTV systems.

Relation to linear parametrically uncertain (LPU) systems

In the LPV framework as introduced previously, it is a fundamental assumption that the current
value θ(k) of the scheduling variable is known or can be measured. If this is not the case, then
the system is not called an LPV system but a linear parametrically uncertain (LPU) system.
Such a system can be represented by an SS representation of the form (1.1); the only difference
with the LPV case being that the value of θ(k) can not be measured.

These uncertain linear systems are also said to be subject to “parametric” or “multiplicative”
uncertainty2. Because the assumption that θ(k) is measurable can be seen as an additional
restriction on the systems that can be described in the LPV framework, LPV systems are
considered as a subset of LPU systems, as depicted in Figure 1.14.

Relation to additively disturbed LTI (LTI+) systems

In the MPC literature, another case that is frequently encountered besides LPV systems, is that
of LTI systems subject to so-called additive uncertainties. These can be described by an SS
representation of the form

x(k + 1) = Ax(k) + B1u(k) + B2w(k),

y(k) = Cx(k) + D1u(k) + D2w(k),

2In the convention adopted in this thesis, “parametric” and “multiplicative” uncertainty are used synonymously. A
parametric uncertainty can, therefore, also be time-varying according to a function θ(k).
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θ
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How to set u, such that constraints
are satisfied, and that y → r?

Figure 1.15: The interaction between the controller, the LPV system, and its environment.

where w(k) is a disturbance term, also referred to as an “additive uncertainty”. Strictly speaking,
these systems are not different from “normal” LTI systems, because the disturbance is just an
additional input. Nonetheless, for purposes of MPC, there is a major difference because the
presence of the disturbances leads to uncertainty in the predicted response of the system to
an applied control input. In other words, uncertainty now does not arise due to the unknown
future evolution of a scheduling variable θ, but instead due to the unknown current- and future
values of a disturbance term w. Because the two classes share a similar linear structure, there
exist close relationships between MPC design approaches for these system types, as will be
seen later in the overview of Section 1.3.5. An additive disturbance is usually not considered to
be measurable.

1.3 Predictions and control under uncertainty

This section reviews the constrained control of LPV systems. In Section 1.3.1 the fundamental
concepts are illustrated. Next, Section 1.3.2 summarizes the desirable properties of constrained
LPV control solutions, namely “stability” and “tractability”. The strategies used to obtain
constrained control solutions can be classified in open/closed-loop and robust/scheduling
strategies. These important distinctions are introduced in Section 1.3.3. An overview of
relevant literature on the topic is subsequently given in Sections 1.3.4–1.3.5.

1.3.1 Concept of constrained LPV control

The output trajectory of an LPV system is not only dependent on the applied control inputs,
but also on the evolution of the scheduling variable. As discussed in the preceding sections,
the current value of the scheduling variable can be measured exactly, but its future evolution
is usually uncertain. Thus, the response of the system to a given control input can only be
predicted up to a certain degree of uncertainty. A controller then has to decide which control
input to apply now—at the current time instant—based on these uncertain predictions (Rawlings
and Mayne 2009).

15



Chapter 1 Introduction

An understanding of how this process works can be obtained by studying the interaction
between the controller, the system, and its environment, as depicted in Figure 1.15. In this
setting, which in some sense resembles a strategy game, the objective of the controller is to
make the system behave in a certain desired way. First and foremost this includes guaranteeing
the satisfaction of constraints on the input and output variables. Second, this includes stability
and the optimization of performance, e.g., to drive the output of the system to a desired
constant value and ensuring that it stays there (regulation), or to make the output follow closely
a time-varying reference trajectory (tracking). To achieve these goals, the controller can
manipulate the control inputs of the system.
The value of the scheduling variable can not be influenced by the controller, but it is an

exogenous signal that is determined by an external process. This process can be considered to
be part of the “environment” of the system. As discussed in Section 1.2.2, some knowledge
that describes the possible future behavior of the scheduling variable can be available: in the
lithography system, for instance, this is a set of possible future IH trajectories that are centered
around a “nominal” reference trajectory.
Besides the scheduling variable, the system can also be affected by other (unmeasurable)

disturbances. Such additional disturbances are omitted from this sketch for simplicity.
The controller can observe the current output y of the system, as well as the current value θ.

Based on these observations the controller has to decide which “move” to make, i.e., to decide
how to set u. To make this decision, it is necessary to plan ahead and to consider the effect
of the present move, as well as that of possible future moves, on the behavior of y. However,
the controller does not yet know precisely how the scheduling variable is going to evolve in
the future. Therefore, it is necessary to come up with a plan that contains a strategy of how
to respond to all possible future scheduling trajectories. Suppose that at each sampling time
instant, the controller is able to plan N moves ahead. Then, this plan consists of a sequence

Plan = {u0,K1,K2, . . . ,KN−1} (1.2)

where u0 is the move that the controller will execute at the current time instant, and where
K1, . . . ,KN−1 are functions mapping (y, θ) 7→ u. In other words, these functions contain a
strategy (“policy”) that describes how the controller plans to respond to future scheduling
trajectories and the resulting behavior of y. In (1.2), the natural number N is called the
prediction horizon of the controller.
After implementing the move u0, a new measurement of y and θ becomes available at the

next sampling time instant. Based on the new observations, the controller formulates a new
plan, and again executes its move. This process is then repeated for as long as the system is in
operation.
The difficulty in making a plan (1.2) lies mainly in the determination of the policies

K1, . . . ,KN−1. These are functions that can depend on (y, θ) in a way that is a-priori unknown
and possibly highly complex. If there is no uncertainty in the future evolution of θ and the
response of the system to a given control input can therefore be predicted with absolute certainty,
this difficulty is resolved. In that case, it is sufficient to optimize over sequences of control
actions, i.e., the plan (1.2) reduces to

Planopen-loop = {u0,u1,u2, . . . ,uN−1} . (1.3)
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Due to the much simpler structure, optimizing over the sequence of control actions in (1.3)
is easier than optimizing over the functions Ki in (1.2). This is the fundamental reason why,
as mentioned in Section 1.2.3, applying MPC to an LTI or LTV system is much simpler than
applying it to an LPV system.

In the LPV case, it is theoretically always possible to either find a “winning” strategy (i.e., one
that steers the system from its initial condition to the desired reference while avoiding constraint
violation), or to conclude that such a strategy does not exist. This can be done following the
principles of dynamic programming (DP) (Bertsekas 2005). Although theoretically possible,
doing this is unfortunately computationally intractable for all but the simplest cases. Hence,
there is a need for approaches which are conservative3 with respect to DP, but which can be
implemented at a more reasonable computational expense.

1.3.2 Desirable properties

This section introduces the properties that an MPC strategy should possess in order to
be considered for practical implementation. The two principal desirable properties are (i)
guaranteed stability and (ii) computational tractability.

The first notion—stability—is related to obtaining guarantees on the behavior of the controlled
system once it is connected in a feedback loop with the designed controller. Consider, for
instance, again the wafer thermal control problem of Figure 1.8. If the initial temperature of
the wafer is lower than the reference value, a naively designed controller could decide to apply
full heating power to reach the target as quickly as possible. However, due to the way that the
heat distributes itself throughout the wafer, applying too much heat too quickly can lead to
violation of the maximum temperature constraint. Because it is not possible to cool down the
wafer actively, recovering from this situation can be impossible. A stabilizing controller, on the
other hand, is guaranteed to bring the temperature to its desired level without overheating.

In MPC, stability is related to so-called recursive feasibility. A recursively feasible controller
is guaranteed to produce a well-defined control input at each time instant, i.e., an input that is
such that constraints will not be violated now or in the future. Recursive feasibility is therefore
a necessary condition implied in the definition of stability: a controller is called stable if it
avoids constraint violation, and makes the output of the system converge to a desired reference
or to a neighborhood thereof. Observe that the converse need not be true: a controller can be
recursively feasible (i.e., avoid constraint violation at all times) but not stable (i.e., the output
of the system does not converge to the reference).

The second notion—tractability—is related to how easy or difficult it is to make a plan (1.2).
Consider again the wafer temperature control problem. Once the process of exposing the wafer
has started, it is necessary to monitor the present wafer temperature and to adjust the control
input provided by the heaters perhaps several times within each second. As explained before,
in MPC, the control input to apply is decided through a decision-making process which can be
formulated in terms of an optimization problem. When such a decision has to be made many
times each second, it is of paramount importance that this optimization problem can be solved

3A solution method for a given set of problems is called “conservative” if it only considers solutions of a certain
class, which may not include all possible solutions.
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quickly enough. It is perhaps not surprising that some classes of optimization problems are
much harder to solve than others. An extremely important class of problems that can be solved
efficiently, are the convex optimization problems4 (Boyd and Vandenberghe 2004). Therefore,
the first part of the definition of tractability is the ability to formulate the decision-making
process in terms of such a convex problem.
Besides convexity, the second aspect of tractability is scalability. Intuitively, predicting

the near future is easier than predicting far ahead. Suppose that a predictive controller has
been designed which plans ahead for five time steps (e.g., seconds), and suppose that the
decision-making process has been formulated as a convex optimization that can be solved fast
enough. The natural question to ask, then, is: can this convex problem still be solved reasonably
fast if we increase the planning horizon to, e.g., ten seconds? Or to twenty? Preferably, the
answer to this question is “yes”, and scalability is therefore an essential part of the notion of
tractability.

Summarizing, an MPC methodology is called “tractable”, if its implementation involves the
solution of a convex optimization problem whose size scales well (e.g., polynomially) in the
problem dimensions.
Precise definitions of the properties that were informally introduced in this subsection are

provided later in Section 3.4. Note that it is usually also desired that a controller can optimize
performance: this could mean, for instance, that it can realize its objective in the most energy-
efficient manner. However, before control performance can be considered in a meaningful
way, stability must be ensured. Furthermore, a controller that can not be implemented because
it is computationally intractable is useless even if in theory it would be able to achieve high
performance. Thus, stability and tractability are considered to be the two most important
properties that must always be satisfied first.

1.3.3 Classification of strategies
Before proceeding to the literature overview of Sections 1.3.4–1.3.5, it is useful to be aware of
some of the distinctions that can be made between different types of approaches for determining
the strategy (1.2). Two important ones, that are introduced here, are the distinction between
robust- and scheduling strategies, and the distinction between open-loop and closed-loop
strategies.

Robust- and scheduling strategies

The first distinction concerns the difference between robust- and scheduling strategies. In
a “scheduling” strategy, the functions Ki in (1.2) are dependent on (y, θ): this requires the
assumption that the current values of θ can be measured. A “robust” strategy does not require
this assumption by making the functions Ki dependent on y only. Obviously, the usage
of additional measured information from the system has the potential of improving control
performance. The structure of the functions Ki may however become more complex if the
dependence on θ is included, leading to a higher computational demand. Because in an LPV
4Linear programs, quadratic programs and semidefinite programs all belong to the class of convex optimization
problems.
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system, the scheduling variable is assumed to be measurable at each time instant, it makes
sense to use scheduling strategies whenever this is computationally feasible.

Open- and closed-loop strategies

A second distinction is made between open-loop, and closed-loop (or “feedback”) strategies.
In an open-loop strategy, the functions Ki in the plan (1.2) are not really functions, but instead
they degenerate into a sequence of control actions (1.3). Open-loop strategies can be used
in the uncertain case, as long as it is verified that the single predicted control sequence leads
to constraint satisfaction and stability for all admissible uncertainty realizations. This was
done, for instance, in (Limón Marruedo et al. 2002; Pin et al. 2009) for the robust predictive
control of non-linear systems. The computation of open-loop strategies is much easier than
that of closed-loop strategies, but a major disadvantage is their inherent conservatism when
uncertainty is present. This conservatism arises because one control sequence has to satisfy the
constraints for all possible uncertainty scenarios. A closed-loop strategy does not have this
inherent disadvantage, because the feedback functions Ki can generate different control inputs
for different realizations of the uncertainty. Therefore, feedback strategies are chosen to be the
focus of this thesis.

1.3.4 Dynamic programming and min-max formulations
In the min-max setting, the controller determines a strategy (1.2) that guarantees constraint
satisfaction with respect to all possible future scheduling trajectories. The min-max formulation
for linear systems subject to parametric uncertainty is discussed in (J. H. Lee and Z. Yu 1997)
together with its solution through dynamic programming. This formulation is non-conservative
in the sense that no restrictive structure is imposed on the policies in (1.2). Therefore, if a
feasible strategy (i.e., one that is able to steer the system towards a desired reference while
respecting constraints) exists, it will be found.
The computational cost of DP is however too high to be applied in practice for all but the

simplest systems. Therefore, (J. H. Lee and Z. Yu 1997) also proposes a less computationally
intensive, but sub-optimal, algorithm applicable to moving-average systems with an integrator.
It is possible to formulate a single convex optimization problem that is equivalent to the

original min-max problem, thereby avoiding the need to compute dynamic programming
solutions on-line. This was done for additively disturbed LTI systems in (Kerrigan and
Maciejowski 2004; Scokaert and Mayne 1998). The central idea is to construct a “scenario
tree” containing every possible extreme disturbance realization over the prediction horizon
N . Then, by convexity, the existence of an admissible control sequence associated with
every extreme realization implies the existence of a control sequence for all possible future
disturbance realizations. Although this leads to convex optimization problems to be solved
on-line, the number of variables scales exponentially with the prediction horizon. Therefore,
these approaches are not to be called tractable if scalability is taken into account.
The work (Muñoz de la Peña et al. 2005) presents an approach based on the same type

of scenario tree, but extends it to the class of general uncertain linear systems (i.e., with
parametric uncertainties and additive disturbances). Instead of solving the problem directly,
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a more efficient algorithm is proposed using Bender’s decomposition which can avoid the
exponential increase in computation time.

Another alternative is to apply an explicit solution to the min-max problem. In explicit MPC,
the solution of the optimization problem is pre-computed off-line as a piecewise affine function
of the state. This is achieved through multi-parametric optimization (Alessio and Bemporad
2009; Pistikopoulos et al. 2011; Pistikopoulos 2012). On-line, all that has to be done is to
search for the solution corresponding to the current measured state—and, in the LPV case,
scheduling value—in a look-up table, and apply it to the system. Such solutions for uncertain
linear systems were developed in (Bemporad et al. 2003; Diehl and Björnberg 2004), while
(Besselmann et al. 2012) gives an explicit DP approach for the LPV case. For relatively simple
systems, this is extremely efficient, because the major computational burden is shifted off-line
and the required on-line computation reduces to the evaluation of a single piecewise affine
function. However, as the system complexity increases, the complexity of the explicit solution
grows rapidly: even in the much simpler LTI case, explicit MPC is usually limited to systems
with up to two control inputs, less than ten states, and to short control horizons (Alessio and
Bemporad 2009).

Due to the inherent complexity of solving the min-max problem without any approximations
(through dynamic programming, or otherwise), there is a consensus in the literature that it
is necessary to employ simplifying approximations. Such approximations, called “tractable”
feedback strategies, are the topic of the next subsection.

1.3.5 Tractable feedback strategies

Introduction

The practical intractability of dynamic programming has inspired a tremendous amount
of research aiming to find control solutions that strike a more favorable balance between
computational complexity and achievable performance (Bemporad and Morari 1999; Mayne
2014, 2016; Raković 2015; Saltık et al. 2018). The min-max formulation described in
Section 1.3.4 can be seen as one end of a spectrum (high complexity, highest possible
performance), whereas the open-loop strategies mentioned in Sections 1.3.1 and 1.3.3 are at the
other end (low complexity, low performance). The tractable feedback strategies discussed in
the present section are all positioned somewhere in between these two extremes, i.e., they aim
to achieve a trade-off between computational complexity and achievable control performance.
When referring to achievable control performance of an MPC design approach, what is

meant is its degree of conservatism when compared to DP. Recall that a non-conservative
controller can always find a feasible strategy if one exist. A conservative controller only looks
for solutions within a restricted class, and may therefore fail to find a feasible strategy even if
there is one. Furthermore, by restricting the class of solutions, such a controller may not be
optimal in the sense that it does not achieve its goal in the “best” way possible (e.g., by using
more energy-consuming control inputs than strictly necessary).

The aim of this section is not to present an exhaustive overview of all the available literature,
but rather to sketch the main lines in the development on tractable feedback policies in the
deterministic setting. More exhaustive surveys can be found in, e.g., (Kouvaritakis and Cannon
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2016; Mayne 2014; Saltık et al. 2018). The overarching theme in the summarized research is
the quest for control strategies that are computationally simple, yet achieve acceptable levels of
performance. In light of the preceding discussions, special attention is given to

• The (possible) applicability of the methods to LPV systems;

• Their computational properties;

• Their potential for including information about the future scheduling variable evolution.

In this short survey, developments that share similar characteristics are grouped together.
For this purpose, the following categorization has been made:

• Methods that optimize over linear state feedback policies;

• Methods based on interpolation;

• Methods that employ prediction dynamics;

• Methods based on tubes;

• Methods that optimize over disturbance-feedback policies.

Some of the mentioned approaches are not directly applicable to LPV systems, but are
developed for different system classes such as additively disturbed LTI (LTI+) or LPU systems.
These are included because it might be possible to adapt them to the LPV case. The survey
ends with some concluding remarks commenting on the problems of reference tracking and the
control of LPV embeddings.

Optimization over linear feedback policies

One of the earliest works in robust MPC that was highly influential is (Kothare et al. 1996).
Therein, the principal idea is to replace the general strategy (1.2) with a policy consisting of
a single robust, quadratically stabilizing, linear state feedback. This feedback is computed
on-line as the solution of a set of linear matrix inequalities (LMIs). Constraint satisfaction is
guaranteed by requiring that the state of the system is inside of a suitable level set of a single
quadratic Lyapunov function corresponding to the optimized state feedback. The approach
is applicable to parametrically uncertain systems, with the uncertainties described either in a
polytopic or in a norm-bounded representation.
The ideas of (Kothare et al. 1996) have been modified and extended in various ways. The

quasi-min-max approach of (Lu and Arkun 2000b) is an extension to the polytopic LPV case,
where a measurement of the scheduling variable is available. This measurement is exploited
by extending the policy of (Kothare et al. 1996) with one free control move and by allowing
optimization over a parameter-dependent state feedback. A further generalization, which adds
yet another free control move, is developed in (Lu and Arkun 2000a) which considers LPV
systems subject to bounded rates of parameter variation.
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The above mentioned methodologies require the on-line solution of a single semi-definite
optimization problem. The prediction horizon is fixed and equal to zero in (Kothare et al. 1996),
to one in (Lu and Arkun 2000b), and to two in (Lu and Arkun 2000a). This is computationally
simple, but implies a considerable structural restriction on the strategy (1.2). Also, these
short and fixed horizons offer little potential for including knowledge about possible future
scheduling trajectories.
The robust approaches (Casavola et al. 2000; Schuurmans and Rossiter 2000) generalize

(Kothare et al. 1996) to arbitrary prediction horizons, by superimposing N free control moves
onto a linear state feedback5. In these approaches, similarly to (Kothare et al. 1996), the
terminal state feedback is re-optimized at each sample. This terminal controller is subsequently
used to update the sequence of feedbacks used during the N prediction steps at the next sample.
An extension to the LPV case was made in (Casavola et al. 2002)6.

The aforementioned approaches all require that the system is quadratically stabilizable, i.e.,
that there exists a linear state feedback with an associated single quadratic Lyapunov function.
This requirement was relaxed in (Casavola et al. 2006, 2007), which considers invariant sets
associated with parameter-dependent Lyapunov functions. Other approaches that employ
parameter-dependent Lyapunov functions or less conservative LMI conditions, are, e.g., (Wada
et al. 2006; S. Yu et al. 2012).
The mentioned formulations of (Casavola et al. 2002, 2007) support arbitrary prediction

horizons N , and could therefore offer some possibilities for exploiting information about future
scheduling trajectories. However, these algorithms suffer from a computational complexity that
grows exponentially with N .

It was shown in (Casavola et al. 2004) for the parametrically uncertain case and in (Casavola
et al. 2008) for the LPV case, that this exponential growth can be avoided if a norm-bounded
description of the uncertainty or scheduling variable is employed. Although the used norm-
bounded representation is equivalent to a certain polytopic representation, it nonetheless allows
the use of an alternative description of uncertain predicted trajectories that does not result in
exponential complexity.

Interpolation

General interpolation in robust MPC for LPU systems is considered in (Bacic et al. 2003).
Several pairs of linear controllers and corresponding ellipsoidal invariant sets are computed
off-line. This contrasts with the approaches discussed previously under “Optimization over
linear feedback policies”, where a terminal set- and corresponding controller are computed
on-line as part of the optimization process. Typically, one of these controllers achieves high
performance but yields a small invariant set, whereas the other controllers achieve lower
performance but have larger corresponding invariant sets. On-line, based on the current
measured state, the control input is computed as a suitable linear combination of the control
inputs produced by the pre-designed local controllers. A similar approach, but using polyhedral
5(Casavola et al. 2000) contains some mistakes in its stability result, which are corrected in (Pluymers 2006,
Section 3.5).

6(Casavola et al. 2002) also contains a mistake concerning the initialization of the controller, see (Ding and Huang
2007) for a solution.
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sets, is proposed in (Pluymers et al. 2005a). In principle, the interpolation-based approaches
can be extended from the robust to the LPV case by adding the assumption that there is a
scheduling variable that can be measured (Rossiter et al. 2007).
In these approaches, the “prediction” horizon is equal to zero as it was in (Kothare et al.

1996). Thus, there is little potential for including expectations on the future evolution of the
scheduling signal.
A robust MPC methodology for LPU systems based on interpolation that does allow for

arbitrary prediction horizons N is presented in (Pluymers et al. 2005b; Wan et al. 2006) 7.
Similarly to (Bacic et al. 2003), two controller/set-pairs are computed off-line. The terminal set
used on-line is constructed as a continuous interpolation between these two sets, preferring
the smallest set whenever this is feasible, but resorting to a larger set otherwise. The state
predictions over the horizon are based on a scenario tree, hence the computational complexity
is exponential in N .

The use of prediction dynamics

An alternative, computationally highly efficient, robust MPC formulation for polytopic para-
metrically uncertain linear systems was proposed in (Kouvaritakis et al. 2000). Therein, the
control policy consists of a series of control actions upon a pre-designed linear state feedback.
A “lifted” prediction system, which includes both the state of the original system and N free
control actions as part of its state vector, is defined. Constraint satisfaction is achieved by
requiring that the full lifted state of this prediction system is contained inside of a suitable
ellipsoidal invariant set, which is designed off-line. The computational load of this approach is
similar to that of normal LTI MPC, but the requirement that the lifted state must be included in
a pre-designed ellipsoid can be conservative.

An off-line design procedure, aimed at “optimizing” the prediction dynamics of (Kouvaritakis
et al. 2000), is proposed in (Cannon and Kouvaritakis 2005). In this way, it is possible to
maximize the volume of the ellipsoidal invariant set, which leads to a less conservative MPC.
An alternative strategy of optimizing the prediction dynamics, aimed at reducing the sensitivity
of the realized closed-loop cost to model uncertainty, is developed in (Cheng et al. 2013) by
means of a Youla-type parameterization.
In (Pluymers 2006, Section 4.3), the approach of (Kouvaritakis et al. 2000) is modified to

use polyhedral invariant sets instead of ellipsoidal ones. Because the state dimension of the
lifted system grows linearly with N , the representation complexity of the polyhedral invariant
sets can grow exponentially with N in the worst case. In (Pluymers 2006, Chapter 5) it is
shown that it is possible—under some conditions—to compute reduced-complexity polyhedral
invariant sets for the lifted system. The complexity of these sets grows only linearly in N ,
leading to a scalable algorithm.
Because the full lifted state vector—which includes the control degrees of freedom—must

be inside of an invariant set that is computed off-line as part of the controller design, there
is no obvious way in which these algorithms can incorporate knowledge on possible future
scheduling trajectories that becomes available while the system is running.
7The original idea appeared in (Wan and Kothare 2003), but that paper contained an error in its recursive feasibility
proof, which was corrected later in (Pluymers et al. 2005b; Wan et al. 2006).
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Tube-based approaches

Yet another paradigm devised to reduce complexity with respect to the dynamic programming
solution is the so-called tube model predictive control (TMPC). In MPC, tubes were employed
at first in the robust control of LTI systems subject to additive uncertainties. Influential works
in this area include (Langson et al. 2004; Mayne et al. 2005; Raković et al. 2012a). Although
the exact form of employed control policy differs, these works share the same common idea of
using fixed-complexity over-approximations of predicted uncertain trajectories. By doing so,
the representation complexity of the predicted trajectories does not grow exponentially with the
horizon as is the case for a scenario tree.
The same principle can also be applied to uncertain linear systems (Fleming et al. 2015;

Muñoz-Carpintero et al. 2015). In these works, uncertain predicted trajectories are over-
approximated by scaled and translated versions of pre-designed polytopic sets. Because the
complexity of these sets stays constant along the prediction horizon, the size of the overall
optimization problem that has to be solved increases linearly with N .

Due to its favorable linear scaling behavior, the tube-based framework offers good possibilities
for including future information on the possible scheduling trajectories into the formulation.
However, this case has not yet been treated in literature, as the mentioned approaches consider
robust control with respect to unmeasurable additive disturbances (the LTI+ case) or to
unmeasurable parametric uncertainties (the LPU case).

Disturbance-feedback policies

Another approach that can be applied for the robust control of LTI systems subject to additive
disturbances, is to optimize over feedback policies that are functions of the past disturbances.
(Although the current value of the disturbance is not directly measurable, its previous value can
be inferred as the difference between the predicted and measured system state).

Such an approach, where the considered feedbacks are affine functions of the past disturbances,
is presented, e.g., in (Löfberg 2003). The disturbance-feedback concept is in some sense similar
to the idea of “recourse” in robust optimization theory (Ben-Tal et al. 2004).

In (Goulart et al. 2006) it is shown that the optimization of policies that are affine functions
of past disturbances is, in fact, equivalent to the optimization over linear dynamic state feedback
policies. A remarkable result is that the optimization over dynamic linear state feedbacks is
a non-convex problem, whereas the equivalent problem in terms of disturbance feedbacks is
convex. The number of variables and constraints in the convex problem grows quadratically
with N , so the approach can be considered tractable. Furthermore, it is possible to re-formulate
the optimization problem in an equivalent form with a sparse structure that can be exploited to
significantly increase computational efficiency (Goulart et al. 2008). In (Raković et al. 2012b),
the approach of (Goulart et al. 2006) is generalized further by dropping the restriction that the
disturbance feedback is affine.
The optimization over “disturbance”-feedback policies has only been considered for LTI

systems subject to additive disturbances. It is a question whether or not a convex re-formulation
of the state feedback synthesis problem can be obtained in the LPV case.
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Concluding remarks: tracking and embeddings

All the MPC methods reviewed so far focused on stabilization: that is, the regulation of the
state of the controlled system towards the origin. As was mentioned at the beginning of this
chapter, another important control problem besides regulation is that of tracking a reference.
Furthermore, in the reviewed approaches, the control of non-linear systems represented by an
LPV embedding (see Section 1.2.1) has not yet been considered. Later, these more specific
developments will be reviewed in more detail in Chapter 7 and Chapter 8: for completeness, a
few approaches are mentioned here.
Robust tracking MPC approaches for LPU systems were developed in, e.g., (Pannocchia

2004; Y. J. Wang and Rawlings 2004). It is shown that offset-free tracking is achieved if the
uncertainty (corresponding to θ in an LPV system) is time-invariant. The papers (Alvarado
et al. 2007; Limon et al. 2010) consider the tracking of piecewise constant references for
LTI+ systems. Using a tube-based approach, asymptotic convergence of the output towards a
bounded region around the reference is established.
In the MPC scheme for embeddings of (Lu and Arkun 2002), which is based on (Lu and

Arkun 2000b), it is assumed that the non-linear system can be represented by an LPV model
obtained as a family of linearized models around various operating points. It is shown that if the
optimization remains feasible, the closed loop is asymptotically stable. In the method of (Chisci
et al. 2003), the non-linear dynamics are embedded in an LPV representation with a discrete
scheduling set, effectively representing a collection of uncertain linear models. ROV bounds
on the state variable are imposed in a way reminiscent of classical gain scheduling (Rugh and
Shamma 2000). The work (Casavola et al. 2003) presents an MPC algorithm applicable to LPV
embeddings based on (Casavola et al. 2002). A known and bounded ROV on the scheduling
variable is assumed.

In (Cisneros et al. 2016), it is proposed to control non-linear systems embedded in an LPV
representation using an “iterative” approach. Based on an initial guess of the future scheduling
trajectory, a simple linear time-varying (LTV) MPC problem is solved. The resulting optimal
state- and input trajectories are used to generated a new scheduling trajectory, and the procedure
is iterated until the predicted trajectories converge.

1.4 Research questions
Throughout this chapter, a thermal control problem from semiconductor lithography was used
as a running example to demonstrate several concepts. As introduced previously, the main
characteristics of this application are

• The presence of constraints (the wafer can be heated up, but not actively cooled down);

• The presence of linear parameter-varying dynamics (the response of the thermal distribu-
tion in the wafer to heat inputs depends on the position of the IH);

• The availability of detailed—but not exact—knowledge on possible future scheduling
trajectories, that can not be captured by merely considering bounds on the scheduling
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ROV (the IH is controlled to follow approximately a prescribed reference trajectory that
is known in advance).

As the system is constrained and exhibits LPV dynamics, the use of an LPV MPC method
appears to be a natural solution for control. Preferably, the employed control method should
satisfy the desirable properties outlined in Section 1.3.2. Of the approaches surveyed in
Section 1.3.2, the property of “stability” is shared by all, whereas the property of “tractability”
is satisfied to varying degrees.

What is notable, however, is that none of the reviewed approaches has a built-in capability to
take into account all types of scheduling dynamics as described in Section 1.2.2. Only a-priori
specified bounds, and in some cases bounds on the rate of variation of, the scheduling variable
are typically assumed. Thus, the discussed approaches do not provide a structured way to
deal with more detailed information on the future scheduling variations that becomes available
on-line, such as the well-predictable position dependence in the considered thermal control
problem or the possible scheduling trajectories in an LPV embedding.
Note that such a feature is not only restricted to this specific thermal problem, but can be

observed in several other applications. For instance, in an airliner the future altitude profile
is often pre-planned making it possible to predict expected changes in dynamic pressure (a
scheduling variable). In robotics, path planning is used to design feasible motion profiles
around which a controller has to suppress disturbances; in chemical process control operating
points and transients are planned in advance by a higher-level optimization layer.
Therefore, there exists a need to develop a tractable method for the constrained control of

LPV systems that can exploit all available knowledge on the possible behavior of the scheduling
variable. To this purpose, the following main research question is posed.

Q0. How to design a stable and tractable LPV MPC strategy for regulation and
tracking that can exploit knowledge about the possible future evolution of the
scheduling variable?

To be able to answer this main question, it is necessary to first define how this “knowledge”
on the future evolution of the scheduling variable can be described mathematically.

Q1. How to construct a practically useful description of the uncertain future evolution
of the scheduling variable?

Question Q1 will be addressed in Chapter 3, and leads to the introduction of the notion of
“anticipative” control. Answering this question is a necessary condition to answer the main
research question Q0. The next step is then to discover how the obtained type of model can
actually be integrated into an overall control strategy which achieves the desirable properties
discussed before.
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1.4 Research questions

Q2. How to use the model developed as the answer to Question Q1 in an LPV MPC
strategy for stabilization? In particular: how should this strategy be designed,
such that the resulting controller regulates the measured output towards the
origin?

In Chapter 3, it is shown that a tube-based MPC approach using a homothetic tube
parameterization can provide an answer to Q2. A more general answer is subsequently provided
in Chapter 4, which introduces a tube parameterization based on the concept of finite-step
contractive sets (Gilbert and Kolmanovsky 2002).
As it will turn out, the parameterization of the tube in terms of (periodically) homothetic

sets is the crucial design choice that allows the formulation of an MPC algorithm that is
computationally tractable. This leads to a tractable feedback strategy that fits in the large family
of approaches that were reviewed in Section 1.3.5. Just like those approaches, the developed
tube-based LPV MPC solution with homothetic tubes achieves its own particular trade-off
between computational complexity and achievable control performance. However, it must
be realized that the selected homothetic parameterization is just one out of a multitude of
possibilities. A natural follow-up question is then if there exist different tube parameterizations
that can possibly lead to algorithms that achieve different trade-offs.

Q3. Is it possible to introduce an extra degree-of-freedom in the design of the
tube parameterization, that can be used to achieve different trade-offs between
computational complexity and achievable performance?

Question Q3 will be addressed in two different ways in Chapters 5 and 6. The measure of
control performance that will be adopted in these chapters is the size of the domain of attraction,
i.e., the set of initial system conditions for which a feasible control input can be determined.

In Question Q2, the objective of the controller was restricted to the regulation of the output
of the system towards the origin. It is therefore questioned if the tracking objective that was
part of Question Q0 can be included in the developed formulations as well:

Q4. How can the developed strategies for “stabilization” be adapted to the “tracking”
case?

A first step towards a full answer to Q4 is provided in Chapter 7, where the problem of
tracking a constant (but non-zero) reference signal is considered.

The preceding research questions were all formulated in a strict LPV setting, that is a setting
in which the scheduling variable is considered to be a free signal being fully independent of the
input- and output variables of the system. However, as outlined in Section 1.2.2, the scheduling
variable can also be used to obtain an LPV approximation of a non-linear system— in fact, this
was one of the main reasons why the development of the LPV framework was started in the
first place. It is therefore relevant to see if the solutions obtained as answers to the previous
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questions can be applied in this case as well, or if they should be modified—and if so, in what
sense. This motivates the next and final research question, which is addressed in Chapter 8:

Q5. How to apply the developed LPV MPC approaches to the control of LPV
embeddings, such that the desirable properties of stability and tractability are
retained when the controller is connected in closed-loop with the real non-linear
system?

1.5 Outline and contributions of the thesis
This thesis is composed of several chapters beyond this introductory chapter. It is advised
that Chapters 1-3 be read first and in order, after which all the remaining chapters can be read
independently. Some chapters are partially based on papers which, at the time of writing of
this thesis, were already published or were still in preparation. A list of these publications is
included on page 241.

Chapter 2 Chapter 2 contains the preliminary material which is necessary for the understand-
ing of the rest of this thesis. Fundamental mathematical notations and concepts related to sets
and functions are presented. Linear parameter-varying (LPV) systems are formally introduced,
and the related important concepts such as LPV state-space representations, stability, and
invariant sets are discussed. The embedding of non-linear systems in LPV representations is
also covered. Finally, some of the fundamental ideas of model predictive control (MPC) are
reviewed.

Chapter 3 Chapter 3 proposes the general framework of anticipative MPC for LPV systems
based on the construction of so-called tubes. The problem setting that is adopted throughout
most of the thesis is defined and, as a first contribution, the notion of “anticipative” control
is introduced as a preliminary answer to Research Question Q1. Based on this, it is argued
that a tube-based MPC paradigm has the potential to provide a fitting solution to Question Q2.
As a second contribution, an anticipative LPV MPC algorithm based on the construction of
homothetic tubes is presented. This approach can be seen as a preliminary solution to the main
research question.

Chapter 4 This chapter addresses the problem of guaranteeing recursive feasibility and closed-
loop stability in a receding-horizon LPV tube MPC algorithm. Stability can be guaranteed
through the construction of an appropriate terminal set and terminal cost. The main contribution
of this chapter is to provide a new terminal set- and cost construction, and an associated periodic
tube parameterization, based on the concept of finite-step λ-contraction. This is a more relaxed
variant of the usual notion of λ-contraction, which was used in Chapter 3. This chapter provides
an answer to Research Question Q2, and the stability of the basic homothetic tube-based
algorithm from Chapter 3 follows as a special case from this result.
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Chapter 5 In this chapter, as one answer to Question Q3, a so-called heterogeneous tube
parameterization structure is proposed. Instead of parameterizing all tube cross-sections
in the same way, this setup allows to use different parameterizations for each cross-section.
Conditions under which such a combination of parameterizations leads to a recursively feasible
algorithm, are presented. The combination of various parameterizations into one tube has
certain similarities to the well-known concept of “move blocking” in nominal MPC. It is
shown that the proposal has the potential to improve computational properties—in terms of the
complexity/performance trade-off—of tube-based LPV MPC.

Chapter 6 In Chapter 6 an alternative answer to Research Question Q3 is proposed, i.e.,
an alternative way of designing a tube parameterization. The starting point is a given set of
initial conditions that represents an inner-approximation of the desired domain of attraction
of the controller. Then, an off-line procedure based on sparsity-inducing `1-optimization is
used to determine a collection of tube parameterizations with a reduced number of degree
of freedom. On-line, on the basis of the measured state- and scheduling values, a complete
tube parameterization is constructed as the combination of a suitable selection from the
parameterizations that were computed off-line. It is shown that this construction of a reduced-
complexity parameterization leads to a domain of attraction that is at least as large as the set of
initial states that was assigned at the beginning.

Chapter 7 This chapter addresses Research Question Q4, i.e., the application of the previously
developed control methods to the tracking problem. A preliminary answer is provided by
considering the constrained tracking of constant, but non-zero, references. In an LPV system,
variations in the scheduling signal causes unavoidable tracking errors. It is proposed to bound
these errors through the construction of so-called bounded-error invariant sets. By incorporating
these sets into the tube-based MPC framework, it becomes possible to track non-zero references
with an a-priori guaranteed bound on the error induced by the scheduling variations.

Chapter 8 Chapter 8 addresses Question Q5, and shows how the previously developed tube
MPC solutions can be applied for the control of non-linear systems described in terms of
an LPV embedding. In principle, this is already possible without modifications, but might
be conservative because the underlying relationship between state- and scheduling variables
is ignored. It is therefore proposed to employ sequences of state constraints to bound the
predicted state trajectories. These bounds can, in turn, be used to construct corresponding
sets of scheduling variables. These will be smaller than the sets that would be obtained if
the state/scheduling-relation were not considered. In contrast to several existing approaches
from the literature that rely on local linearizations, the resulting algorithm is guaranteed to
be recursively feasible and stabilizing for the original non-linear system that was described in
terms of an LPV embedding.

Chapter 9 The purpose of this chapter is to analyze the performance of the developed
algorithms on a simulation example inspired by the wafer temperature control problem.
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Particular attention is given to the effect of including the “anticipative” knowledge into the
control problem.

Chapter 10 Lastly, Chapter 10 summarizes the research described in the thesis. Several
suggestions for further research are proposed.
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Chapter 2

Preliminaries

This chapter presents the preliminary material on which the results in the upcoming chapters
are based. In Section 2.1, fundamental mathematical notations and concepts related

to sets and functions are presented. Linear parameter-varying (LPV) systems are formally
introduced in Section 2.2. Related concepts such as linear parameter-varying (LPV) state-space
representations, stability, and invariant sets are discussed. The embedding of non-linear systems
in LPV representations is covered in Section 2.3. Finally, Section 2.4 reviews the fundamental
ideas of model predictive control (MPC).

2.1 Mathematical notation and definitions
This section gives the basicmathematical notations, and the definitions of important fundamental
concepts that will be used throughout this thesis.

2.1.1 General notation
Some possibly non-standard mathematical notation and conventions are specified below.

• The set of real numbers is denoted by R, and the set of non-negative real numbers by R+.

• Closed and open intervals on R are denoted by [a, b] and (a, b), respectively.

• The symbol N is used to denote the set of non-negative integers (i.e., the integers
including zero).

• Closed and open index sets on N are defined as [a..b] = {i ∈ N | a ≤ i ≤ b} and
[a..b) = {i ∈ N | a ≤ i < b}, respectively.

• Inequalities between vector and scalar quantities are interpreted element-wise. That is, if
v ∈ Rn and α ∈ R, then v ≤ α means that every element of v is smaller than or equal to
α.

• The i-th element of a vector v ∈ Rn is denoted by vi . If some ambiguities could arise
due to a double subscript, the notation [v]i is used.
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• A vector norm ‖ · ‖ : Rn → R+ is a function that satisfies for all x, y ∈ Rn and all α ∈ R
the properties (i) ‖x + y‖ ≤ ‖x‖ + ‖y‖, (ii) ‖αx‖ = |α |‖x‖, and (iii) ‖x‖ = 0 if and only
if x = 0. In particular, for a vector x ∈ Rn, the 1-norm is defined as ‖x‖1 =

∑n
i=1 |xi |,

the 2-norm as ‖x‖2 =
√∑n

i=1 x2
i , and the∞-norm as ‖x‖∞ = maxi∈[1..n] |xi |.

• Sequences are denoted compactly as
{

Xi

}b
i=a
= {Xa,Xa+1, . . . ,Xb}.

2.1.2 Sets
Basic set-related notation

Some useful basic notions related to sets are the following:

• The scalar multiple of a set A ⊆ Rn is λA = {λa | a ∈ A} for real numbers λ.

• Let x, y ∈ A. The set A is convex if and only if λx + (1 − λ)y ∈ A for all λ ∈ [0,1].

• The convex hull of a set A is the intersection of all convex sets that contain A, and it is
denoted by convh{A}.

• The notation B ⊆ A means that B is a subset of, and can be equal to, A. If B is a
proper subset, i.e., if there is at least one element inA that is not in B, this is denoted as
B ⊂ A.

• A set is called a proper C-set, or PC-set for short, if it is convex, compact (i.e., closed
and bounded), and has a non-empty interior that includes the origin.

• The boundary of a set A ⊆ Rn is denoted by ∂A. Informally, the boundary of A is the
set of all points a ∈ A such that any neighborhood of a contains at least one element in
A and at least one element not in A.

• The power set of A is the set of all subsets of A (including the empty set and A itself),
and is denoted by 2A .

• For some a ∈ Rn and b ∈ R, the set {x ∈ Rn | a>x = b} is the hyperplane corresponding to
the pair (a, b). This hyperplane bounds a half-space, which is the set {x ∈ Rn | a>x ≤ b}.

Minkowski addition

The Minkowski sum of two sets A ⊆ Rn and B ⊆ Rn is

A ⊕ B = {a + b | a ∈ A, b ∈ B} .

If a ∈ Rn is a vector, with a slight abuse of notation, define

a ⊕ B = {a} ⊕ B = {a + b | b ∈ B} .

The Minkowski sum of convex sets is convex. If A is convex, then λA ⊕ µA = (λ + µ)A.
For more properties, see (Schneider 2013b, Chapter 3).
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Hausdorff distance

The Hausdorff distance between two sets A ⊆ Rn and B ⊆ Rn is defined as

dH (A,B) = max
{

sup
a∈A

inf
b∈B
‖a − b‖, sup

b∈B

inf
a∈A
‖a − b‖

}
where ‖ · ‖ can be any vector norm on Rn. The Hausdorff distance between a set A ⊆ Rn and
the origin is therefore

d0
H (A) = dH (A, {0}) = sup

a∈A

‖a‖.

When for actual computations of the distance a particular norm is used, this will be made clear
in the context.

Polyhedra and polytopes

A polyhedron is a convex set P ⊆ Rn that can be represented as the intersection of finitely
many half-spaces, i.e., admits a representation of the form

P = {x ∈ Rn | Hx ≤ h} for some H ∈ Rr×n, h ∈ Rr (2.1)

where r ∈ N is the number of hyperplanes defining the representation. A polytope is a compact
polyhedron and can, in addition to (2.1), equivalently be described as the convex hull of finitely
many vertices as

P = convh{p̄1, . . . , p̄q} for some vectors p̄i ∈ Rn, (2.2)

where q ∈ N is the number of vertices in the representation. If a set P is a polytope, then
representation (2.1) is referred to as its H-representation (from “half-space”), and representation
(2.2) is called its V-representation (from “vertex”). It is always possible to convert the V-
representation of a given polytope into its equivalent H-representation (and vice-versa), but in
dimensions greater than two, the complexity of the two representations may be significantly
different1. An H- or V-representation of a polytope can be redundant, which means that the
representation is described by more hyperplanes or vertices than necessary. It is possible to
eliminate these redundant hyperplanes or vertices to obtain an equivalent representation of
minimal size.
An accessible introduction to the important problems in polyhedral computation, which

includes the conversion between V- and H-representations and redundancy removal, can be
found in (Fukuda 2004). More general background on polytopes may be found in, e.g.,
(Grünbaum 2003; Ziegler 1995).

Because P in (2.2) is a convex set, any point p ∈ P can be represented as a convex
combination of the extreme points (i.e., vertices) ofP. For future reference, this is summarized
in the following definition of convex multipliers.
1An n-rhombus in Rn for instance admits a V-representation described by 2n vertices, but its equivalent H-
representation consists of the intersection of 2n half-spaces. A general bound on the number of hyperplanes
required to represent a polytope given in vertex representation (and vice versa) is provided by McMullen’s upper
bound theorem, see, e.g., (Ziegler 1995, Section 8.4).
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Definition 2.1. Let P = convh
{
p̄1, . . . , p̄qp

}
⊂ Rn. Then Convm (· |P) : P → 2R

qp
+ is the

set-valued function

Convm (p |P) =

{
η ∈ R

qp
+

����� qp∑
i=1

ηi p̄i = p,
qp∑
i=1

ηi = 1

}
.

Further, define the function convm (·|P) : P→ Rqp
+ as

convm (p |P) = arg inf
η
‖η‖ subject to η ∈ Convm (p |P) .

In general the multipliers η are non-unique. In Definition 2.1, all possible multipliers are
described in terms of the set Convm(·|·), whereas in the definition of convm(·|·) a unique choice
is made by minimizing a norm of η.

2.1.3 Functions
Comparison functions

The function classes K, K∞, L and KL of so-called comparison functions are defined as
follows:

• A function f : R+ → R+ is of class K if it is continuous, strictly increasing, and
f (0) = 0.

• It is in class K∞ if, in addition to being in class K, limξ→∞ f (ξ) = ∞.

• A function g : R+ → R+ is of class L if it is continuous, strictly decreasing, and
limξ→0 g(ξ) = 0.

• A function h : R+ × R+ → R+ is said to be in class KL if it is class-K in its first
argument and class-L in its second argument.

Comparison functions are useful tools in stability analysis. An overview of their properties
can be found in (Kellett 2014).

Parameterized functions

A function f : A → B maps elements a ∈ A into elements b ∈ B. Sometimes this mapping
can depend on one or more parameters. This is denoted by f (·|p) : A → B, where p is a
parameter.

Example 2.1. A simple example of a parameterized function is f (·|c) : R→ R, f (x |c) = cx,
with the parameter being the multiplication factor c. Another example is the function
g(·|d) : Rd → R, g(x |d) = x>x, where the parameter d defines the dimension of its first
argument.
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Second-order functions

In this thesis, to describe parameterized control policies, use will be made of so-called second-
order functions. A function f : A → B is called first-order if both A and B are subsets
of real vector spaces. The function f is called second-order if it returns another first-order
function, i.e., ifA is a subset of a real vector space but B is a subset of all first-order functions
g : C → D (i.e., with C, D being subsets of real vector spaces). The concept of second-order
(or, indeed, higher-order) functions is widely used in computer science as a useful way of
abstraction (Abelson et al. 1996, Chapter 1.3).

Example 2.2. A simple second-order function is g : R→ (Rn → Rn), g(c) = (x 7→ cx). It is
then possible to say, e.g., h(x) = g(2) meaning that h is the function h : Rn → Rn, h(x) = 2x.

Gauge functions

The gauge- or Minkowski-function corresponding to a PC-set A ⊂ Rn is ψA(x) = inf{γ ≥
0 | x ∈ γA}. A generalized “set”-gauge function can be defined as follows.

Definition 2.2. The set-gauge function ΨA : 2Rn → R+ corresponding to a PC-setA ⊂ Rn is

ΨA(X) = sup
x∈X

ψA(x) = inf {γ ≥ 0 | X ⊆ γA} .

The gauge- and set-gauge functions can be bounded by K∞-functions, as shown in the
following lemma:

Lemma 2.1. Let S ⊂ Rn be a PC-set. Then, the following properties hold:

(i) There exist K∞-functions ψ,ψ such that ∀x ∈ Rn : ψ (‖x‖) ≤ ψS(x) ≤ ψ (‖x‖),

(ii) There exist K∞-functions Ψ,Ψ ∈ K∞ such that for all compact and convex sets X ⊂ Rn :
Ψ

(
d0
H (X)

)
≤ ΨS(X) ≤ Ψ

(
d0
H (X)

)
.

Proof. Let ‖ · ‖ be an arbitrary vector norm and denote B = {x | ‖x‖ ≤ 1}. Note that
ψB(x) = ‖x‖. For sets S1,S2 ⊂ R

n with S1 ⊆ S2, it holds ψS1 (x) ≥ ψS2 (x) for all x ∈ Rn

(Raković and Lazar 2012, Lemma 1). Because S is a PC-set, ∃a, b ∈ R+ such that aB ⊆ S ⊆ bB.
Thus, ∀x ∈ Rn : b−1ψB(x) ≤ ψS(x) ≤ a−1ψB(x), i.e., statement (i) holds with ψ(ξ) = b−1ξ

and ψ(ξ) = a−1ξ. Next, observe that ΨB(X) = supx∈X ‖x‖ = d0
H (X). For sets S1,S2 ⊂ R

n

with S1 ⊆ S2, it similarly holds ΨS1 (X) ≥ ΨS2 (X) for all compact and convex X ⊂ Rn. Hence,
for all compact and convex X ⊂ Rn : b−1ΨB(X) ≤ ΨS(X) ≤ a−1ΨB(X), i.e., statement (ii)
follows with Ψ(ξ) = b−1ξ and Ψ(ξ) = a−1ξ. �

Complexity and big-O notation

To quantify the complexity of algorithms, the big-O notation will be employed. For a function
f : R→ R, writing

f (n) = O (g(n))
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means that as n→∞, the absolute value of f (n) is bounded from above by the absolute value
of g(n) multiplied by some scalar factor. Formally, f (n) = O(g(n)) if and only if there exist
constants C > 0, n0 ∈ R such that

∀n ≥ n0 : | f (n)| ≤ C |g(n)| .

Example 2.3. Let f : N → N, f (n) = 1 + 10n + n2. Then, f (n) = O(n2) because for all
n ≥ 11, f (n) ≤ 2n2.

In the context of algorithms, the function f : R→ R can represent a measure of complexity
of the algorithm. Such a measure can be, for instance, the time complexity (number of required
arithmetic operations) or a higher-order measure such as the number of variables and constraints
in an optimization problem that must be solved.

Definition 2.3. A function f : R→ R is said to be polynomially (linearly) bounded if there
exists a constant c ≥ 1 (c = 1) such that f (n) = O(nc). If f represents a complexity measure
of some algorithm, this algorithm is said to have polynomial (linear) complexity in n.

Definition 2.4. A function f : R → R is said to be exponentially bounded if there exists a
constant a > 0 such that f (n) = O(an). If f represents a complexity measure of some algorithm,
this algorithm is said to have exponential complexity in n.

Typically, algorithms whose complexities are polynomially bounded are considered scalable,
whereas exponentially bounded complexity is highly undesirable.

2.2 Linear parameter-varying systems
This section introduces the concept of LPV systems. The formal definition of an LPV system
is given in Section 2.2.1, whereas the common LPV state-space (LPV-SS) representation is
presented in Section 2.2.2. Constrained LPV representations, which are the main focus of MPC
approaches developed in this thesis, are introduced in Section 2.2.3. Finally, Section 2.2.4
and Section 2.2.5 respectively present important stability concepts and introduce the notion
of contractive sets, which are both crucial ingredients for the development for LPV MPC
algorithms.

2.2.1 Formal definition
Formally, a parameter-varying (PV) dynamical system can be defined as a quadruple (Tóth
2010)

Σ = (T,Θ,W,B) (2.3)

where T is the time-axis,Θ is the scheduling set which is a bounded subset of an nθ -dimensional
space,W is the nw-dimensional signal space, and B = (W × Θ)T is the so-called behavior, i.e.,
the set of all possible maps T→W × Θ.

If Σ is a system described in continuous time, then T = R. The case considered in this thesis,
however, is that of discrete-time dynamical systems in which case T = N.
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In (2.3), there is no immediate distinction as to which signals inW should be considered
“inputs” or “outputs”. If causal relationships between the signals in W exist, then these are
specified in terms of the behavior B.
This thesis is concerned with linear parameter-varying (LPV) systems:

Definition 2.5 (Tóth 2010, Definition 3.3). The parameter-varying system Σ (2.3) is a linear
parameter-varying system, if the following conditions are satisfied:

• W is a vector space and for all possible signals θ : T → Θ, the set Bθ = {w ∈
WT | (w, θ) ∈ B} is a linear subspace ofWT;

• T is closed under addition;

• For all (w, θ) ∈ B and for all τ ∈ T, there holds (t 7→ (w(t + τ), θ(t + τ))) ∈ B.

The following assumption is fundamental to LPV control.

Assumption 2.1. The value θ(k) of the scheduling signal θ : N→ Θ can be measured for all
time instants k ∈ N.

Definition 2.5 is rather abstract, and indeed does not provide much insight into how to
actually represent an LPV system (2.3). The next section will therefore introduce the LPV-SS
representation.

2.2.2 LPV state-space representations
A state-space representation of a discrete-time LPV system Σ, with a given input/state/output
partitioning ofW, is described by the equations

x(k + 1) = A(θ(k))x(k) + B(θ(k))u(k); x(0) = x0,

y(k) = C(θ(k))x(k) + D(θ(k))u(k),
(2.4)

where x : N → Rnx is the state vector, u : N → Rnu is the control input, and y : N → Rny

is the measured output. The signal θ : N → Θ ⊂ Rnθ is called the scheduling signal. The
scheduling set Θ is assumed to be bounded, and the functions

(A,B,C,D) : Θ × Θ × Θ × Θ→ Rnx×nx × Rnx×nu × Rny×nx × Rny×nu

are required to be bounded on Θ. In general, (A,B,C,D) can be dependent on past values
{θ(k − 1), θ(k − 2), . . . } as in addition to just the current value θ(k). For simplicity, only LPV
systems (2.3) that admit a state-space representation (2.4) with dependency on θ(k) alone are
considered here. This case is called static parameter dependence in the LPV literature.

When compared to the general parameter-varying system (2.3), the state-space representation
(2.4) has introduced a partitioning of the signal spaceW into a set of input, output, and state
variables. Consequently, the behavior corresponding to an LPV system represented by (2.4)
becomes

BSS =
{
(u, y, x, θ) ∈ (W × Θ)T = (Rnu × Rny × Rnx × Θ)

T
��� (2.4) holds} . (2.5)
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A special, but very important case of (2.4) is the class of polytopic LPV state-space (LPV-
PSS) representations. In fact, this is the type of representation that will be used throughout
the majority of this thesis. An LPV-SS representation is called polytopic if its associated
scheduling set is an nθ -dimensional polytope, i.e.,

Θ = convh
{
θ̄1, θ̄2, . . . , θ̄qθ

}
⊂ Rnθ (2.6)

given in V-representation as the convex hull of qθ vertices, and if the functions (A,B,C,D) take
the affine form [

A(θ) B(θ)
C(θ) D(θ)

]
=

[
A0 B0
C0 D0

]
+

nθ∑
i=1

[
Ai Bi

Ci Di

]
θi (2.7)

where {A0, . . . ,Dnθ } are matrices of conformable dimensions. For future reference, this
concept is summarized in the following definition.

Definition 2.6. An LPV-SS representation (2.4) is a polytopic LPV state-space (LPV-PSS)
representation, if its associated scheduling set Θ is a polytope of the form (2.6) and if the
functions (A,B,C,D) are of the affine form (2.7).

An important property of LPV-PSS representations is the fact that the set of matrices

M =

{[
A(θ) B(θ)
C(θ) D(θ)

] ���� θ ∈ Θ}
⊂ R(nx+ny)×(nx+nu)

is itself a polytope with qθ vertices (see (2.6)). This property makes it possible to formulate
efficient computational procedures working on this class of LPV-SS representations.
Throughout the thesis, the following assumption is made.

Assumption 2.2. The values of the state vector x(k) can be measured for all time instants
k ∈ N.

This assumption of full state feedback may appear restrictive. In practice, often only a
measurement of the output y(k) is available. However, the development of control methods
utilizing full state feedback serves as an important stepping stone towards tackling the more
difficult case of output feedback: compare, e.g., the separate design of state feedback controllers
and observers in classical linear quadratic control theory (Anderson and Moore 1989).
In this thesis, when the tracking of an output reference is considered in Chapter 7, it is

assumed that this can be handled by tracking a suitable reference for the state variable instead.

2.2.3 Constrained LPV representations
An LPV-SS representation (2.4) is called constrained, if for all time k ∈ N, the state vector
x(k) and control input u(k) are elements of the sets X ⊂ Rnx and U ⊂ Rnu respectively, as
opposed to the full spaces Rnx and Rnu . In other words, the state variable in (2.4) is now a
signal x : N → X and the control input is a signal u : N → U. For future reference, this is
summarized in the following definition.
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Definition 2.7. An LPV-SS representation is constrained, if for all k ∈ N, x(k) ∈ X ⊂ Rnx and
u(k) ∈ U ⊂ Rnu where (X,U) are called the constraint sets. These constraint sets are PC-sets
(i.e., they are convex, compact, and have a non-empty interior that contains the origin).

Naturally, it is possible to speak of constrained LPV-PSS representations as well: indeed,
this is the class of representations that will see the most use throughout this thesis.

Whenever numerical implementation is concerned, it is additionally useful to assume that the
sets (X,U) are polytopes. In those cases, it is assumed that the constraint sets can be described
by an H-representation:

X = {x ∈ Rnx | Hxx ≤ 1} for some Hx ∈ R
rx×nx,

U = {u ∈ Rnu | Huu ≤ 1} for some Hu ∈ R
ru×nu .

(2.8)

An advantage of using the H-representation for constraint sets is the fact that this allows the
efficient representation of “box”-shaped constraints

X =
{

x ∈ Rnx
�� x ≤ x ≤ x

}
,

U =
{
u ∈ Rnu

�� u ≤ u ≤ u
}
,

where (x,u) and (x,u) are vectors of appropriate dimensions containing respectively lower and
upper bounds on the state vector and control input.
Sometimes it is useful to impose constraints on the output y ∈ Rny as well in terms of an

output constraint set y ∈ Y. As in the state and input constraint cases, it is assumed that Y is a
PC-set. Because all results in this thesis consider full state feedback (i.e., the full state vector x
can be measured and used for feedback), it is then assumed that such output constraints can be
translated to a suitable state constraint set as

X = {x ∈ Rnx | ∀(θ,u) ∈ Θ × U : C(θ)x + D(θ)u ∈ Y} .

2.2.4 Stability of (L)PV-SS representations
This section reviews the stability of the flow characterized by an autonomous constrained PV
state-space (PV-SS) representation

x(k + 1) = Φ (x(k), θ(k), k) ; x(0) = x0, (2.9)

where Φ : X×Θ×N→ X is a—possibly non-linear and time-dependent—state transition map.
The reason for considering non-linear and time-dependent representations in this section is that
an MPC typically corresponds to a non-linear control law. Thus, an LPV-PSS representation
that is connected in closed-loop with an MPC can be represented in the general form (2.9), and
the results from this section can then be used to assess the stability of the closed-loop. The
only assumption that is taken on Φ(·, ·, ·) is the following.

Assumption 2.3. For all (θ, k) ∈ Θ × N, the representation (2.9) satisfies Φ(0, θ, k) = 0. This
implies that the origin is an equilibrium of (2.9).

39



Chapter 2 Preliminaries

If the origin is an asymptotically stable equilibrium of (2.9), then x(k) → 0 as k →∞ for
all possible signals θ : N→ Θ. Because the representation (2.9) is subject to constraints, this
convergence can typically not be attained for all possible initial conditions x0 ∈ X. Therefore,
the following notion of regional asymptotic stability is considered:

Definition 2.8. Let x(k |θ, x0) denote the solution x(k) of (2.9), for a given scheduling signal
θ : N→ Θ and for the initial state x(0) = x0. The origin is said to be a regionally asymptotically
stable equilibrium of (2.9), if there exists a KL-function β and a PC-setX ⊆ X ⊂ Rnx such
that

‖x (k |θ, x0)‖ ≤ β (‖x0‖, k)

for all possible scheduling signals θ : N→ Θ, for all x0 ∈ X, and for all k ∈ N.

A similar notion of regional input-to-state stability has been considered in (Magni et al.
2006). The origin is called a globally asymptotically stable equilibrium if Definition 2.8 holds
forX = Rnx . However, if the state x(k) is constrained to belong to a compact set X, asymptotic
stability can only be obtained in a regional sense. Definition 2.8 is usually not verified directly.
Instead, use is made of regional Lyapunov functions which are defined as follows.

Definition 2.9. A function V : Rnx × N→ R is a (regional, time-varying) Lyapunov function
on an invariant PC-setX ⊆ X ⊂ Rnx for (2.9) if

(i) There existK∞-functions v, v such that for all (x, k) ∈ X×N: v(‖x‖) ≤ V(x, k) ≤ v(‖x‖);

(ii) There exists aK-function δ such that for all (x, θ, k) ∈ X×Θ×N: V (Φ (x, θ, k) , k + 1) ≤
V(x, k) − δ(‖x‖).

With Definition 2.9, to verify if the origin is a regionally asymptotically stable equilibrium
of (2.9), the following lemma can be used:

Lemma 2.2 ((Aeyels and Peuteman 1998; Jiang and Y. Wang 2002)). If there exists a regional
time-varying Lyapunov function satisfying Definition 2.9, then the origin is a regionally
asymptotically stable equilibrium of (2.9) in the sense of Definition 2.8.

Definition 2.9 and Lemma 2.2 are based on (Aeyels and Peuteman 1998) which presents
results concerning the stability of non-linear time-varying difference equations, of which
representation (2.9) can be considered to be a special case. Similar results for general non-linear
systems with disturbances are found in (Jiang and Y. Wang 2002). Throughout this thesis,
Lemma 2.2 will be employed to establish closed-loop stability of the developedMPC approaches.
A more detailed overview of stability concepts for discrete-time non-linear systems can also be
found in (Grüne and Pannek 2011, Chapter 2.3): with respect to that book, the notions in this
section have been modified to include the scheduling variable θ.

2.2.5 Reachable and contractive sets
This section introduces the basic concepts of reachable and contractive sets, which are crucial
tools in the construction of stabilizing MPC algorithms for LPV systems.
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The one-step backward reachable set with respect to a state set X ⊆ X and to the dynamics
(2.4), is the set of states that can be steered to X in one step for all possible values of the
scheduling variable. It is defined formally as follows.

Definition 2.10. For a constrained LPV-SS representation, the backward reachable set is the
map Q(·, ·) : 2X × 2Θ → 2X defined as

Q(X,Θ) = {x ∈ X | ∀θ ∈ Θ : ∃u(x, θ) ∈ U : A(θ)x + B(θ)u(x, θ) ∈ X} . (2.10)

The determination of a backwards reachable set requires computing a projection (2.10).
With the general definition of (2.10), this is challenging. To enable efficient computation, at
least one of the following two conditions must be satisfied:

• The input matrix of the involved LPV-PSS representation is constant, i.e., B(θ) = B;

• The control input does not depend on θ, i.e., (2.10) is replaced by

Q(X,Θ) = {x ∈ X | ∃u(x) ∈ U : ∀θ ∈ Θ : A(θ)x + B(θ)u(x) ∈ X} . (2.11)

If one of the above conditions is satisfied and if the target set X is a polytope, then the
projection can be computed and the set Q(X,Θ) is a polytope as well. One algorithm that can
be used for this is Fourier-Motzkin elimination (Dantzig and Eaves 1973).

Conversely, the one-step forward reachable set—or image—of a set X for the dynamics (2.4)
under a given controller, and for a corresponding scheduling set, is defined as follows.

Definition 2.11. The controlled image of a set for a constrained LPV-SS representation with a
given controller K : X × Θ→ U is the map I(·, ·|K) : 2X × 2Θ → 2Rnx defined by

I(X,Θ|K) =
{

A(θ)x + B(θ)K(x, θ) | x ∈ X, θ ∈ Θ
}
.

In contrast to the backward reachable set, the image I(X,Θ|K) for a controlled LPV-PSS
representation is in general non-convex even in the simplest possible case that X ⊆ X is a
polytope and K(·, ·) is linear (Blanchini and Miani 2015, Section 6.1.2). Nonetheless, the
convex hull of forward reachable sets can be propagated recursively (Blanchini and Miani 2015,
Proposition 6.5). The image satisfies the following “subset inclusion” property:

Lemma 2.3. Let K : X × Θ→ U. For any subset X ′ × Θ′ ⊆ X × Θ, it holds I(X ′,Θ′ |K) ⊆
I(X,Θ|K).

Now, the concepts of invariant and contractive sets are introduced. For this purpose, it is
useful to consider control functions K(·, ·) which satisfy some additional properties. These
properties are here summarized under the name of continous and positively homogeneous of
degree one (CH1):

Definition 2.12. A controller K : X × Θ → U is called CH1 if it is (i) continuous, and (ii)
positively homogeneous of degree one in the sense that ∀α ∈ R+ : K(αx, θ) = αK(x, θ).
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The next two definitions formally introduce the concepts of (controlled) invariant and
contractive sets.

Definition 2.13. A PC-set X ⊆ X is called controlled λ-contractive (respectively, controlled
invariant) for an LPV-SS representation (2.4), if there exists a local CH1 controller K :
X × Θ→ U such that λ = inf{µ ≥ 0 | I(X,Θ|K) ⊆ µX} < 1 (respectively, = 1).
Definition 2.14. A PC-set X ⊆ X is called λ-contractive (resp., invariant) with respect to a
CH1 controller K : X × Θ → U, if it satisfies Definition 2.13 for the given (as opposed to
“some”) K(·, ·).

Controlled invariant and contractive sets are used as tools to guarantee the stability of
predictive controllers. It should be understood that the limitation to CH1-controllers in the
above definitions is not restrictive. Suppose that for a set X ⊂ X, an initial state x ∈ X, and a
scheduling value θ ∈ Θ, there exists a control action u ∈ U such that

A(θ)x + B(θ)u ∈ X .

Then it is easy to see that, for the scaled initial state αx, the control action u can be scaled by
the same factor to obtain

A(θ)αx + B(θ)αu = α (A(θ)x + B(θ)u) ∈ αX .

Furthermore, if α ∈ [0,1], then αu ∈ U due to the PC-property of U (Definition 2.7).
Verifying if a given PC-set X ⊆ X is controlled λ-contractive in the sense of Definition 2.13

can be done by checking if there exists an associated CH1 controller such that ∀(x, θ) ∈ X ×Θ :
A(θ)x + B(θ)K(x, θ) ∈ λX . In the case of LPV-PSS representations, the existence of such a
controller on a polytopic set is equivalent to the existence of individual control actions on the
vertices of that set, as summarized in the following lemma.

Lemma 2.4. Let X = convh
{

x̄1, . . . , x̄qx
}
⊆ X be a PC-set. The set X is controlled λ-

contractive for a given constrained LPV-PSS representation with parameter-independent input
matrix B(θ) = B, if and only if ∀(i, j) ∈ [1..qx] × [1..qθ ] : ∃u ∈ U : A(θ̄ j)x̄i + Bu ∈ λX .
Proof. This fact is well-known in the literature, but for easy further reference, a proof based
on some simple convexity arguments is provided here. It is sufficient to consider two pairs
of arbitrary vertices (x̄a, x̄b) and (θ̄c, θ̄d). Suppose that ∀(i, j) ∈ {a, b} × {c, d} : ∃ū(i, j) :
A(θ̄ j)x̄i + Bu ∈ λX . Let x = α x̄a + (1 − α)x̄b and θ = βθ̄c + (1 − β)θ̄d where α ∈ [0,1] and
β ∈ [0,1] are arbitrary convex multipliers. Then, the convex combination of control inputs
u = α(βū(a,c) + (1 − β)ū(a,d)) + (1 − α)(βū(b,c) + (1 − β)ū(b,d)) is such that A(θ)x + Bu ∈ λX:

A(θ)x + Bu =
(
βA(θ̄c) + (1 − β)A(θ̄d)

) (
α x̄a + (1 − α)x̄b

)
+ B

(
α

(
βū(a,c) + (1 − β)ū(a,d)

)
+ (1 − α)

(
βū(b,c) + (1 − β)ū(b,d)

))
= α

(
β

(
A(θ̄c)x̄a + Bū(a,c)

)
+ (1 − β)

(
A(θ̄d)x̄a + Bū(a,d)

))
+ (1 − α)

(
β

(
A(θ̄c)x̄b + Bū(b,c)

)
+ (1 − β)

(
A(θ̄d)x̄b + Bū(b,d)

))
∈ λX,
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2.3 Embeddings of non-linear systems

where the last inclusion follows because the set X is convex and because it was known that
A(θ̄ j)x̄i + Bū(i, j) ∈ λX , (i, j) ∈ {a, b} × {c, d}. �

Lemma 2.4 establishes that determining if a given PC-set X ⊂ X is λ-contractive is equivalent
to solving a set of finitely many linear inequalities. This can be done in a computationally
efficient manner using linear programming.
Some variations on Lemma 2.4 with similar proofs are possible. For instance, when the

considered LPV-PSS representation does not have a constant B-matrix, then the set X is
controlled λ-contractive if for all i ∈ [1..qx] there exists a u ∈ U such that for all j ∈ [1..qθ ]
there holds A(θ̄ j)x̄i + B(θ̄ j)u ∈ λX .

One standard approach for computing (controlled) contractive sets for LPV-PSS representa-
tions, is the backwards iterative algorithm of (Blanchini and Miani 2015, Chapter 5)2. This
approach is summarized for future reference in Algorithm 2.1.

Algorithm 2.1 Backwards iterative computation of controlled λ-contractive sets.
Require: Desired contraction λ ∈ [0,1], tolerance ε > 0 such that λ + ε ≤ 1, iteration limit

kmax > 0
1: k ← 0
2: Choose arbitrary PC-set X0 ⊆ X
3: loop
4: Xk+1 = Xk ∩ Q (λXk,Θ) . Q(·, ·) as in Definition 2.10
5: if Xk ⊆ (λ + ε)Xk+1 then
6: stop successfully
7: else if Xk = ∅ then
8: stop unsuccessfully
9: else if k ≥ kmax then
10: stop indeterminately
11: end if
12: k ← k + 1
13: end loop

This iterative approach is implemented in freely available software such as (Kvasnica et al.
2015; Miani and Savorgnan 2005). Because the computation of backwards reachable sets is a
key step in the iterative algorithm, the computational comments below Definition 2.10 apply to
Line 4 of Algorithm 2.1 as well.

2.3 Embeddings of non-linear systems
This section reviews the principles of LPV embeddings of non-linear systems. Roughly
speaking, when constructing an embedding, non-linearities are “covered” by introducing
2(Blanchini and Miani 2015) considers a robust pre-image map of the form (2.11), but the same algorithm works
with the “scheduling” pre-image map (2.10) provided that the B-matrix of the LPV-PSS representation is constant,
see (Miani and Savorgnan 2005).
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scheduling variables. In this way, it becomes possible to use computationally efficient LPV
control design approaches to find controllers for non-linear systems.

2.3.1 The embedding principle
Consider a general system represented in terms of a state-space (SS) representation

x(k + 1) = f (x(k),u(k)) ; x(0) = x0, (2.12)

where x : N→ Rnx and u : N→ Rnu . In the specific context of SS representations, the concept
of an LPV embedding can be defined as follows.

Definition 2.15. Let X ⊆ Rnx be an open, bounded, and invariant set corresponding to an
operating region of the non-linear system (2.12). Define U = {u ∈ Rnu | ∃x ∈ X : f (x,u) ∈ X}.
An LPV-SS representation (2.4) is an embedding of (2.12) on X , if for all (x,u) ∈ X ×U there
exists a value θ ∈ Θ such that f (x,u) = A(θ)x + B(θ)u with Θ ⊆ Rnθ being a suitably defined
scheduling set.

From the above definition, it can be concluded that state trajectories—within the operating
domain X—of the non-linear system (2.12) are equal to state trajectories of the embedding
for one particular trajectory of the scheduling signal. When a controller is designed for an
LPV system, it has to guarantee closed-loop stability with respect to all possible scheduling
trajectories inside of the scheduling set. Therefore, if a stabilizing controller is found for
an LPV embedding of a non-linear system, then the same controller stabilizes the original
non-linear system. Constrained and polytopic LPV embeddings are defined analogously to
Definitions 2.7 and 2.6, respectively.
In terms of behaviors, the embedding principle for state-space representations can be

formalized as follows. Corresponding to (2.12), a signal space W = U × X can be defined
according to the input/state partition w = (u, x), with (U,X) as in Definition 2.15. Let an
LPV-SS representation (2.4) be given, and let

BLPV =
{
(u, x, θ) ∈ (W × Θ)T = (U × X × Θ)T

�� (2.4) holds} .
be its corresponding behavior on W (note that now, the output y is considered equal to x for
simplicity). Define a projected behavior as

B⊥LPV =
{
w ∈ WT ��∃θ ∈ ΘT : (w, θ) ∈ BLPV

}
,

and consider the non-linear behavior

BNL =
{
w ∈ WT

�� (2.12) holds} .
Then, the LPV-SS representation is an embedding of the non-linear system (2.12) if the
behavioral inclusion

BNL ⊆ B⊥LPV (2.13)

is satisfied.
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Systemu x LPV systemu
x

θ

(a) (b)

LPV systemu x

θ ∈ Θ

(c)

Figure 2.1: The construction of an LPV embedding. (a) The original non-linear system. (b)
The non-linear system equivalently represented. (c) The scheduling variable is
“disconnected” and becomes a free signal: the LPV embedding is obtained. The
behaviors of these three systems are related as BNL = Ba = B⊥b ⊆ B⊥c = B⊥LPV.

The idea of an LPV embedding is reminiscent of that of a linear difference inclusion (LDI).
Such inclusions (as well as their continuous-time counterpart, the linear differential inclusion)
are well-known tools in the stability of analysis of non-linear systems or systems with time delay
(Boyd et al. 1994; Gielen et al. 2010). The principal difference between an LPV embedding
and a difference inclusion, is the fact that in an embedding the scheduling variable is assumed
to be measurable. This measurement can be exploited by a controller, as was done, e.g., in
(Scherer et al. 1997) for flight control design.

In this approach, there is a classical trade-off between (computational) simplicity and
achievable control performance. On the one hand, using an LPV embedding enables the use of
well-developed efficient linear design methods to obtain controllers for non-linear systems. On
the other hand, the requirement that this linear controller has to be stabilizing with respect to
all possible scheduling trajectories can introduce conservatism.

2.3.2 Construction of embeddings
The general process of constructing an LPV embedding of a non-linear system is depicted in
Figure 2.1. Starting with the original non-linear system, scheduling variables θ ∈ Θ ⊆ Rnθ are
introduced such that the non-linear system is equivalently represented in an LPV form as

f (x,u) = A(θ)x + B(θ)u (2.14)

where the dependence of the matrix functions (A,B) : Θ × Θ → Rnx×nx × Rnx×nu can be
non-linear. Typically, the introduced scheduling variables are related to the state and input
signals, i.e., there exists a map (x,u) 7→ θ (Figure 2.1.(b)). Because an embedding is constructed
on a bounded operating region X ⊆ Rnx , it is possible to bound the values of θ inside of a
bounded scheduling set Θ ⊂ Rnθ . Then, to construct the embedding, the map (x,u) 7→ θ is
discarded and only the inclusion θ(k) ∈ Θ is assumed (Figure 2.1.(c)).

Example 2.4. Consider the simple non-linear system f (x,u) = (1+ x)x+u on the open interval
X = (−1,1). Introduce a scheduling variable θ = x, leading to the equivalent representation
f (x,u) = (1+ θ)x + u. Now, if the relation θ = x is discarded and it is only assumed that θ ∈ Θ,
an LPV embedding is obtained. In this example, a suitable choice for the scheduling set Θ is
Θ = X = (−1,1).
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If it is necessary to obtain a polytopic LPV embedding, the scheduling variable θ must be
selected such that the dependence of the matrix functions (A,B) in (2.14) on θ is affine and
the set Θ must be designed to be a polytope. This can usually be achieved by an appropriate
change of variables, or by introducing new auxiliary scheduling signals.

In the literature, a number of methods are available to generate embeddings for (certain classes
of) non-linear systems. These can be classified into three important categories: automated
transformation approaches, substitution-based approaches, and local approaches. A selection
of methods from these categories is now reviewed.

In automated transformation approaches, the idea is to algorithmically explore the different
ways inwhich the scheduling variables can be selected so as to obtain an equivalent representation
of the non-linear system. In (Kwiatkowski et al. 2006) this is accomplished by factorizing
the non-linear equations in a standard form. Then, a selection is made of the factors that will
correspond to scheduling variables in the embedding. A similar strategy, based on a decision
tree that collects all possible factorizations, is presented in (Tóth 2010, Section 7.4). Out of all
the possibilities described in terms of this tree, it is then possible to select the “best” embedding,
for instance the one with the least number of scheduling variables. In (Donida et al. 2009), a
method is developed to transform system models described in the Modelica modeling language
into a linear parameter-varying linear-fractional representation (LPV-LFR).
A framework for modeling non-linear mechanical systems in terms of an LPV-LFR is

presented in (Hoffmann and Werner 2014). The work (Hoffmann and Werner 2015a) proposes
an automated procedure, based on principal component analysis (PCA), to select an efficient
parameterization of the LFR. In (Hoffmann and Werner 2015b), the method is applied to the
LPV-LFR modeling of a control moment gyroscope.
Substitution-based approaches involve the elimination of non-linear terms through the

introduction of “virtual” scheduling signals to cover the non-linearities. Often, this is a
manual process. It was applied in Example 2.4 where the substitution θ = x was made. In
(Shamma and Cloutier 1993), an LPV embedding is obtained by applying a state transformation.
The state vector of the non-linear system has to be decomposed into a part that becomes
the scheduling variable and a part that becomes the state vector of the embedding. A more
systematic substitution-approach based on feedback linearization of control-affine non-linear
systems is presented in (Abbas et al. 2014). The method therein yields LPV-SS embeddings
in the observability canonical form, where the scheduling variables correspond to the time
derivatives of the inputs and outputs of the system. The construction of embeddings trough
velocity-based linearization (Leith and Leithead 1998) can also be interpreted as a substitution
approach, because this introduces a virtual scheduling variable that corresponds to the state
and input variables of the system (Tóth 2010, Section 7.3.4.3).
In (Petersson and Löfberg 2009), a method is presented to construct an LPV model of

a system that is described by multiple local models. These local models can, for instance,
represent the linearizations of a non-linear system around a collection of operating points.
The principal idea is to minimize the H2-norm of the error systems defined as the difference
between the LPV models evaluated at frozen scheduling values and the local models. A similar
approach, but based on minimization of the H∞-norm, is given in (Vízer and Mercère 2014).
This approach was applied in (Vízer et al. 2015) for the LPV modeling of a surgical robot based
on local identification experiments. It should be emphasized that local methods are not a-priori
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guaranteed to produce a “valid” embedding that satisfies (2.13).
Summarizing, a number of approaches for the construction for embeddings is available in

the literature. However, it is difficult to say which method yields the “best” embedding for a
given non-linear system and for a given control design purpose. Therefore, constructing an
embedding of a given non-linear system remains to a large extent a manual process involving
various choices and trade-offs.

2.4 Model predictive control
This section introduces the main ideas of model predictive control (MPC) in the nominal case.
The term “nominal” means that there is no uncertainty in the model of the system that is to
be controlled. An understanding of these concepts is useful before proceeding to the more
involved case of LPV MPC. In particular, the (well-known) nominal stability result presented
here can be seen as a precursor to the LPV MPC stability results that are developed as part of
this thesis.
Consider a constrained system of the form

x(k + 1) = f (x(k),u(k)) ; x(0) = x0, (2.15)

where x : N→ X ⊆ Rnx is the state variable, and u : N→ U ⊆ Rnu is the control input. In line
with Definition 2.7, it is assumed that the constraint sets (X,U) are PC. The problem of interest
is to design a controller Kmpc : X→ U such that the origin is a regionally asymptotically stable
equilibrium (Definition 2.8) of the closed-loop system

x(k + 1) = f
(
x(k),Kmpc(x(k))

)
; x(0) = x0. (2.16)

Let

uN−1 = {u0, . . . ,uN−1} , xN = {x0, . . . , xN }

denote sequences of control inputs and state variables, respectively. In MPC, at each sampling
time instant, the control input u(k) = Kmpc(x(k)) is determined by solving the optimization
problem

VN (x) = min
uN−1 ,xN

N−1∑
i=0

` (xi,ui) + F (xN )

subject to x0 = x,

∀i ∈ [0..N − 1] : xi+1 = f (xi,ui),

∀i ∈ [0..N − 1] : ui ∈ U,

∀i ∈ [0..N − 1] : xi ∈ X,

xN ∈ Xf,

(2.17)

where

• N ∈ [1..∞) is the desired prediction horizon;

47



Chapter 2 Preliminaries

• ` : X × U→ R+ is the stage cost, which specifies a user-defined performance objective;

• Xf ⊆ X is the terminal set;

• F : Xf → R+ is the terminal cost, which together with the terminal set has to be designed
appropriately in order to achieve closed-loop stability.

The function VN (·) : X → R+ in (2.17) is called the value function. Now, the controller
Kmpc(·) can be defined as

Kmpc(x) = u?0 , where u?N−1 =
{
u?0 , . . . ,u

?
N−1

}
minimizes (2.17) for the initial state x. (2.18)

It is possible to design the terminal set and cost such that the origin is a regionally
asymptotically stable equilibrium of (2.16). The following theorem summarizes the (sufficient)
conditions that Xf and F(·) must satisfy.

Theorem 2.1 (See, e.g., (Rawlings and Mayne 2009)). Let Kmpc(·) be defined as in (2.18).
The origin is a regionally asymptotically stable equilibrium of (2.16), if the following three
conditions are satisfied:

(i) The terminal set Xf is contained inside of the constraints (Xf ⊆ X), is closed, and contains
the origin (0 ∈ Xf).

(ii) There exists a local controller Kf : Xf → U such that Xf is invariant with respect to Kf ,
i.e., ∀x ∈ Xf : f (x,Kf(x)) ∈ Xf .

(iii) The terminal cost F : Xf → R+ is a regional Lyapunov function which satisfies
∀x ∈ Xf : F ( f (x,Kf(x))) − F(x) ≤ −` (x,Kf(x)).

Proof. The proof sketch given here is meant to illustrate the main ideas. The motivation for
this is that the concepts introduced in this proof for the nominal case, will be used later in a
modified form to prove feasibility and stability for the LPV case as well. Full details on the
stability properties of nominal MPC can be found in, e.g., (Grüne and Pannek 2011; Mayne
et al. 2000; Rawlings and Mayne 2009).

Suppose that at an arbitrary initial time instant k, themeasured initial state is x, and (uN−1,xN )

is a solution to (2.17). Recall that uN−1 = {u0,u1, . . . ,uN−1} and xN = {x0, x1, . . . , xN }, where
x0 = x. By construction of the constraints, xN ∈ Xf . After applying the control input u0 to the
system, at the next time instant k + 1 the state of the system is x+ = f (x,u0) = x1. A feasible
sequence of control inputs u+

N−2 that steers the state from x1 to xN ∈ Xf can be constructed by
shifting and truncating the sequence uN−1 that was found at time k, i.e., u+

N−2 = {u1, . . . ,uN−1}.
Furthermore, by Property (ii) there exists a control input u+

N−1 that is such that f (xN ,u+f ) ∈ Xf ,
namely u+

N−1 = Kf(xN ). Thus at least one feasible input sequence that gives a solution to
(2.17) at time k + 1 exists and it is explicitly given as u+

N−1 = {u1, . . . ,uN−1,Kf(xN )}; the
corresponding state sequence is x+N = {x1, . . . , xN , f (xN ,Kf(xN ))}. This property is called
recursive feasibility.
Define JN (u,x) =

∑N−1
i=0 `(xi,ui) + F(xN ). Because (uN−1,xN ) was a solution of (2.17)

for the initial state x, JN (uN−1,xN ) = V(x). As the explicitly constructed sequences
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(u+
N−1,x

+
N ) are feasible, but not necessarily optimal at time k + 1, it is known that V(x+) =

V(x1) ≤ JN (u+N−1,x
+
N ). With some algebra, it is then possible to show that V(x+) − V(x) ≤

JN (u+N−1,x
+
N ) − JN (uN−1,xN ) ≤ −`(x,u0). Provided that some technical conditions—namely,

the existence of K∞-bounds on V(·) and `(·, ·)—are satisfied, this relation implies that V(·) is a
regional Lyapunov function. The set of states on which this regional Lyapunov condition holds
is equal to the set of states for which the problem (2.17) admits a feasible solution. Therefore,
the origin is a regionally asymptotically stable equilibrium of the closed-loop system (2.16). �

In case the system (2.15) is linear time-invariant (LTI)—i.e., x(k + 1) = Ax(k)+ Bu(k)—the
stage cost is typically selected to be quadratic as

` (x,u) = x>Qx + u>Ru

where Q � 0 and R � 0 are the tuning parameters. Then, the local controller required in
Theorem 2.1 can be chosen to be linear, i.e., Kf(x) = K x such that there exists a matrix P � 0
satisfying

(A + BK)> P (A + BK) − P +Q + K>RK � 0. (2.19)

It can then be verified that F(x) = x>Px is a terminal cost satisfying the conditions of
Theorem 2.1. Note that (2.19) is satisfied when K is designed to be LQ-optimal with respect to
the weights (Q,R). Finally, the terminal set Xf ⊆ X can be computed as an invariant set for
the closed-loop system x(k + 1) = (A + BK)x(k). Such a set can be computed, e.g., by using
Algorithm 2.1.

49





Chapter 3

Anticipative tube-based MPC for LPV
systems

The purpose of this chapter is to introduce a uniform framework for the control approaches
that are described in this thesis. This framework includes the problem setting that is

adopted throughout most of the thesis and a flexible description of future uncertain scheduling
trajectories. The latter leads to the notion of “anticipative” control and is an answer to
Research Question Q1. Based on this, it is concluded that a tube-based model predictive
control (MPC) approach has the potential to provide a fitting solution to the remaining research
questions. As the next part of the framework, the foundations of tube-based control for linear
parameter-varying (LPV) systems are presented. A class of cost functions employed by the
MPC algorithms developed in the subsequent chapters is proposed, andK∞-boundedness of
the value function is proven under some assumptions. This result is instrumental for proving
stability of the algorithms in the following chapters. Next, an anticipative LPV MPC algorithm
based on the construction of homothetic tubes is presented. This approach can be seen as a
preliminary solution to Research Question Q2.

3.1 Introduction

This section introduces the main problem setting for this chapter and for the majority of this
thesis. Consider a constrained polytopic LPV state-space (LPV-PSS) representation, connected
in closed loop with a yet-to-be designed controller Kmpc : X × Θ × N→ U

x(k + 1) = A (θ(k)) x(k) + B (θ(k))Kmpc (x(k), θ(k), k) . (3.1)

As formulated in Question Q2, the aim of Kmpc (·, ·, ·) is to stabilize the origin of the dynamics
described by the given constrained LPV-PSS representation. This problem can be stated more
precisely as follows.

Problem 3.1. Given a constrained LPV-PSS representation, find a controller Kmpc : X × Θ ×
N→ U such that the origin of the state space is a regionally asymptotically stable equilibrium
of the closed-loop system (3.1) in the sense of Definition 2.8.
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As has become clear from the literature overview of Section 1.3.5, a significant number of
approaches addressing this very problem already exist. Nonetheless, some particularities in the
research questions posed in Section 1.4 motivate the search for yet another, complementary,
solution. Specifically, in reference to Research Questions Q0–Q2, any designed controller
Kmpc(·, ·, ·) must:

• Be able to make use of any available knowledge about the possible trajectories of the
scheduling variable;

• Be “stable” and “tractable”.

In this chapter, the first steps towards answering Questions Q0–Q2 are undertaken. The
remainder of this chapter is structured as follows. In Section 3.2, a description of possible future
scheduling trajectories is developed in terms of sequences of sets as an answer to Research
Question Q1. A controller that can make use of such a description, is called “anticipative”.
Next, in Section 3.3, it is argued that a tube-based approach can be suitable to obtain an
anticipative MPC for LPV systems. An overview of the literature on tube-based MPC is
provided. Section 3.4 subsequently presents the basic concepts of LPV tubeMPC as they will be
employed in this thesis. This includes a proof of K∞-boundedness of the MPC value function.
A preliminary anticipative LPV MPC approach based on homothetic tubes is presented in
Section 3.5. This provides a first answer to Research Question Q2. Finally, Section 3.6
summarizes the chapter.

3.2 Anticipative control
As stated in the primary Research Question Q0, the objective of the research described in this
thesis is to find LPV MPC strategies that can exploit knowledge about the possible behaviors of
the scheduling variable. It is thus necessary to define first what is meant by this “knowledge”
and how it can be represented in terms of a mathematical description, i.e., to find an answer to
Question Q1.

It is a fundamental part of the LPV concept that at each time instant k, the value θ(k) of the
scheduling variable can be measured (see Assumption 2.1). Another fundamental assumption
is that θ : N→ Θ is a “free” signal in the sense that it does not depend on the input- or state
variables. Therefore, in principle, for future time instants k + i, i ∈ [1..∞) it is only known that

θ(k + i) ∈ Θ (3.2)

where Θ ⊆ Rnθ is the scheduling set. As discussed previously in Section 1.2.2, this assumption
can be too pessimistic. In the lithography application considered therein it was, for instance,
known that the scheduling variable (the position of the immersion hood (IH)) can not jump
instantaneously from one end of its range to the other. Instead, the rate-of-variation (ROV)
of the scheduling variable was restricted by the maximum velocity of the IH. In general, the
existence of a bound on the scheduling ROV means that there exists a constant δθ such that for
all k ∈ N,

|θ(k + 1) − θ(k)| ≤ δθ. (3.3)
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q

m

l

θ = T (x,u) = sinq
q

Figure 3.1: The non-linear dynamics of a pendulum can be embedded in an LPV representation
by introducing a scheduling variable θ that depends on the angle q.

Thus, if the current value θ(k) is measured, then the future values θ(k + i), i ∈ [1..∞) are
known to belong to a “cone” expanding outwards from the current point θ(k).
Also, in an LPV embedding of a non-linear system, a ROV on the scheduling variable can

often be assumed because there is a dependence between the scheduling and state or input
variables, i.e., θ = T(x,u). For instance, the non-linear dynamics of an inverted pendulum can
be embedded in an LPV representation by introducing a scheduling variable θ that depends on
the angle of the pendulum1, as depicted in Figure 3.1. Because the pendulum obeys the laws of
physics and can therefore not spin infinitely fast, a bound δθ is known to exist.
In the lithography application, a bound on the scheduling ROV is not the only information

available. Because the scheduling variable corresponds to the position of the IH that is
controlled to follow a prescribed reference trajectory, future scheduling trajectories can be
predicted with high confidence. This situation can be described by defining a “nominal”, fully
known, scheduling signal θ̄ : N→ Θ and an “uncertainty set” ∆ ⊆ Θ such that it is known that

∀i ∈ [0..∞) : θ(k + i) ∈
(
θ̄(k + i) ⊕ ∆

)
∩ Θ. (3.4)

In an embedding, it can be the case that the system is controlled to follow a reference
trajectory. Then, it can be assumed that at each future time instant k + i, i ∈ [1..∞), the state
x(k + i) belongs to a setXi ⊆ X ⊂ R

nx around this reference. Likewise, it could be the case that
future control inputs u(k + i) are known to belong to sets Ui ⊆ U ⊂ R

nu . By using the known
relationship θ = T(x,u) between the scheduling and state variables, corresponding scheduling
sets can be calculated. This leads to a description of possible future scheduling trajectories of
the form

∀i ∈ [0..∞) : θ(k + i) ∈ {T(x,u) | x ∈ Xi,u ∈ Ui} . (3.5)

The four situations of (3.2)–(3.5) represent particular instances of knowledge on possible
future trajectories of θ. Towards the end of providing a general framework in which these and
other cases can be described, the notion of “scheduling tube” is introduced.

Definition 3.1. A scheduling tube Θ of length N is a sequence of sets

Θ = {Θ0, . . . ,ΘN−1} =
{
Θi

}N−1
i=0 ,

1A concrete example where this is done is given later in Section 8.5.2
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Θ0 = {θ(k)}

Θ1
Θ2

Θ3

|θ(k + i + 1) − θ(k + i)| ≤ δθ

(a) Bounded ROV (Equation 3.3).

Θ0 = {θ(k)}

Θ1 Θ2

Θ3

Θi =
(
θ̄(k + i) ⊕ ∆

)
∩ Θ

(b) Uncertainty around nominal trajectory (Equation 3.4).

Figure 3.2: Example of two different scheduling tubes. The availability of the measurement
θ(k) is exploited by setting Θ0 = {θ(k)}.

where ∀i ∈ [0..N − 1] : Θi ⊆ Θ, or equivalently, Θ ⊆ ΘN .

In an anticipative predictive controller, at each sampling instant k, a new scheduling tube is
constructed such that it contains the expected future variation of the scheduling variable. Due
to the availability of the measurement θ(k), it is always constructed such that

Θ0 = {θ(k)}.

Then it is assumed that, at each instant k + i with i ∈ [0..N − 1] it holds that

θ(k + i) ∈ Θi .

The sets Θi , i ∈ [1..N − 1] can be generated according to any one of (3.2)–(3.5), or in any other
way that fits the application at hand. Two examples of scheduling tubes, corresponding to (3.3)
and (3.4), are provided in Figure 3.2.

A “scheduling model” can now be defined to be any function that—given suitable measure-
ments of the state, scheduling variable, and possibly exogenous inputs—produces a scheduling
tube of the form of Definition 3.1. As can be inferred from the previous discussion, the precise
form of this model is application-specific and depends on what knowledge is available on its
scheduling dynamics. However, any scheduling model must satisfy some general conditions.
In particular, the scheduling tube computed at a time instant k + 1 must in some sense be
“contained” inside of the tube that was computed at time instant k. This requirement can be
conveniently formulated in terms of a certain ordering of scheduling tubes, which is defined
next.
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Definition 3.2. Let Θ =
{
Θi

}N−1
i=0 ⊆ Θ

N and Θ′ =
{
Θ′i

}N−1
i=0 ⊆ Θ

N be two scheduling tubes
of length N . The relation Θ′ v Θ is satisfied if and only if ∀i ∈ [0..N − 2] : Θ′i ⊆ Θi+1.

In the chapters that follow, to guarantee recursive feasibility of the developed MPC schemes,
it will always be required that the employed scheduling model is such that for two sequentially
generated scheduling tubes it holds that Θk+1 v Θk .

Furthermore, if a scheduling tube Θ ⊆ ΘN is given for an LPV-PSS representation, then it is
implicitly required that all sets in Θ are polytopes (otherwise the state-space (SS) representation
would no longer be “polytopic”). In the rest of this thesis, for notational simplicity it is assumed
that these polytopes are represented as the convex hulls of equally many vertices. This is
summarized in the following assumption.

Assumption 3.1. Let Θ ⊆ ΘN be a scheduling tube according to Definition 3.1 corresponding
to a given LPV-PSS representation. Then, every set Θi is a polytope described as the convex
hull of qθ vertices, i.e., ∀i ∈ [1..N − 1] : Θi = convh{θ̄1

i , . . . , θ̄
qθ
i }.

To summarize, this section has introduced the notion of a “scheduling tube” to enable the
description of the available information on possible future scheduling trajectories, thereby
answering Research Question Q1. Given this concept, it has become possible to define precisely
what is meant by “anticipative” control:

Definition 3.3. A predictive controller Kmpc(·, ·, ·) for an LPV system is called anticipative if
it is able to exploit knowledge about possible future scheduling trajectories, as described in
terms of a scheduling tube Θk of the form of Definition 3.1, to potentially achieve increased
control performance (as measured by, e.g, the size of the domain of attraction or the realized
closed-loop cost). This scheduling tube may be generated in any way that is compatible with the
application at hand, as long as at every two sequential time instances the condition Θk+1 v Θk

is satisfied.

3.3 Tubes: motivation and background
In this section, first, the motivation for developing a tube-based LPV control approach is
outlined in Section 3.3.1. Next, in Section 3.3.2, a literature overview of currently available
tube MPC solutions is provided.

3.3.1 Why tubes?
The previous section introduced the idea of anticipative predictive control. In the considered
setting, at each time instant, an estimated behavior of the scheduling variable over N samples
into the future is assumed to be available. To make full use of this information, an MPC
should use a prediction horizon that is close to this N . If the prediction horizon is shorter, then
potentially useful information is neglected. Thus, a methodology for designing a stable and
tractable anticipative predictive controller must:

• Allow for arbitrary prediction horizons N so that the full scheduling tube ΘN can be
used in predictions;
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• Therefore, have a computational complexity that scales well in N .

As summarized in the literature survey on tractable feedback strategies in Section 1.3.5, the
tube-based framework satisfies these criteria. Hence, the principles of the tube-based approach
will be adopted for formulating the anticipative model predictive controllers described in this
thesis.

3.3.2 A survey of tube-based MPC
This section expands on the literature review of Section 1.3.5 by providing a more detailed
overview focused on various methods of tube-based MPC. Tube MPC is a paradigm devised
to reduce complexity with respect to the dynamic programming solution. This complexity
reduction is achieved by employing an approximate description of uncertain state trajectories.
Due to the uncertainty in the future behavior of the scheduling variable, the N-step ahead
predicted closed-loop response of an LPV system to an optimized sequence of control laws
will be set-valued. The exact description of these set-valued trajectories has a representation
whose complexity grows exponentially with the prediction horizon. In tube model predictive
control (TMPC), this exponential growth is avoided by over-approximating the exact sets by
so-called cross sections, which are sets with a shape that is parameterized in some simpler way.
Therefore, the representation complexity of the sets does not grow with the horizon. Naturally,
the price that has to be paid for this is an increase in conservatism. Tubes were employed first
in reachability analysis (Bertsekas and Rhodes 1971), and these ideas were later adopted into
MPC.
Although the focus of this thesis is on the control of LPV systems, tube-based MPC

approaches were originally proposed to control constrained linear systems subject to additive
disturbances, and therefore these approaches are reviewed first. In this type of TMPC, the
purpose of constructing a tube is to keep the closed-loop trajectories of the disturbed system
close to a “nominal” trajectory. The work (Mayne et al. 2005) uses rigid tubes, consisting
of a sequence of translated copies of a pre-designed robustly positively invariant basic shape
set. The center of the tube follows a trajectory which corresponds to the response of the
undisturbed system to an optimized sequence of control actions. A policy consisting of these
control actions superimposed upon a linear state feedback law is then guaranteed to keep the
realized (disturbed) trajectories inside of the tube around this nominal trajectory. The cross
sections of this tube are equal to the minimal robustly positively invariant (mRPI) set of the
system under the provided linear feedback. The word rigid refers to the fact that the size
(scaling) of the cross sections is not optimized on-line. Recursive feasibility is ensured by
tightening the constraints: if the nominal state and control trajectory is contained inside of a
reduced (tightened) constraint set, then all possible closed-loop trajectories contained inside of
the tube around this nominal trajectory are guaranteed to be inside of the original constraint
set. The rigid size of the cross sections induces some conservatism, which can be alleviated
somewhat by making the initial state of the model a variable in the on-line optimization as well.
The computational complexity of this method is virtually equal to that of LTI MPC, as only
the initial model state and nominal trajectory have to be optimized on-line while disturbance
rejection is ensured by the pre-computed linear feedback law.
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In (Langson et al. 2004; Raković et al. 2012a), the concept of so-called homothetic tubes is
introduced: these tubes consist of a sequence of translated and scaled copies of a polytopic basic
shape set2. The scalings are optimized on-line, and the center of the tube does not necessarily
follow a “nominal” trajectory. Because the shape of the cross sections is fixed and they are
only scaled by a scalar factor, the optimization problem to be solved on-line is convex. Due
to the increased flexibility obtained by optimizing the scalings on-line, this approach is less
conservative than the rigid tube-approach at the price of an increased computational cost. In
(Langson et al. 2004), a vertex control policy is used, whereas (Raković et al. 2012a) employs
a policy consisting of perturbations upon a pre-determined homogeneous (not necessarily
linear) state feedback controller. On-line, (Langson et al. 2004) involves the solution of a
single quadratic program (QP) whereas (Raković et al. 2012a) requires the solution of a single
linear program (LP). In both cases, the number of variables and constraints in the optimization
problem is a linear function of the prediction horizon.
A much more flexible, but more expensive, parameterization is given in (Raković et al.

2012b), which drops the restriction that the basic shape sets are designed off-line. In fact,
(Raković et al. 2012b) also generalizes the disturbance-affine policies of (Goulart et al. 2006) by
allowing non-affine feedback laws. The on-line computation still consists of solving a single LP,
and the number of variables and constraints is a quadratic function of the prediction horizon.
In homothetic TMPC, each cross section is formed by scaling a basic shape set by a scalar

factor. The elastic tubes of (Raković et al. 2016b) improve upon the flexibility of homothetic
tubes, by scaling each hyperplane of the polytopic basic shape set individually. This elasticity
renders the tube synthesis problem that has to be solved on-line non-convex. To counter this
issue, a conservative convex approximation of the non-convex problem is solved instead. With
respect to the homothetic case of (Raković et al. 2012a), the number of decision variables is
increased further, but it still grows linearly in the horizon.

In all the TMPC approaches mentioned so far, persistent additive disturbances are assumed
to be present, and hence asymptotic stability of the origin can not be established. Instead,
convergence to a limit set—typically, the minimal robustly invariant set—centered around
the origin is attained. In contrast, for an LPV system, it should be possible to asymptotically
stabilize the origin because the uncertainty enters multiplicatively in the state transition matrix.
Thus, the notion of robust stability required for LPV systems is different from the one employed
in the aforementioned TMPC approaches for additively disturbed systems.
A framework for the construction of “stabilizing” tubes, with application to the predictive

control of linear systems on assigned initial condition sets, was presented in (Brunner et al.
2013). All system trajectories emanating from the initial condition set are restricted to be
inside a tube, which terminates in a controlled λ-contractive terminal set. The specific form of
tube used in (Brunner et al. 2013) is homothetic to the terminal set, and in that sense similar
to the tubes from (Langson et al. 2004; Raković et al. 2012a). However, the purpose of the
tube (stabilizing the origin, versus a robustly invariant set around the origin) is different. The
theoretical conditions in (Brunner et al. 2013) can be extended beyond the homothetic case, but
to do so, new terminal cost- and set-constructions are necessary.

2Two sets A, B ⊆ Rn are homothetic to each other if there exists a vector z ∈ Rn and a scalar α ∈ R+ such that
A = z ⊕ αB.
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Rigid tubes can be applied for controlling LPV systems as well (Rawlings and Mayne 2009,
Section 3.5). This works by overbounding the effect of the unknown future parameter variations
with an additive disturbance term, which gradually vanishes as the initial state of the system
approaches the origin. The true parametric nature of the uncertainty is, however, ignored during
predictions.
The papers (Gonzalez et al. 2011; Richards 2005) extend the rigid-tube approach to linear

time-varying (LTV) systems. Recall that an LTV system is equivalent to an LPV system for a
single, exactly known, choice of scheduling signal (see Section 1.2.3). Both approaches are
similar because the local feedbacks are computed on-line based on the known future system
realizations, instead of using a single pre-determined local linear time-invariant (LTI) feedback
as in (Mayne et al. 2005). The tube cross sections are also computed on-line as a sequence of
reachable sets of the disturbed time-varying system under the computed local feedbacks. Like
(Mayne et al. 2005), robust feasibility is ensured by constraint tightening. A difference between
(Richards 2005) and (Gonzalez et al. 2011) is that (Richards 2005) uses a terminal endpoint
constraint, whereas (Gonzalez et al. 2011) uses a terminal set constraint with a terminal cost.
The LTV MPC approach of (Richards 2005) was modified to the LPV case in (Broomhead

et al. 2014). An LTI prediction model is employed, and the true future system realization is
no longer assumed to be known. The constraint tightening is now done with respect to the
uncertainty arising from the unknown future scheduling trajectories as well as to the uncertainty
induced by additive disturbances. Furthermore, the terminal endpoint constraint is replaced
by a set. The work (Satzger et al. 2017) improves on (Broomhead et al. 2014) by allowing
for an LPV prediction model with a rate-bounded scheduling variable, and for an LPV local
controller.
Essentially, in (Broomhead et al. 2014; Satzger et al. 2017), the shape and size of the tube

cross sections is computed first, and the center trajectory is optimized independently subject
to tightened constraints. Provided that the required Pontryagin differences3 can be computed
efficiently, this leads to optimization problems with a complexity comparable to that of standard
LTI MPC. However, this also means that the size of the tube is considered to be independent of
the optimized center trajectory, which can be conservative. This is because in an LPV system,
the parameter uncertainty enters multiplicatively in the state transition matrix, and so the choice
of center trajectory has a definite influence on the size of the tube that can be created around it.

In homothetic TMPC on the other hand, the scalings of the tube cross sections are optimized
together with the center trajectory. In principle, this allows for a more direct and elegant
handling of multiplicative uncertainties. The authors of (Langson et al. 2004) already discuss
a possible adaptation of “additive” TMPC to parametrically uncertain systems. Closed-loop
stability in a receding-horizon setting is not considered, however. A similar observation was
made in (Brunner et al. 2013).
Specialized TMPC approaches for multiplicatively uncertain systems are (Fleming et al.

2015; Muñoz-Carpintero et al. 2015). The shape of the tubes is elastic like those in (Raković
et al. 2016a), in the sense that each hyperplane of the basic shape set can be scaled individually.
Similarly to (Raković et al. 2016b), this renders the tube synthesis problem non-convex in
principle, but this is circumvented by conservatively verifying the set inclusions through a use

3The Pontryagin difference between two sets A, B ⊆ Rn is A 	 B = {x ∈ Rn |∀b ∈ B : x + b ∈ A}.
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of Farkas’ Lemma (Mangasarian 1994). The considered feedback policy consists of control
actions superimposed upon a pre-determined linear state feedback, and the tube center has to
satisfy a “nominal” trajectory. Recall that a “multiplicatively uncertain” system is considered
different from an “LPV” system, in the sense that no measurement of the current value of the
scheduling variable is assumed to be available.
All of the aforementioned tube MPC approaches were based on polyhedral tubes, but

ellipsoidal tubes have been employed as well. The work (Smith 2004) uses such tubes for the
predictive control of systems subject to norm-bounded parametric uncertainties. In (Suzuki and
Sugie 2006) an ellipsoidal tube MPC algorithm is given for LPV-PSS representations subject
to rate-bounded parameter variations. Note that when using ellipsoids, the on-line optimization
problem is still convex, but becomes a semi-definite program (SDP) instead of an LP or QP.

Finally, it must be mentioned that there exist tube MPC approaches for LPV systems subject
to additive disturbances, in which the tube is used only to handle the effect of the additive
disturbance. The uncertainty due to variations in the scheduling variable is then dealt with by
other means. This is different from the approach taken in this thesis, where a tube is constructed
to handle multiplicative uncertainties directly, but nevertheless a few of these approaches are
now reviewed for completeness.

The work (Bumroongsri 2015) considers LPV systems subject to additive disturbances and
in effect combines (Kothare et al. 1996) with (Mayne et al. 2005). The LMI-based LPV MPC
approach (Kothare et al. 1996) is used to stabilize the “LPV” part of the dynamics, and on top
of that the tube of (Mayne et al. 2005) is employed to ensure constraint satisfaction despite the
presence of additive disturbances.
Similarly, (Su et al. 2012) addresses output feedback of LPV systems that are subject to

additive disturbances. To control the “nominal” LPV dynamics, the quasi-min-max approach
(Lu and Arkun 2000b) is used. It is augmented with a tube that is used to handle the effects of
the additive disturbance as well as state estimation errors.
A short comparison of the mentioned tube MPC approaches that are most relevant to the

developments of this thesis, is given in Table 3.1.

3.4 Foundations of LPV tube MPC algorithms

In this section, the basic framework that will be employed throughout this thesis for the
construction of LPV predictive controllers is introduced. First, the fundamental ideas behind
the synthesis of tubes are presented. It is then outlined how a receding-horizon predictive
controller can be built on the basis of these ideas. The desirable properties of such a controller,
which were already informally introduced in Section 1.3.2, are defined. Next, the notion
of domain of attraction is explained, and the class of cost functions that will be used for
the algorithms developed in the remainder of this thesis is given. For these cost functions,
some properties are proven which will be essential later to establish stability of the developed
algorithms.
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Approach System Cross-sections Control laws
(Langson et al. 2004) LTI+ Homothetic polytope Vertex control
(Mayne et al. 2005) LTI+ Rigid polytope computed off-line u = c + Ke
(Suzuki and Sugie 2006) LPV Homothetic ellips., nominal center u = c + K x
(Raković et al. 2012a) LTI+ Homothetic polytope u = c + κ(e)
(Brunner et al. 2013) LTI Homothetic polytope Vertex control
(Raković et al. 2016a) LTI+ Elastic polytope u = c + K(α)e
(Fleming et al. 2015) LPU Elastic polytope, nominal center u = c + K x
(Satzger et al. 2017) LPV Rigid polytopes computed on-line u = c + K(θ)e

This thesis, Chapter 4 LPV Periodically homothetic polytope Vertex control
This thesis, Chapter 5 LPV Heterogeneous Heterogeneous
This thesis, Chapter 6 LPV Sparsely parameterized polytopes Sparsely parameterized

Table 3.1: Comparison of some representative tube-based MPC approaches. Besides LPV and
LTI, the system classes mentioned in the table are additively disturbed LTI (LTI+)
and linear parametrically uncertain (LPU).

3.4.1 Tube synthesis
This section presents a general framework for the construction of tubes, the essential component
of the tube MPC algorithms that will be employed throughout this thesis. This framework
is inspired by (Brunner et al. 2013) with suitable modifications made to accommodate the
anticipative LPV setting. A tube, in essence, is a sequence of sets in the state space (i.e., Rnx )
with an associated sequence of control laws. The following definition formalizes this concept.

Definition 3.4. Let Θ ⊆ ΘN be given according to Definition 3.1. A tube of length N is a pair

T = (X,K) =
({

Xi

}N
i=0,

{
Ki

}N−1
i=0

)
where Xi ⊆ R

nx are sets and where Ki : Xi × Θi → U are CH1 control laws such that for all
i ∈ [0..N − 1], the condition I(Xi,Θi |Ki) ⊆ Xi+1 ∩ X holds4. Each set Xi is called a cross
section.

The length of the tube N in Definition 3.4, is called the prediction horizon. A subtle, but
important, feature of the tubes in Definition 3.4 is the fact that the cross sections Xi are not
necessarily subsets of the state constraints. Only the actual possible trajectories of the system,
as generated by the image mapping I(Xi,Θi |Ki), are required to be inside of the constraints.

Remark 3.1. When reading this thesis, it is important to be aware of the difference between a
“tube” (Definition 3.4) and a “scheduling tube” (Definition 3.1).

In the sequel, occasionally the scalar multiple of a tube will be used, which can be defined as

αT =
({
αXi

}N
i=0,

{
Ki

}N−1
i=0

)
. (3.6)

4See Definition 2.11 for the definition of the image map I(·, · | ·).
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Xf
X0 = {x}

X1

X2
X3

X4 ⊆ Xf

I (Xi,Θi |Ki) ⊆ Xi+1 ∩ X

Figure 3.3: A “feasible” tube T ∈ TN (x,Θ) in a two-dimensional state space with N = 4.
Recall that Θ =

{
Θi

}N−1
i=0 .

Note that in (3.6) it is not necessary to explicitly scale the sequence
{
Ki

}N−1
i=0 , because the

assumed homogeneity of the controllers implies that

{Ki(x, θ) | x ∈ αXi, θ ∈ Θi} = {Ki(αx, θ) | x ∈ Xi, θ ∈ Θi} = α {Ki(x, θ) | x ∈ Xi, θ ∈ Θi} .

The scaled tube satisfies the state and input constraints for all α ∈ [0,1], due to the PC-property
of X and U.

This section will now review in general terms the process of constructing tubes in the context
of MPC. When particular tube constructions are presented in the course of the following
chapters, modifications to these general definitions will be made where necessary. The purpose
of this section is therefore to give an outline of the general approach which is the foundation for
the next chapters.

In what follows, a tube is called feasible if it satisfies an initial condition constraint, and if it
satisfies a terminal constraint. The set of such feasible tubes TN (·, ·) can be defined as

TN (x,Θ) = {T | T satisfies Def. 3.4 with X0 = {x} and XN ⊆ Xf} (3.7)

where Xf ⊆ X is a terminal set. An example of a feasible tube T ∈ TN (x,Θ) is depicted in
Figure 3.3.
It is useful to choose from this set of feasible tubes a single tube that optimizes a given

performance criterion. This is done by solving the tube synthesis problem

V (x,Θ) = min
T

JN (T,Θ) subject to T ∈ TN (x,Θ) (3.8)

where

JN (T,Θ) =
N−1∑
i=0

` (Xi,Ki,Θi) + F (XN ) (3.9)

is a finite-horizon cost function with `(·, ·, ·) being the stage cost and F(·) being the terminal
cost. The stage cost is selected to optimize a certain performance criterion: this could, for
instance, be to drive the state to the origin as fast as possible or to minimize the energy of the
control inputs. A type of norm-based stage cost that will be used in a large part of this thesis
will be presented later in Section 3.4.5. The terminal cost F(·) must be computed in a special
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way to guarantee stability of the closed loop (see Section 2.4). Note that the cost functions take
set-valued arguments.

The optimization (3.8) involves arbitrary sets and control laws as decision variables, so it is
actually intractable to solve. Therefore, the optimization is always carried out with respect to
parameterized sets and controllers. The selected parameterization determines the computational
complexity of (3.8), as well as the level of achievable performance of the resulting controller.
Typically, it is desired to have a parameterization that leads to a favorable balance between
computational complexity and obtained control performance. The differences between the
algorithms summarized in Table 3.1 mainly come from different choices of the parameterization
within the general framework of Definition 3.4.

The illustration of Figure 3.3 already gives an example of a parameterized tube, because
each cross section corresponds to a scaled and translated copy of the terminal set Xf , i.e,

Xi = zi ⊕ αiXf for some (zi, αi) ∈ Rnx × R+.

Then, the centers zi and the scalings αi are parameters which correspond to decision variables
in the tube synthesis (3.8). If the cross sections are parameterized in this way it is said that
they are homothetic to Xf , and so this parameterization is called a homothetic parameterization.
Parameterizations of this type have been extensively used in the literature (see Section 3.3.2),
and several variations on it will be considered throughout the course of this thesis.

The function V(·, ·) in (3.8) is called the value function, and an optimizer of (3.8) is denoted
as

T? =
({

X?i
}N
i=0,

{
K?
i

}N−1
i=0

)
, (3.10)

where by definition, V(x,Θ) = JN (T?,Θ).

3.4.2 Receding-horizon tube MPC
The receding-horizon methodology is the standard approach in which the tube synthesis as
presented in the previous subsection can be used to obtain an MPC algorithm. It is summarized
in Algorithm 3.1.
If at a certain time instant k ∈ N no solution to the problem (3.8) exists, it is not possible

to determine a valid control input u(k) that can be applied to the plant. This can mean, for
instance, that it is not possible to determine an input u(k) that satisfies the constraints and that
is such that the state constraints will not be violated. Thus, the execution of the controller has
to be aborted, as is done in Step 10 of Algorithm 3.1. If Algorithm 3.1 is recursively feasible,
and if there are no unmodeled disturbances or modeling errors present, then this abort can
only occur at time k = 0. This is because in a recursively feasible controller, the existence
of a solution at k = 0 implies the existence of a solution at all future k > 0. In practice it
may sometimes be possible to recover from an “aborted” state, for instance by dropping some
constraints (X,U) and attempting to re-solve (3.8).
In a receding-horizon scheme, establishing recursive feasibility and closed-loop stability is

not trivial. Recursive feasibility has to be ensured through a special design of the terminal set
Xf and the tube parameterization. These two design elements are often mutually dependent.
Closed-loop stability has to be ensured by appropriately choosing the terminal cost F(·).
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Algorithm 3.1 Prototype receding-horizon TMPC algorithm.
Require: N ∈ [1..∞)
1: Θ−1 ← Θ

N

2: k ← 0
3: loop
4: Construct Θk =

{
{θ(k)},

{
Θi |k

}N−1
i=1

}
⊆ ΘN such that Θk v Θk−1

5: if TN (x(k),Θk) , ∅ then
6: Solve (3.8) to obtain T? ∈ TN (x(k),Θk)

7: Apply u(k) = K?
0 (x(k), θ(k)) = u?0 to the system (2.4)

8: k ← k + 1
9: else
10: abort
11: end if
12: end loop

Particular constructions of the terminal set, tube parameterization, and terminal cost will be
presented in the following chapters.

3.4.3 Desirable properties revisited
In Section 1.3.2, the desirable properties that an MPC algorithm must satisfy have been
informally introduced. The purpose of this section is to give a more precise definition for the
introduced concepts of recursive feasibility, stability, and tractability.
Assume that a controller Kmpc(·, ·, ·) has been designed leading to a closed-loop system

(3.1). At time instant k, suppose the controller solves (3.8) and produces a control input
u(k) = Kmpc(x(k), θ(k), k). After applying this input to the system, a new measurement
(x(k + 1), θ(k + 1)) becomes available. The question is if the existence of a solution to (3.8)
can be guaranteed at time k + 1. More specifically, the question to be answered is whether or
not the existence of a solution at time k implies the existence of a solution at the next time
instant k + 1. If the answer is “yes”, then the controller Kmpc(·, ·, ·) is called recursively feasible.
Clearly, this property is highly desirable. If no solution u(k + 1) exists, the behavior of the
closed-loop system becomes essentially undefined, and therefore no stability guarantee can be
given. Based on this discussion, it is now possible to give a thorough definition of a “stable”
strategy, which was an integral part of Research Question Q0 in Section 1.4.

Definition 3.5. A tube MPC strategy, leading to a controller Kmpc(·, ·, ·), is called stable if

(i) Kmpc(·, ·, ·) is recursively feasible;

(ii) The origin is a regionally asymptotically stable equilibrium of the closed-loop system
(3.1) in the sense of Definition 2.8.

Note that it is not possible to speak of closed-loop stability if Kmpc(·, ·, ·) is not recursively
feasible, because the closed-loop behavior of (3.1) is undefined when (3.8) becomes infeasible.
Hence, recursive feasibility is a necessary condition for asymptotic stability of the origin.
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The optimization problem (3.8) is the core of any tube-based MPC strategy. Thus, when
speaking about the tractability of an MPC algorithm, what is really meant is the tractability
of the underlying optimization problem (3.8). As was already discussed in the introduction,
convexity and scalability are the two important parts that together form the notion of tractability.
This is now formalized in the following definition.

Definition 3.6. Let C(N) : N→ R+ be proportional to the number of variables and constraints
in (3.8). A tube MPC strategy is called tractable, if

(i) The corresponding optimization problem (3.8) is convex;

(ii) C(·) is polynomially bounded in the sense of Definition 2.3.

In Section 3.1, it was said that tube-based algorithms available in the literature often have a
linear complexity in N . This will turn out to be true also for the the algorithms presented in the
remaining chapters of this thesis.

3.4.4 Domain of attraction
For a given sequence Θ ⊆ ΘN , the domain of attraction (DOA) of the closed-loop system (3.1)
under a controller defined by (3.8) is

XN (Θ) = {x ∈ X |TN (x,Θ) , ∅} . (3.11)

The domain of attraction (DOA) is the set of initial states for which a feasible tube T ∈ TN (x,Θ)
exists. In a stable MPC algorithm, if an initial state is in the DOA, it can be guaranteed that the
controller drives the state of the system to the origin asymptotically. In contrast, if the initial
state is outside of the DOA, it is not possible to determine a control input u(k) that should be
applied to the plant (i.e., the value of Kmpc(·, ·, ·) is undefined). It this therefore usually desirable
that the DOA (3.11) corresponding to (3.8) is as large as possible.
For a fixed prediction horizon N , a given target set Xf , and a given sequence Θ ⊆ ΘN , the

maximum DOA that can be achieved by any possible controller is denoted by Xmax
N (Θ). This

set can be computed recursively in terms of backwards reachable sets as

∀i ∈ [0..N − 1] : Xmax
i+1 (Θ) = Q

(
Xmax

i ,ΘN−i−1
)
,

Xmax
0 (Θ) = Xf,

(3.12)

with Q(·, ·) as in Definition 2.10. Depending on how the tube T in (3.8) is parameterized, it may
happen that XN (Θ) =Xmax

N (Θ). Usually however, the parameterization is designed such that
(3.8) is conservative, and XN (Θ) ⊂ Xmax

N (Θ). In fact, the meaning of the word “conservative”
can be defined in terms of the DOA.

Definition 3.7. A controller Kmpc(·, ·, ·) based on the tube synthesis (3.8) is said to be conser-
vative, if and only if there exists a Θ ⊆ ΘN such that the DOA (3.11) is a proper subset of
the maximal DOA (3.12), i.e., if XN (Θ) ⊂ Xmax

N (Θ). Furthermore, a controller Kmpc(·, ·, ·) is
called “less” conservative than another controller K ′mpc(·, ·, ·) if and only if for all Θ ⊆ ΘN ,
XN (Θ) ⊆ X′N (Θ). This is provided that both Kmpc(·, ·, ·) and K ′mpc(·, ·, ·) use the same prediction
horizon N and the same terminal set Xf .
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Achieving a large DOA often necessitates the use of a computationally expensive parameteri-
zation, and a bit of conservatism is acceptable if this leads to a more tractable optimization
problem (3.8). Observe—for example—that an MPC based on dynamic programming (DP)
achieves the largest possible DOA, but at an excessive computational cost.

3.4.5 The class of cost functions

In this section, the class of stage cost functions employed throughout this thesis is introduced.
Sufficient conditions on the terminal cost F(·) under which the value function V(·, ·) can be
upper and lower bounded by a pair of K∞-functions are provided.
As discussed in the previous sections, the tube parameterization and the corresponding

terminal cost will be different in each of the following chapters. However, the stage cost used in
(3.9) will be the same in each chapter except Chapter 7. Hence, its definition and its important
properties are presented here. The stage cost

` (X,K,Θ) = max
(x,θ)∈X×Θ

(‖Qx‖c + ‖RK(x, θ)‖c) (3.13)

is proposed where ‖ · ‖ can be any vector norm, c ≥ 1, and (Q,R) ∈ Rnq×nx × Rnr×nx are full
column rank matrices corresponding to tuning parameters.
Several properties of (3.13) are important to guarantee stability of the MPC algorithms

presented in the next chapters. These are summarized in the following proposition.

Proposition 3.1. In what follows, let K : X × Θ→ U be a CH1-controller.

(i) For all subsets X ′ × Θ′ ⊆ X × Θ, it holds that `
(
X ′,K,Θ′

)
≤ `

(
X,K,Θ

)
.

(ii) There exists a K∞-function ` such that `
(
d0
H

(
X
) )
≤ `(X,K,Θ).

(iii) The stage cost is homogeneous of degree c in the sense that for all α ∈ R+, `(αX,K,Θ) =
αc`(X,K,Θ).

Proof of (i). This property follows directly from the definition of (3.13) in terms of the
maximum over a compact set.
Proof of (ii). From (3.13), maxx∈X ‖Qx‖c ≤ `

(
X,K,Θ

)
. As Q is assumed to be full column

rank, x 7→ ‖Qx‖ is a norm (in particular, ‖Qx‖ = 0 if and only if x = 0). All norms in
finite-dimensional vector spaces are equivalent, hence ∃α > 0 : α‖x‖ ≤ ‖Qx‖, implying that
αmaxx∈X ‖x‖ = αd0

H (X) ≤ maxx∈X ‖Qx‖. This directly leads to(
αd0

H (X)
)c
≤

(
max
x∈X
‖Qx‖

)c
= max

x∈X
‖Qx‖c,

proving the statement with `
(
ξ
)
= (αξ)c .

Proof of (iii). This property follows directly from the CH1-property of the controller K(·, ·)
combined with homogeneity of the vector norm ‖ · ‖. �
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To prove closed-loop stability of a predictive controller, the usual approach is to show that
the value function of (3.8) is a Lyapunov function in the sense of Definition 2.9. An important
first step, then, is to show that the value function satisfies Definition 2.9.(i), i.e., to show that it
can be upper and lower bounded by a pair ofK∞-functions. The remainder of this section is
devoted to providing, under some assumptions, a proof of the existence of these bounds. This
proof exploits homogeneity of the LPV state-space (LPV-SS) representation, of the control
laws in the tube, and of the involved cost functions. Consider first the following assumptions
on the terminal cost.

Assumption 3.2. Consider the terminal cost function F(·) : 2Rnx
→ R+ in (3.9).

(i) Let c have the same value as in (3.13). The function F(·) is homogeneous of degree c in
the sense that for all α ∈ R+, F(αX) = αcF(X).

(ii) There existK∞-functions F,F such that for all X ⊆ Xf , F
(
d0
H

(
X
) )
≤ F

(
X
)
≤ F

(
d0
H

(
X
) )
.

Observe that by Proposition 3.1.(iii) and Assumption 3.2.(i), the whole cost function JN (·, ·)
is homogeneous of degree c in the sense that JN (αT,Θ) = αc JN (T,Θ) for all α ∈ R+. The
main result of this section is stated next.

Proposition 3.2. There existK∞-functions V,V such that for all x ∈ X and Θ ⊆ ΘN for which
(3.8) is feasible, it holds V

(
‖x‖

)
≤ V

(
x,Θ

)
≤ V

(
‖x‖

)
.

Proof. The lower bound on the value function is established trivially asV (x,Θ) ≥ ` (‖x‖). The
feasible set of initial states XN (Θ) = {x ∈ X | TN (x,Θ) , ∅} of (3.8) for a given sequence
Θ is a PC-set. Let φ(x) = ψXN (Θ) (x). For any x ∈ XN (Θ), it holds that x ∈ ∂φ(x)XN (Θ).
Hence,

V (x,Θ) ≤ max
x∈φ(x)∂XN (Θ)

V (x,Θ) = max
x∈∂XN (Θ)

V (φ(x)x,Θ) . (3.14)

The representation (2.4) is homogeneous of degree one in (x,u), and (Xf,X,U) are PC-sets.
Therefore, the existence of a T ∈ TN (x,Θ) implies that for all α ∈ [0,1], there exists a
T◦ = αT ∈ TN (αx,Θ). Because the cost function is homogeneous of degree c, it follows that
JN (T◦,Θ) = αc JN (T,Θ). Now observe that, for all x ∈ XN (Θ), φ(x) ∈ [0,1] holds, and that
the solution T◦ is feasible but not necessarily optimal for the initial state αx. Combining these
facts with (3.14) yields

V (x,Θ) ≤ max
x∈∂XN (Θ)

V (φ(x)x,Θ) ≤ φc(x) max
x∈∂XN (Θ)

V (x,Θ) . (3.15)

Because (Xf,X,U) are compact, it can be assumed that there exists a constant V̂ > 0 such that

max
x∈∂XN (Θ)

V (x,Θ) ≤ V̂ . (3.16)

As φ(·) is the gauge function of a PC-set, there exists a K∞-function φ such that for all
x ∈ Rnx : φ(x) ≤ φ(‖x‖). Combining this with (3.15)-(3.16) gives the final desired result that
V(ξ) = (φ(ξ))cV̂ is a K∞-upper bound on V(·,Θ). �
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3.5 Homothetic tubes in anticipative LPV MPC
This section proposes an initial solution to Research Question Q2 based on the construction of
homothetic tubes. Homothetic tubes were introduced in (Langson et al. 2004; Raković et al.
2012a) in the context of tube-based MPC for LTI systems subject to additive disturbances, and
their possible utilization in LPV MPC was pointed out, e.g., in (Brunner et al. 2013; Langson
et al. 2004). However, these works did not fully address the construction of a terminal set and
cost to ensure recursive feasibility and closed-loop stability in the LPV setting.
The preliminary approach presented in this section will serve as a basis for the extended

approaches developed in the following chapters. In this approach, the cross sections of the tube
(see Definition 3.4) are parameterized as homothetic to a terminal set, whereas the associated
controllers are parameterized as vertex controllers. First, let us define the precise meaning of
“vertex control”.

Definition 3.8. Let X = convh
{

x̄1, . . . , x̄qx
}
⊂ Rnx and, likewise, letΘ = convh

{
θ̄1, . . . , θ̄qθ

}
.

Let pk =
(
u(1,1), . . . ,u(qx ,1), . . . ,u(qx ,qθ )

)
∈ Uqθqx be a discrete set of corresponding control

actions. Then vertpol (·|X,Θ) : Uqθqx → (X × Θ→ U) is a second-order function defined
such that vertpol

(
pk

��X,Θ)
(x, θ) =

∑qx
i=1 [convm (x |X)]i

∑qθ
j=1 [convm (θ |Θ)]j u(i, j), where [v]i

denotes the i-th element of a vector v.

Next, the notion of a homothetic tube—specialized to the LPV setting—can be defined.

Definition 3.9. Let T be a tube according to Definition 3.4, and let S = convh{s̄1, . . . , s̄qs } ⊆

Rnx . For all i ∈ N[0,N ], introduce parameter sets Px = R+ ×R
nx and Pk = Rqθqsnu . A tube T is

called a homothetic tube if it satisfies the following conditions:

(i) For all i ∈ N[0,N ] there exists a parameter px
i = (αi, zi) ∈ P

x such that Xi = Px(px
i ) =

zi ⊕ αiS.

(ii) For all i ∈ N[0,N−1] there exists a parameter pk
i =

(
u(1,1)i , . . . ,u(qs ,1)

i , . . . ,u(qs ,qθ )
i

)
∈ Pk

such that Ki = Pk(pk
i ) = vertpol(pk

i |Xi,Θi).

Given Definition 3.9, the set of feasible homothetic tubes corresponding to (3.8) can be
given as

TN (x,Θ) = {T | T satisfies Def. 3.9 with X0 = {x} and XN ⊆ Xf} . (3.17)

Next, as a special case of (3.13), consider the∞-norm based stage cost

` (X,K,Θ) = max
(x,θ)∈X×Θ

(‖Qx‖∞ + ‖RK(x, θ)‖∞) (3.18)

and the terminal cost
F(X) =

` (Xf,Kf,Θ)

1 − λ
ΨXf (X) (3.19)

where ` (Xf,Kf,Θ) is a constant which is computed off-line by evaluating (3.18) over the
terminal set. The terminal cost (3.19) is based on the set-gauge function of the terminal set Xf
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(see Definition 2.2). Terminal costs based on a “normal” gauge function were considered before,
e.g., in (Raković and Lazar 2012) for LTI MPC with a gauge-based stage cost, in (Gallieri
2016) for `1-regularized LTI MPC, and in (Besselmann et al. 2012) in the context of explicit
dynamic programming for LPV systems. In (Brunner et al. 2013) a set-gauge based terminal
cost similar to (3.19) was employed for tube-based MPC of LTI systems subject to uncertain
initial conditions.
With the tubes of Definition 3.9 and the cost functions (3.18)-(3.19), a stable and tractable

receding-horizon algorithm is obtained. This result is stated in the following theorem.

Theorem 3.1. Let Xf be a controlled λ-contractive set in the sense of Definition 2.13. In
Definition 3.9, set S = Xf . Let Θ ⊆ ΘN , Θ+ ⊆ ΘN be two sequences related as Θ+ v Θ. Then,
Algorithm 3.1 achieves the following properties:

(i) It is recursively feasible, i.e., if ∃T ∈ TN (x,Θ), then ∃T+ ∈ TN (x+,Θ+) where x+ =
A(θ)x + B(θ)K0(x, θ).

(ii) The origin is an asymptotically stable equilibrium of the closed-loop system (3.1) in the
sense of Definition 2.8.

(iii) The tube synthesis problem (3.8) is a linear program. The number of variables and the
amount of constraints are linear functions of the prediction horizon N .

The properties in this theorem follow by taking M = 1 in the more general setting which is
the topic of Chapter 4. Therefore, the proof is omitted here.

From statements (i)-(iii) in Theorem 3.1, it follows that the MPC approach presented in this
section already gives a possible answer to Research Question Q2: that is, it is a computationally
tractable MPC approach with a stability guarantee that can exploit information about possible
future scheduling trajectories.

3.6 Concluding remarks
This chapter has introduced a common framework for the control approaches that are described
in this thesis. A flexible description of future uncertain scheduling trajectories was developed,
which lead to the notion of “anticipative” control. The idea of tube-based control of LPV
systems that will be used throughout this thesis, was presented. An algorithm based on the
construction of homothetic tubes was developed. This algorithm is computationally tractable,
comes with a closed-loop stability guarantee, and can exploit information about possible future
scheduling trajectories: therefore, it provides a first possible answer to Research Question Q2.
However, this is but a possible answer: a more advanced answer to Question Q2 will be

provided in the upcoming chapter, which focuses on the development of a more general stability
condition based on the notion of finite-step contraction.
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Chapter 4

Guaranteeing feasibility and stability

The present chapter addresses the problem of guaranteeing recursive feasibility and closed-
loop stability in a receding-horizon linear parameter-varying (LPV) tube model predictive

control (MPC) algorithm. Feasibility and stability can be guaranteed through the construction
of an appropriate terminal set and terminal cost. The construction provided in this chapter is
based on the concept of finite-step λ-contraction, which is a more relaxed variant of the usual
notion of λ-contraction. A periodic tube parameterization is proposed, which together with a
finite-step contractive terminal set leads to a recursively feasible algorithm. The terminal cost
is constructed based on a new Lyapunov-type metric on proper C-sets. Recursive feasibility and
closed-loop stability of the basic homothetic tube-based algorithm from Section 3.5 follows as
a special case from the results of this chapter. It is shown that the tube synthesis problem to be
solved on-line is a single linear program (LP). Numerical examples are provided to demonstrate
the computational properties of the approach.

4.1 Introduction
A basic homothetic tube-based LPV MPC algorithm was presented previously in Section 3.5.
In this algorithm, the set inclusions I(Xi,Θi |Ki) ⊆ Xi+1 ∩X from Definition 3.4 can be verified
by checking a set of linear constraints. The number of necessary constraints however depends
strongly on the complexity of the representation of the polytope Xf , because each set Xi is
homothetic to Xf . Further, as the control laws Ki : Xi × Θi → U were parameterized as vertex
controllers, the number of decision variables necessary to parameterize these controllers also
directly depends1 on the number of vertices of Xf .
To guarantee stability, the terminal set Xf in the method of Section 3.5 has to be controlled

λ-contractive. In fact, all of the tube-based algorithms reviewed in Section 3.3.2 rely on
terminal sets that are controlled contractive or invariant. It is well-known that the computation
of polyhedral contractive sets for LPV systems is not easy. An iterative algorithm based on
reachable set computations is guaranteed to converge to the maximum-volume contractive set if
one exists (Blanchini and Miani 2015; Miani and Savorgnan 2005). However, the representation
complexity of these sets can grow exponentially as a function of the state dimension, making
1An exact expression for the number of variables and constraints in the resulting LP will be given in the course of this
chapter in Section 4.4.
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computation difficult for systems with more than a few states. Furthermore, even if a contractive
set can be found, the complexity of its representation may still be too great to be used in a
computationally viable tube model predictive control (TMPC) strategy.
Some research effort has therefore been spent on developing methods for computing

invariant- or contractive sets of reduced complexity with respect to the maximal ones, see, e.g.,
(Athanasopoulos and Bitsoris 2010; Blanco et al. 2010; Fiacchini and Alamir 2017; Munir
et al. 2016; Pluymers 2006; Sheer and Gutman 2016; Tahir and Jaimoukha 2015).
In this chapter, an alternative approach is proposed. The requirement that the terminal set

must be controlled λ-contractive is relaxed. Instead of “standard” contractive sets, so-called
finite-step controlled λ-contractive sets are considered. Informally, a set is finite-step contractive
if state trajectories starting inside of the set are allowed to leave the set temporarily, before
returning after a finite number—say, M—of time instances. A useful fact related to such sets is
the following.

Proposition 4.1. (Athanasopoulos et al. 2013, Proposition 1) Let x+ = f (x,u) be a system
subject to constraints of the form of Definition 2.7. Let S0 ⊂ X be a PC-set. Under some
technical conditions on f (·, ·), the following statements are equivalent:

(i) The set S0 is controlled finite-step contractive with respect to the system x+ = f (x,u) and
under the given constraints.

(ii) There exists a stabilizing state feedback K : X → U such that the closed-loop system
x+ = f (x,K(x)) is asymptotically stable on S0, and respects the constraints.

The previous proposition implies an important difference between “normal” (i.e., one-step)
and finite-step contractive sets. A one-step contractive set has to be constructed using an
algorithmic procedure, and it is therefore difficult to give a-priori bounds on its representational
complexity. On the other hand, if the system is stabilizable, it is possible to make any PC-set
S0 finite-step contractive through the use of an appropriate controller2. Of course, if the initial
set S0 is chosen poorly, the number of time steps required to achieve finite-step contraction may
still be too large for practical purposes. Nonetheless, the proposed setting offers a new degree
of freedom—namely, the choice of set S0—in the TMPC design.
In predictive control, finite-step invariant sets have been employed in nominal non-linear

MPC in (Lazar and Spinu 2015). The framework of (Gondhalekar and Jones 2011) employs
periodically invariant sets in MPC of linear periodic systems. Finite-step invariant ellipsoids
for LPV systems were introduced in (Y. I. Lee et al. 2005). Therein, a stabilizing open-loop
min-max MPC algorithm that uses these ellipsoids as a terminal set is proposed. A practical
controller based on the ellipsoids of (Y. I. Lee et al. 2005) was given in (Y. I. Lee and
Kouvaritakis 2006), where a single free control action is being optimized on-line.

In TMPC, finite-step invariant- or contractive sets have not been used previously. The main
contribution of this chapter is therefore to provide a new terminal set, terminal cost, and tube
parameterization that enables the use of sets of this type in constructing stabilizing tube-based
LPV predictive controllers.

2In this chapter, set-induced periodic CH1 controllers are considered.
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The remainder of this chapter is structured as follows. Section 4.1.1 introduces in more
detail the problem setting considered in this chapter. The fundamental concepts of finite-step
contractive sets are presented in Section 4.2. In Section 4.3, the TMPC algorithm based on
such sets is developed, and its implementation as a single LP is discussed in Section 4.4. Two
numerical examples in Section 4.5 demonstrate the properties of the approach. Finally, some
concluding remarks are given in Section 4.6.

4.1.1 Problem setting
For notational and computational simplicity, this chapter considers constrained polytopic LPV
state-space (LPV-PSS) representations where only the state transition matrix A is parameter-
varying, i.e., representations of the form

x(k + 1) = A(θ(k))x(k) + Bu(k). (4.1)

Other than the simplified system representation (4.1), the problem setting is identical to
that of Problem 3.1, i.e., it is desired to design an MPC such that the origin is a regionally
asymptotically stable equilibrium for the closed-loop system. In this chapter, such a stabilizing
MPC design is proposed based on finite-step contractive sets.
A few words on how the presented method can be extended to systems with a parameter-

dependent input matrix are provided in Section 4.6.

4.2 Finite-step contraction
This section introduces the concept of finite-step contractive sets, which is central to the control
approach developed in this chapter.

Definition 4.1. Let M ≥ 1 be an integer, let λ ∈ [0,1), let SM = {S0, . . . ,SM−1} be a
sequence of PC-sets, and define σ(k) := k mod M. The PC-set S0 ⊆ X is called controlled
(M, λ)-contractive, if there exists a periodic CH1-control law u(k) = K f

σ(k)
(x(k), θ(k)) with

K f
i : Si × Θ→ U, i ∈ [0..M − 1] such that:

∀i ∈ [0..M − 2],∀x ∈ Si,∀θ ∈ Θ : A(θ)x + BK f
i (x, θ) ∈ Si+1, (4.2a)

∀x ∈ SM−1,∀θ ∈ Θ : A(θ)x + BK f
M−1(x, θ) ∈ λS0, (4.2b)

∀i ∈ [0..M − 1] : {0} ⊂ Si ⊆ X. (4.2c)

Observe that (4.2b) means that contraction of S0 is achieved after M time instances. Thus, if
M = 1, a controlled (M, λ)-contractive set corresponds to a “normal” controlled λ-contractive
set (Definition 2.13). Sets satisfying these properties were used previously in reference governor
design (Gilbert and Kolmanovsky 2002). They can also be interpreted as an instance of the
positively invariant families from (Artstein and Raković 2011), which were employed in
nominal MPC in (Raković et al. 2016a).
If S0 is a polytope the periodic control laws in Definition 4.1 can always be selected as

gain-scheduled vertex controllers, because – by convexity – existence of suitable controls on the
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vertices of Si ×Θ implies existence of suitable controls over the full sets Si ×Θ, i ∈ [0..M − 1]
(compare Lemma 2.4).

Finally, the closed-loop set-valued dynamics of (4.1) under a given local periodic controller
K f
σ(·)
(·, ·) are

X(k + 1) = G
(
k,X(k)

�� K f
)
=

{
A(θ)x + BK f

σ(k)(x, θ)
��� x ∈ X(k), θ ∈ Θ

}
. (4.3)

The local uncertain closed-loop dynamics (4.3) are fundamentally different from those in
nominally stabilizing MPC (Mayne et al. 2000). Hence, the construction of a suitable terminal
cost is a challenge that is addressed in this chapter.

4.3 The finite-step TMPC algorithm
In this section, a tube-based LPV MPC algorithm using finite-step stabilizing conditions is
developed. First, the concept of a periodically parameterized tube (PpT) is introduced in
Section 4.3.1. Sufficient assumptions on this periodic parameterization are given, such that
employing a finite-step contractive terminal set leads to a recursively feasible controller. In
Section 4.3.2 terminal cost construction, based on a Lyapunov-type metric on proper C-sets, is
presented and is shown to lead to a stable closed-loop system. In Section 4.3.3, the algorithm
is summarized and its main properties are proven.

4.3.1 Periodically parameterized tubes
As a first necessary step, a periodically parameterized variant of the tubes from Definition 3.4
is introduced.

Definition 4.2. Let (T, k) be a pair, with T being a tube according to Definition 3.4 which
was synthesized at the time instant k ∈ N. Introduce periodic parameter sets P(k + i) =
P(σ(k+i)) = Px(k+i)×Pk(k+i) with σ(·) as in Definition 4.1. A tube T is called a periodically
parameterized tube (PpT) with period M if it satisfies the following conditions:

(i) There is a function Px(·|k) : Px(k) → Rnx and, for all i ∈ [0..N], there exists a parameter
px
i ∈ P

x(k + i) such that Xi = Px (px
i |k + i

)
= Px (px

i |σ(k + i)
)
.

(ii) There is a second-order function Pk (·|k) : Pk(k) →
(
Xi × Θi → U

)
and, for all

i ∈ [0..N − 1], there exists a parameter pk
i ∈ P

k(k + i) such that Ki = Pk (pk
i |k + i

)
=

Pk (pk
i |σ(k + i)

)
.

Further, define the shorthand P(p|k) =
(
Px (px |k

)
,Pk (pk |k

) )
where p =

(
px, pk) .

Let
Xf =

{
X f

0, . . . ,X
f
M−1

}
(4.4)

be a sequence of (M, λ)-contractive sets according to Definition 4.1. Based on this, the
set X f

σ(k+N )
will be used as a periodically time-varying terminal set. Due to the periodic
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time-dependence in the parameterization of Definition 4.2 and of the terminal set, the tube
synthesis problem that needs to be solved on-line as part of the control algorithm becomes
time-dependent. Thus, in this chapter, time-dependent variants on (3.8) and (3.7) are considered.
In this setting, the set of feasible tubes is now given by

TN (x,Θ|k) =
{
T

��� T satisfies Def. 4.2 with X0 = {x} and XN ⊆ X f
σ(k+N )

}
(4.5)

and the tube synthesis optimization problem becomes

V (x,Θ|k) = min
T

JN (T,Θ|k) subject to T ∈ TN (x,Θ|k) . (4.6)

In this chapter, the cost function JN (T,Θ|k) in (4.6) is similar to (3.9). The same type of stage
cost (3.13) is used, but for the sake of simplicity, attention is focused on the∞-norm and c = 1,
i.e.,

` (X,K,Θ) = max
(x,θ)∈X×Θ

(‖Qx‖ + ‖RK(x, θ)‖) = max
(x,θ)∈X×Θ

(‖Qx‖∞ + ‖RK(x, θ)‖∞) . (4.7)

Furthermore, because the terminal set of (4.5) is time-varying, a time-varying terminal cost
will be adopted as well. This gives the time-dependent cost function

JN (T,Θ|k) =
N−1∑
i=0

` (Xi,Ki,Θi) + Fk (XN ) . (4.8)

The derivation of the function Fk(·) is the topic of Section 4.3.2. The remainder of the present
section is concerned with establishing recursive feasibility of (4.6). To achieve this, the
following assumption—an extended variant of (Brunner et al. 2013, Assumption 7)—on the
tube parameterization is necessary.

Assumption 4.1. The terminal set and the associated local controller are “homogeneously
parameterizable” in P(k+N), i.e.,∀(k, γ) ∈ N×[0,1] : ∃pf ∈ P(k+N) such that P (pf |k + N) =
γ

(
X f
σ(k+N )

,K f
σ(k+N )

)
.

Based on Assumption 4.1, recursive feasibility of the tube synthesis (4.6) can be shown.
Later, in Section 4.4, a concrete parameterization that satisfies this assumption is given.

Proposition 4.2. Let SM be a sequence of controlled (M, λ)-contractive sets for (4.1) according
to Definition 4.1, and let the associated closed-loop dynamics G(·, ·|K f) be as in (4.3). Let
Θ ⊆ ΘN , Θ+ ⊆ ΘN be two sequences related as Θ+ v Θ and with Θ0 = θ. Suppose that
Assumption 4.1 is satisfied. Then (4.6) is recursively feasible in the sense that if∃T ∈ TN (x,Θ|k),
then ∃T+ ∈ TN (x+,Θ+ |k + 1) where x+ = A(θ)x + BK0(x, θ).

Proof. Suppose that (4.6) is feasible at time k and let

T = ({X0, . . . ,XN } , {K0, . . . ,KN−1})
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be a tube corresponding to a solution of (4.6) at time k. By construction, X0 = {x} and
∃γ ∈ [0,1] : XN ⊆ γX f

σ(k+N )
. Note that γ = 1 would be sufficient here, but keeping it variable

simplifies the subsequent stability proof of Theorem 4.1. After applying K0 to the system, a
feasible tube at time k + 1 can be explicitly given by the definition of the terminal set and
because Θ+ v Θ :

T+ =
({

X+0 ,X2, . . . ,XN−1, γX f
σ(k+N ), γG

(
k + N,X f

σ(k+N )

���K f
)}
,
{
K1, . . . ,KN−1,K f

σ(k+N )

})
,

where X+0 = {x
+} ⊂ X1, which implies feasibility of K+0 = K1. Since (4.6) only optimizes over

finitely parameterized sets and controllers, there must exist parameters
(
pf, p+f

)
∈ P(k + N) ×

P(k + N + 1) such that

Px (
px

f
��k + N

)
= γX f

σ(k+N ),

Pk
(
pk

f
��k + N

)
= K f

σ(k+N ),

Px (
px+

f
��k + N + 1

)
= γG

(
k + N,X f

σ(k+N )

���K f
)
.

Because γG
(
k + N,X f

σ(k+N )

���K f
)
= γX f

σ(k+N+1) by Definition 4.1, this is all guaranteed
through Assumption 4.1. Therefore it follows that (4.6) is feasible at time k + 1. �

Now that recursive feasibility has been established under appropriate conditions on the tube
parameterization, it is possible to proceed with the derivation of conditions under which a
controller based on the tube synthesis (4.6) is asymptotically stabilizing. This requires the
construction of a terminal cost, which is the topic of the next subsection.

4.3.2 Terminal cost construction

To guarantee stability of the MPC scheme, an appropriate terminal cost has to be constructed.
The first step towards this end is to find a Lyapunov-type function which is monotonically
decreasing along the set-valued trajectories of (4.3). In some sense, this approach is analogous
to the construction in the nominal case (Theorem 2.1), where a terminal cost is also constructed
based on a certain local Lyapunov function.
To derive the required Lyapunov-like function, we need the following finite-step decrease

property of the function ΨSi (·). The abbreviated notations ψi(·) := ψSi and Ψi(·) := ΨSi (·) are
used in the sequel.

Lemma 4.1. Let SM be a sequence of controlled (M, λ)-contractive sets for (4.1) in the sense of
Definition 4.1. Define the resulting closed-loop dynamics G(·, ·|K f) as in (4.3). Then, Ψσ(k) (·)
satisfies for all k ∈ N and for all X ⊆ Sσ(k) the following relation:

Ψσ(k+1)

(
G

(
k,X

��K f
))
≤

{
Ψσ(k) (X) , σ(k) ∈ [0..M − 2],
λΨσ(k) (X) , σ(k) = M − 1.
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Proof. Let ∂S denote the boundary of a set S ⊂ Rn. By Definition 4.1, ∀x̄ ∈ ∂Sσ(k):

G
(
k, { x̄}

��K f
)
∈

{
Sσ(k+1), σ(k) ∈ [0..M − 2],
λSσ(k+1), σ(k) = M − 1.

Now let x ∈ Sσ(k). By definition of the gauge function, it holds that x ∈ ψσ(k)(x)∂Sσ(k)
(Schneider 2013a). Thus, ∃x̄ ∈ ∂Sσ(k) : x = ψσ(k)(x)x̄. By homogeneity it follows directly
that

G
(
k, {x}

��K f
)
= G

(
k, {ψσ(k)(x)x̄}

��K f
)
= ψσ(k)(x)G

(
k, { x̄}

��K f
)

and therefore ∀x ∈ Sσ(k):

G
(
k, {x}

��K f
)
∈

{
ψσ(k)(x)Sσ(k+1), σ(k) ∈ [0..M − 2],
λψσ(k)(x)Sσ(k+1), σ(k) = M − 1.

From the above we get that ∀X ⊆ Sσ(k):

G
(
k,X

��K f
)
⊆

{
supx∈X ψσ(k)(x)Sσ(k+1), σ(k) ∈ [0..M − 2],
λ supx∈X ψσ(k)(x)Sσ(k+1), σ(k) = M − 1

and by applying Definition 2.2 the desired property follows. �

The above lemma can be exploited to construct a Lyapunov-type function enabling the
computation of a stabilizing terminal cost for (4.6). In (Geiselhart et al. 2014, Theorem 20),
it was shown that it is possible to construct a “true” (i.e., monotonically decreasing along
trajectories) Lyapunov function based on a function that satisfies a finite-step decrease property
like Lemma 4.1. The result therein is, however, not directly applicable to set-valued dynamics.
Therefore, the following proposition applies a suitably modified version of the construction of
(Geiselhart et al. 2014, Theorem 20) to sequences of sets, yielding the desired Lyapunov-type
function.

Proposition 4.3. Suppose that the conditions from Lemma 4.1 are satisfied. Then, the function

W (k,X) := (M + (λ − 1)σ(k))Ψσ(k) (X)

is a Lyapunov-type function for the dynamics (4.3), i.e., it satisfies the following properties:

(i) There exist w,w ∈ K∞ such that for all k ∈ N and for all compact and convex sets
X ⊂ Rn, w

(
d0
H (X)

)
≤ W (k,X) ≤ w

(
d0
H (X)

)
holds,

(ii) There exists %(k) : N→ [0,1) such that for all k ∈ N and for all X ⊆ Sσ(k),
W

(
k + 1,G

(
k,X

��K f ) ) ≤ %(k)W (k,X),
(iii) There exists % ∈ [0,1) such that for all k ∈ N and for all X ⊆ Sσ(k),

W
(
k + 1,G

(
k,X

��K f ) ) ≤ %W (k,X).
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Proof. Since (M + (λ − 1)σ(k)) is a positive number for all k ∈ N, it follows from Lemma 2.1
that ∃wi,wi

∈ K∞ for each i ∈ [0..M − 1] such that for all compact and convex X ⊂ Rn,
wσ(k)

(
d0
H (X)

)
≤ W(k,X) ≤ wσ(k)

(
d0
H (X)

)
. As the minimum- and maximum over a finite set

ofK∞-functions is againK∞ (Kellett 2014), statement (i) holdswithw(ξ) = mini∈[0..M−1] w
i(ξ)

and w(ξ) = maxi∈[0..M−1] w
i
(ξ). For the proof of (ii), consider first that k is such that

σ(k) ∈ [0..M − 2]. Then by Lemma 4.1, Ψσ(k+1)
(
G

(
k,X

��K f ) ) ≤ Ψσ(k) (X), and therefore

W
(
k + 1,G

(
k,X

��K f
))
= (M + (λ − 1)σ(k + 1))Ψσ(k+1)

(
G

(
k,X

��K f
))

≤ (M + (λ − 1)σ(k + 1))Ψσ(k) (X)

=
(M + (λ − 1)σ(k + 1))
(M + (λ − 1)σ(k))

W (k,X) .

Next, let k be such that σ(k) = M − 1. Again by Lemma 4.1, Ψσ(k+1)
(
G

(
k,X

��K f ) ) ≤
λΨσ(k) (X), so

W
(
k + 1,G

(
k,X

��K f
))
= MΨ0

(
G

(
M − 1,X

��K f
))

≤ λMΨM−1 (X)

=
λM

λ (M − 1) + 1
W(k,X).

Hence, statement (ii) is satisfied with

%(k) =

{
(M+(λ−1)σ(k+1))
(M+(λ−1)σ(k)) , σ(k) ∈ [0..M − 2],
λM

λ(M−1)+1 , σ(k) = M − 1,

and (iii) follows with % = maxk∈N %(k) = %(0). �

In Proposition 4.3, a suitable Lyapunov-type function has been obtained that can serve as
a basis for the construction of a terminal cost. The remaining step is to compute a scaling
of W(·, ·), such that its rate of decrease can be related to the stage cost function, similar to
Condition (iii) of Theorem 2.1. For all i ∈ [0..M − 1], let

¯̀
i = max

(x,u)∈Si×U
(‖Qx‖ + ‖Ru‖) s.t. ∀θ ∈ Θ :

{
A(θ)x + Bu ∈ Si+1, i ∈ [0..M − 2],
A(θ)x + Bu ∈ λS0, i = M − 1.

(4.9)

From Proposition 4.3, the next Corollary follows directly.

Corollary 4.1. Let ¯̀
i be as in (4.9) and define ¯̀ = maxi∈[0..M−1] ¯̀

i . Define W(k,X) and % as
in Proposition 4.3. Then the function

W (k,X) :=
¯̀

1 − %
W (k,X) (4.10)
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satisfies ∀k ∈ N and ∀X ⊆ Sσ(k) that

W
(
k + 1,G

(
k,X

��K f
))
−W (k,X) ≤ − ¯̀W (k,X) .

Furthermore, ∀k ∈ N : 1 ≤ W
(
k + N,X f

σ(k+N )

)
≤ M .

With this result, the desired terminal cost which leads to closed-loop asymptotic stability is
constructed. In the next subsection, it is proven that this indeed leads to an MPC algorithm that
is asymptotically stabilizing.

4.3.3 Main result

The TMPC algorithm based on finite-step contractive sets is given in Algorithm 4.1. It is a
straightforward modification of the receding-horizon control (RHC) approach of Algorithm 3.1,
as the only difference is in the introduced time-dependence of the set TN (·, ·|k).

Algorithm 4.1 Finite-step receding-horizon TMPC algorithm.
Require: N ∈ [1..∞)
1: Θ−1 ← Θ

N

2: k ← 0
3: loop
4: Construct Θk =

{
{θ(k)},

{
Θi |k

}N−1
i=1

}
⊆ ΘN such that Θk v Θk−1

5: if TN (x(k),Θk |k) , ∅ then
6: Solve (4.6) to obtain T? ∈ TN (x(k),Θk |k)
7: Apply u(k) = K?

0 (x(k), θ(k)) = u?0 to the system (4.1)
8: k ← k + 1
9: else
10: abort
11: end if
12: end loop

Based on the developed results, the main result of this chapter concerning the properties of
Algorithm 4.1, can be stated.

Theorem 4.1. Suppose that the conditions of Proposition 4.2 are satisfied. Let Fk(·) :=
W (k + N, ·) according to (4.10). Then the TMPC defined by (4.6) asymptotically stabilizes the
origin of the closed-loop system.

Proof. Denote Gf |k(·) := G
(
k + N, ·|K f ) according to (4.3). Consider the solution T and the

feasible, but not necessarily optimal, solution T+ constructed in the proof of Proposition 4.2.
By definition of Fk(·), it follows that we can take γ = Ψσ(k+N ) (XN ). Substitute the solutions T
and T+ in the cost function of (4.6) and compute the difference between the value functions at
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time k and time k + 1 to obtain

∆Vk = V
(
x+,Θ+

��k + 1
)
− V (x,Θ|k)

≤ `
(
X+0 ,K1

)
+ γ`

(
X f
σ(k+N ),K

f
σ(k+N )

)
+ γFk+1

(
Gf |k

(
X f
σ(k+N )

))
− Fk (XN )

+

N−1∑
i=2

` (Xi,Ki) −

N−1∑
i=0

` (Xi,Ki) .

Observe that X+0 = {x
+} ⊂ X1, so `

(
X+0 ,K1

)
≤ ` (X1,K1) and therefore

∆Vk ≤

N−1∑
i=1

` (Xi,Ki) −

N−1∑
i=0

` (Xi,Ki) + γ`
(
X f
σ(k+N ),K

f
σ(k+N )

)
+ γFk+1

(
Gf |k

(
X f
σ(k+N )

))
− Fk (XN )

= −` (X0,K0) + γ`
(
X f
σ(k+N ),K

f
σ(k+N )

)
+ γFk+1

(
Gf |k

(
X f
σ(k+N )

))
− Fk (XN )

≤ −` (X0,K0) + γ ¯̀+ γFk+1

(
Gf |k

(
X f
σ(k+N )

))
− Fk (XN )

where the last inequality follows from the definition of ¯̀ in Corollary 4.1. Since XN ⊆ γX f
σ(k+N )

,
according to the definition of the terminal cost

Fk (XN ) =
¯̀

1 − %
(M + (λ − 1)σ(k + N))Ψσ(k) (XN )

= γ
¯̀

1 − %
(M + (λ − 1)σ(k + N))Ψσ(k)

(
X f
σ(k+N )

)
= γFk

(
X f
σ(k+N )

)
.

Hence,

∆Vk ≤ −` (X0,K0) + γ
(

¯̀+ Fk+1

(
Gf |k

(
X f
σ(k+N )

))
− Fk

(
X f
σ(k+N )

))
≤ −` (X0,K0) + γ

(
¯̀− ¯̀W

(
k + N,X f

σ(k+N )

))
≤ −` (X0,K0)

≤ −` (‖x‖)

where the second and third inequalities follow from Corollary 4.1, and the last inequality from
Proposition 3.1.(ii). The fact that V (x,Θ|k) is monotonically decreasing with rate ` (‖x‖)
is, in conjunction with the bounds of Proposition 3.2, sufficient to conclude that V(·, ·|·) is a
(time-varying) Lyapunov function. Hence, asymptotic stability of the controlled system follows
(Aeyels and Peuteman 1998, Theorem 2). �

With the completion of Theorem 4.1 it has been shown that it is possible to formulate a
stabilizing tube-based MPC algorithm for LPV systems based on a terminal set that is finite-step
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contractive. Overall, the proof of Theorem 4.1 is quite similar to the standard type of stability
proof employed in nominal MPC (Theorem 2.1). To enable the use of this standard proof
technique, it was however necessary to derive a new terminal cost function.

In the next section, the practical implementation of the obtained MPC algorithm is discussed.

4.4 Implementation details
In this section, practical implementation of the algorithm presented in Section 4.3 is discussed.
In Section 4.4.1, a concrete parameterization—a periodic variant on the homothetic parameter-
ization from Section 3.5—is proposed and is shown to satisfy all the required assumptions.
Using this parameterization, as shown in Section 4.4.2, the tube synthesis problem can be
formulated as a single linear program with a number of variables and constraints that is a linear
function of the prediction horizon N . Finally, in Section 4.4.3, a short discussion on how to
compute finite-step contractive sets for LPV-PSS representations is provided.

4.4.1 Periodically homothetic parameterization
In this section, it is shown how the general results presented previously can be used in practice by
developing a specific parameterization that satisfies Assumption 4.1. To satisfy Assumption 4.1,
consider a “periodic” variant on the homothetic parameterization (Brunner et al. 2013; Langson
et al. 2004; Raković et al. 2012a) by parameterizing the tube cross sections as

Xi = zi ⊕ αiX f
σ(k+i) (4.11)

such that for a tube synthesized at time k, each cross section Xi is homothetic to X f
σ(k+i)

with
center zi and scaling αi . The parameters zi ∈ Rnx and αi ∈ R+ are optimized on-line. In the
language of Definition 4.2, the parameterization (4.11) corresponds to the choices

px
i = (αi, zi) ∈ P

x(k + i),

Px(k) = R+ × Rnx,

Px (
px
i

��k + i
)
= zi ⊕ αiX f

σ(k+i).

(4.12)

The sets X f
i , i ∈ [0..M − 1] are the same as in (4.4) and they are polytopes represented by the

convex hull of ti vertices as

∀i ∈ [0..M − 1] : X f
i = convh

{
s̄1
i , . . . , s̄

ti
i

}
. (4.13)

The associated control laws are parameterized as gain-scheduled vertex controllers. In terms of
Definition 4.2,

pk
i =

(
u(1,1)i , . . . ,u(tσ(k+i) ,1)i , . . . ,u(tσ(k+i) ,qθ )i

)
∈ Pk(k + i),

Pk(k) = Rqθ tσ(k)nu,

Pk
(
pk
i

��k + i
)
= vertpol

(
pk
i

��Xi,Θi

)
.

(4.14)
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With the parameterization discussed above, the infinity-norm based stage cost (4.7) for a tube
synthesized at time k is equivalent to

`(Xi,Ki,Θi) = max
j∈[1..tσ(k+i)],l∈[1..q]

(
‖Qx̄ j

i ‖ + ‖Ru(j ,l)i ‖

)
(4.15)

where x̄ j
i = zi + αi s̄

j

σ(k+i)
.

The scaling ¯̀ in Corollary 4.1 can be efficiently computed as follows. For all (i, l) ∈
[0..M − 1] × [1..q] and all corresponding j ∈ [1..ti], compute the control actions

u(i, j ,l)f = arg min
u∈U

(
‖Qs̄ ji ‖ + ‖Ru‖

)
s.t.

{
A(θ̄l)s̄ ji + Bu ∈ X f

i+1, i ∈ [0..M − 2],
A(θ̄l)s̄ ji + Bu ∈ λX f

0, i = M − 1,

to obtain a local periodic vertex control law which is feasible and asymptotically stabilizing on
Xf

M . Then, the constants ¯̀
i are directly found by computing

∀i ∈ [0..M − 1] : ¯̀
i = max

j∈[1..ti ],l∈[1..q]

(
‖Qs̄ ji ‖ + ‖Ru(i, j ,l)f ‖

)
. (4.16)

It can be verified that the periodically homothetic parameterization described in this section
satisfies Assumption 4.1, and hence, the main result of this subsection follows.

Corollary 4.2. The LPV TMPC algorithm with tube parameterization (4.12) and (4.14) is
recursively feasible and asymptotically stabilizes the origin of the closed-loop system (i.e.,
“stable” in the sense of Definition 3.5).

4.4.2 Linear programming formulation
In this section, it is shown how the tube synthesis problem (4.6) can be formulated as a single
LP. The number of variables and constraints in this LP is a linear function of the prediction
horizon N . Hence, the main result of this subsection is to establish that the algorithm of
Section 4.3 with the parameterization of Section 4.4.1 is computationally tractable in the sense
of Definition 3.6.
As they are polytopic PC-sets, each set X f

i in (4.13) can be equivalently represented in a
half-space form with ri hyperplanes. That is, for all i ∈ [0..M − 1], there exists a matrix
Hi ∈ R

ri×nx such that

X f
i = convh

{
s̄1
i , . . . , s̄

ti
i

}
= {x ∈ Rnx |Hi x ≤ 1} .

Half-space representations of X and U are also assumed to be available with rx and ru
hyperplanes, respectively (see Section 2.2.3 and specifically Equation 2.8). In agreement with
Assumption 2.1 and according to the discussion below Definition 3.1, let

qi =

{
1, i = 0,
q, otherwise.
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Furthermore, in what follows, introduce the shorthand notation

ςi = σ(k + i)

with σ(·) as in Definition 4.1. A step-by-step construction of the optimization problem (4.6)
and the corresponding number of variables and constraints is now provided.

Cross section parameterization According to (4.12), each tube cross section is characterized
by a scaling αi ∈ R+ and a center zi ∈ Rnx . As there are N + 1 cross sections in the tube
(counting X0 up to and including XN ), this introduces (N + 1)(1 + nx) decision variables.
Furthermore, the scalings must be non-negative, leading to the N + 1 inequality constraints

∀i ∈ [0..N] : αi ≥ 0. (4.17)

Control parameterization At each prediction time instant i ∈ [0..N−1], the parameterization
(4.14) consists of tςi qi control actions, i.e., nutςi qi decision variables. Thus the control
parameterization introduces a total of nu

∑N−1
i=0 tςi qi variables. However, because of the

constraint X0 = {x}, all control actions for i = 0 are equal. Thus the number of introduced
decision variables can be slightly reduced to nu + nu

∑N−1
i=1 tςi qi .

Initial condition constraint The constraint X0 = {x} in (4.5) is implemented by nx + 1
equality constraints

z0 = x,

α0 = 0.
(4.18)

Tube dynamics constraints The transition constraints I(Xi,Θi |Ki) ⊆ Xi+1 from Defini-
tion 3.4 are equivalent to the following

∑N−1
i=0 rςi+1 tςi qi linear inequalities

∀i ∈ [0..N−1] : ∀( j, l) ∈ [1..tςi ]×[1..qi] : Hςi+1

(
A

(
θ̄li

) (
zi + αi s̄

j
ςi

)
+ Bu(j ,l)i

)
≤ 1. (4.19)

State constraints The state constraints I(Xi,Θi |Ki) ⊆ X from Definition 3.4 are equivalent
to the rx

∑N−1
i=0 tςi qi linear inequalities

∀i ∈ [0..N − 1] : ∀( j, l) ∈ [1..tςi ] × [1..qi] : Hx

(
A

(
θ̄li

) (
zi + αi s̄

j
ςi

)
+ Bu(j ,l)i

)
≤ 1. (4.20)

Input constraints The input constraints are realized by the following ru
∑N−1

i=0 tςi qi linear
inequalities

∀i ∈ [0..N − 1] : ∀( j, l) ∈ [1..tςi ] × [1..qi] : Huu(j ,l)i ≤ 1. (4.21)
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Terminal constraint The terminal constraint XN ⊆ X f
ςN

from (4.5) is equivalent to the
following rςN tςN + 2 linear inequalities

∀ j ∈ [1..tςN ] : HςN

(
zN + αN s̄ jςN

)
≤ γ,

0 ≤ γ ≤ 1,
(4.22)

where γ ∈ R+ is a decision variable.

Stage cost The stage cost (4.7), which is equivalent to (4.15), can be implemented by
introducing non-negative slack variables (µ, ν, ζ). Recall that in this chapter, the ∞-norm is
used. Thus, `(Xi,Ki,Θi) ≤ ζi is equivalent to ∀i ∈ [0..N − 1]:

∀( j, l) ∈ [1..tςi ] × [1..qi] : − ν(j ,l)i ≤ Ru(j ,l)i ≤ ν
(j ,l)
i , ν

(j ,l)
i ≥ 0

∀ j ∈ [1..tςi ] : − µji ≤ Q
(
zi + αi s̄

j
ςi

)
≤ µ

j
i , µ

j
i ≥ 0

∀( j, l) ∈ [1..tςi ] × [1..qi] :ν(j ,l)i + µ
j
i ≤ ζi,

(4.23)

which corresponds to a total number of
∑N−1

i=0
(
tςi qi (nr + 1) + qi

(
nq + 1

)
+ tςi qi

)
inequality

constraints and introduces
∑N−1

i=0
(
tςi qi + tςi + 1

)
decision (slack) variables.

Terminal cost The decision variable γ ∈ R+ as introduced in (4.22) corresponds toΨςN (XN ).
Therefore,

Fk (XN ) = W(k + N,XN ) =
¯̀

1 − %
(M + (λ − 1)ςN ) γ. (4.24)

The total LP Given the above constructions, the total LP to be solved-online becomes

V (x,Θ|k) = min
d

¯̀
1 − %

(M + (λ − 1)ςN ) γ +
∑
i=0

ζi

subject to (4.17)–(4.24)
(4.25)

with the decision variable d being the collection of all the variables introduced above, i.e.,

d =
(
α0, . . . , αN , z0, . . . , zN ,u

(1,1)
0 , . . . ,u

t(ςN−1 ,qN−1)

N−1 ,

ν
(1,1)
0 , . . . , ν

t(ςN−1 ,qN−1)

N−1 , µ1
0, . . . , µ

t(ςN−1
N−1 ,

ζ0, . . . , ζN−1, γ
)
.
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Summing up the number of decision variables nd, the number of equality constraints neq and
the number of inequality constraints nineq for each sub-part of the problem yields

nd = (N + 1)(1 + nx) + nu + nu

N−1∑
i=1

tςi qi + 1 +
N−1∑
i=0

(
tςi qi + tςi + 1

)
= O(N),

neq = nx + 1 = O(1),

nineq = N + 1 +
N−1∑
i=0

rςi+1 tςi qi + rx

N−1∑
i=0

tςi qi + ru

N−1∑
i=0

tςi qi + rςN tςN + 2

+

N−1∑
i=0

(
tςi qi (nr + 1) + qi

(
nq + 1

)
+ tςi qi

)
= O(N).

Because the numbers of variables and constraints in (4.25) are linearly bounded in N , the
problem is tractable:

Corollary 4.3. The tube synthesis problem (4.6)—which is equivalent to (4.25)—is computa-
tionally tractable in the sense of Definition 3.6.

Alternative formulations of the LP avoiding the computation of the hyperplane representations
of X f

i , i ∈ [0..M − 1], can be constructed. This involves the use of additional decision variables
corresponding to convex multipliers to verify all set inclusions. The number of decision
variables and constraints will still be linear in N , but the exact complexity of this approach
is not studied in the context of this chapter. An implementation entirely based on vertex
representations, but without using finite-step contractive sets, is discussed in Chapter 6.
With regards to the scaling of the number of variables and constraints in other parameters

besides N , the following observations can be made:

• nd = O(qθ ) and nineq = O(qθ ), i.e., the problem size scales linearly in the number of
vertices q of the scheduling sets. If there are nθ scheduling variables and if the scheduling
sets are hyperboxes, this leads to nd = O(2nθ ) and nineq = O(2nθ ).

• nd = O(maxi tςi ) and nineq = O(maxi rςi maxi tςi ). That is, the number of decision
variables scales linearly in the number of vertices of the (finite-step contractive) shape
sets. The number of inequality constraints scales linearly in the product of the number
of hyperplanes and vertices. If nx = 2, this leads to nineq = O(maxi t2

ςi
). For higher-

dimensional systems, a pessimistic complexity bound in terms of maxi tςi could be
obtained by means of McMullen’s upper bound theorem (Ziegler 1995, Section 8.4).

• Finally, observe that nd = O(nx), neq = O(nx), and nineq = O(nx). However, the
representation complexity of the shape sets is also a function of nx, and thus in practice
this linear scaling in the state dimension is not attained.

4.4.3 Computation of finite-step contractive sets
The construction of a sequence of finite-step contractive sets SM for an LPV system can be
done in several ways. One can pick an arbitrary PC-set S0 and find the smallest M for which a
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sequence SM exists, using a straightforward extension of the algorithm for the LTI case from
(Athanasopoulos and Lazar 2013). Due to exponential complexity in M, this method is only
practical when contraction can be achieved for small M .
Alternatively, it is possible to first determine any stabilizing controller for (4.1). Then

again we can choose an arbitrary PC-set S0 and propagate this set forwards under the resulting
closed-loop dynamics until finite-step contraction is achieved, as proposed in (Lazar and Spinu
2015). The number of vertices of the sets in the resulting sequence SM grows exponentially
in principle, but often many vertices are redundant and can be eliminated using standard
algorithms: a similar technique was employed in (Athanasopoulos and Lazar 2014) for the
stability analysis of switched systems.

Amethod based on particle swarm optimization (PSO) that can be used to compute controlled
finite-step contractive sets in vertex representation is presented in Appendix A.

4.5 Numerical examples
In this section, the approach developed in this chapter is demonstrated on two numerical
examples: a simple second-order academic example in Section 4.5.1 and a two-cart mechanical
system in Section 4.5.2.

4.5.1 Second-order academic example
Consider a second-order LPV system defined in the state-space form of (4.1) with two scheduling
variables

x(k + 1) =
( [

1 1
0 1

]
+

[
0.08 −0.6
0.4 0.1

]
θ1(k) +

[
0.23 0

0 −0.32

]
θ2(k)

)
x(k) +

[
0
1

]
u(k)

where

Θ =
{
θ ∈ R2 | ‖θ‖ ≤ 1

}
,

U = {u ∈ R | |u| ≤ 6} ,

X =
{

x ∈ R2 | |x1 | ≤ 4, |x2 | ≤ 10
}
.

The MPC tuning parameters are N = 8, Q = I, and R = 0.25. This tuning assigns a low weight
to the control input, leading to a fast response. For simplicity, the scheduling tubes Θ ⊆ ΘN

were constructed such that Θk = {{θ(k)},Θ, . . . ,Θ} for all k.
A set X f

0 was chosen which leads to a sequence SM of (5,0.95)-contractive sets, as depicted
in Figure 4.2. The set X f

0 was designed with 4 vertices, and all subsequent sets also have 4
vertices except for X f

1, which has 6. For comparison, the maximal controlled 0.95-contractive
set was also calculated using the algorithm from (Blanchini and Miani 2015) and it has 8
vertices.

The relative difference in computational load of the resulting TMPC algorithm, based on
an LP implementation where both the vertex- and hyperplane representations of the sets were
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(M, λ) nd nineq Avg. time [ms] Max. time [ms]
(1,0.95) 276 4034 14 20
(5,0.95) [168..176] [1674..1810] 6 8

Table 4.1: Illustration of complexity: number of decision variables, number of inequality
constraints, and solver time per sample.

used, is displayed in Table 4.1. The simulations were carried out on a 3.6 GHz Intel Core
i7-4790 with 8 GB RAM, running Arch Linux, and using the Gurobi 7.0.2 LP solver with
its default settings. Because the complexity of the terminal set in the (5,0.95)-contractive
case is time-dependent, the number of variables and constraints varies periodically between
the numbers shown. To illustrate their linear growth, the maximum number of variables and
constraints for the (5,0.95)-contractive case is calculated as a function of N and shown in
Figure 4.1.

An example closed-loop output trajectory of the controller with finite-step terminal condition
is shown in Figure 4.3. The initial state was x(0) =

[
4 −6

]
, i.e., taken at the boundary of

the state constraint set. As expected, the system’s state variables are steered to the origin and
input- and state constraints are satisfied. The scheduling trajectory that was used during this
simulation is depicted in Figure 4.4.
The achieved domains of attraction of the controller with the finite-step terminal condition

are also compared to that of the “homothetic” controller from Section 3.5, which uses the
maximal 0.95-contractive terminal set (Figure 4.5).

The feasible set was calculated for a fixed initial value θ(0) =
[
1 −1

]>. In the present case,
the reduction in computational load due to the lesser complexity of the sets in SM is paid for by
a marginally smaller domain of attraction (DOA). The DOAs were estimated using the method
from Appendix B.

4.5.2 Two-cart system

A two-cart positioning system, similar to that of (Kothare et al. 1996), is depicted in Figure 4.6.
Therein, the variables q1 and q2 represent the position of the first and second cart, respectively.
A force u can be applied to the first cart as a control input. The spring constant θ is time-varying
and corresponds to the scheduling variable. It is assumed that the scheduling signal is exogenous,
i.e., it is varied independently from the state and input signals. The used physical parameters
are given in Table 4.2.
For this system, a state vector can be defined as x =

[
q1 q2 Ûq1 Ûq2

]>. Its dynamics are
described by the continuous-time state-space (SS) representation

Ûx(t) =


0 0 1 0
0 0 0 1
−
θ(t)
m1

θ(t)
m1

− d
m1

d
m1

θ(t)
m2

−
θ(t)
m2

d
m2

− d
m2


x(t) +


0
0
1
m1
0

 u(t) (4.26)
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0
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Figure 4.1: Maximum number of variables n̄d(N) = maxk nd(k,N) and constraints n̄ineq(N) =
maxk nineq(k,N).

Description Symbol Value Unit
Mass of the first cart m1 1 kg
Mass of the second cart m2 1 kg
Spring constant θ θ ∈ [θ, θ] = [1.0,2.5] Nm−1

Damping coefficient d 0.01 Nsm−1

Table 4.2: Parameters of the two-cart system.
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Figure 4.2: Constructed sequence of (5,0.95)-contractive sets (solid, green) compared with the
maximal 0.95-contractive set (outline).
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Figure 4.3: Closed-loop state- and input trajectories with finite-step terminal condition.
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Figure 4.4: Scheduling trajectory.
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Figure 4.5: Approximate domains of attraction with finite-step terminal condition (Xfstep
N )

and with maximal contractive terminal set terminal condition (Xhomothetic
N ), for

θ(0) = [1 −1]>. The innermost set (solid, green) is X f
0, and the outer box represents

the state constraints.

m1 m2

θ

d

u

q1 q2

Figure 4.6: The two-cart system.

89



Chapter 4 Guaranteeing feasibility and stability

where θ : R+ → Θ, Θ = [θ, θ], represents the time-varying spring constant. The system is
subject to the constraints

X =
{

x ∈ R4 �� ‖x‖∞ ≤ 1
}
,

U = {u ∈ R | |u| ≤ 1} .

In (Kothare et al. 1996), an Euler-discretized version of (4.26) is used for the MPC design.
However, in this example, it was found that Euler discretization is unsuitable because it leads
to an unstable discrete-time model irrespective of the sampling time. Unfortunately, using
a more accurate approximation (e.g., polynomial or Tustin) would lead to a non-polytopic
discrete-time LPV state-space (LPV-SS) representation. Therefore, to obtain a polytopic
discrete-time representation, the following “ad hoc” approach—which nevertheless works
well for this example—was used. The exact discretization (see (Tóth 2010, Chapter 6)) was
computed on a grid Θgrid = {θ̄

1, . . . , θ̄L} ⊂ Θ. An LPV-PSS representation of the form (4.1)
was subsequently fitted on the obtained collection of discrete-time models by solving

(A0, A1,B) = arg min
A0 ,A1 ,B

L∑
i=1





[ Ã
(
θ̄i

)
B̃

(
θ̄i

) ] − [
A0 + A1θ̄

i

B

]




F

where ‖ · ‖F is the Frobenius norm3, and where (Ã(·), B̃(·)) are the matrices corresponding
to the exact discretization. It was found that the discrete-time model obtained in this way,
although not exact due to the fitting to a polytopic representation, is more accurate than the
first-order Euler approximation: in particular, stability of the representation (4.26) is preserved.
In the sequel, a sampling time of τ = 0.25 seconds is used. This gives a discrete-time LPV-PSS
representation with the numerical values

x(k + 1) =

©­­­«


0.999 0.001 0.250 0.000
0.001 0.999 0.000 0.250
−0.015 0.015 0.997 0.003
0.015 −0.015 0.003 0.997

 +

−0.03 0.03 −0.003 0.003
0.03 −0.03 0.003 −0.003
−0.232 0.232 −0.03 0.03
0.232 −0.232 0.03 −0.03

 θ(k)
ª®®®¬ x(k)

+


0.031
0.000
0.245
0.005

 u(k).

(4.27)

A controlled (2,0.985)-contractive sequence for (4.27) was computed using the algorithm
of Appendix A, and it is depicted in Figure 4.7. Because the sets are four-dimensional, they
are visualized by means of projections. The number of vertices of the first set in the sequence
S0 was fixed to be 16, and the second set S1 has 30 vertices. For comparison, a “normal”
0.985-contractive set corresponding to a robustly stabilizing linear feedback u = K x was also
computed using Algorithm 2.1. This set is represented by 250 vertices and its projections are
also shown in Figure 4.7.
3For a matrix M ∈ Rm×n , the Frobenius norm is defined as ‖M ‖F =

√∑m
i=1

∑n
j=1 |mi j |

2, with mi j denoting the
(i, j)-th element of M .
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4.5 Numerical examples
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Figure 4.7: The computed (2,0.985)-contractive sequence (solid green), displayed together
with a “normal” 0.985-contractive set with a higher number of vertices.
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Figure 4.8: Scheduling trajectories for the two-cart example: true realized trajectory θ(·)
and “nominal” trajectory θ̄(·) used for predicting the possible future scheduling
trajectories in an anticipative controller.

It was attempted to use the method in Appendix A to synthesize a standard controlled
contractive set with a comparably low number of vertices as well, but this was not successful.
Therefore, for this system, it seems that a finite-step terminal set can indeed be easier to
compute.
For the simulation, the prediction horizon of the tube-based controller was set to N = 8,

and its tuning parameters were set as Q = diag{5,5,1,1} and R = 10. The representation
(4.27) was used in the MPC, but the continuous-time model (4.26) was used for simulation.
The scheduling trajectory θ(·) that was used in the simulation is depicted in Figure 4.8. The
following three controllers are compared in closed-loop simulation:

Anticipative TMPC The tube-based controller developed in this chapter with the (2,0.985)-
contractive terminal set of Figure 4.7. An “anticipative” description of possible future
scheduling trajectories is used similar to the description (3.4). In particular, at every
sample instant k ∈ N, it is assumed that

∀i ∈ [1..N − 1] : θ(k + i) ∈
(
θ̄(k + i) ⊕ [−0.25,0.25]

)
∩ Θ (4.28)

where the “nominal” scheduling trajectory θ̄(·) is also depicted in Figure 4.8. Note that
the actual realized trajectory θ(·) is consistent with (4.28) in the sense that for all k,
|θ(k) − θ̄(k)| ≤ 0.25.

Classical TMPC This controller is the same as the “anticipative TMPC”, except that the
description (4.28) of possible future scheduling trajectories is not used. Instead, at every
sample instant k ∈ N, it is simply assumed for all i ∈ [1..N − 1] that θ(k + i) ∈ Θ (i.e., it
is assumed that θ can vary arbitrarily fast inside of its full range Θ).

Quasi min-max The quasi min-max approach from (Lu and Arkun 2000b).
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4.6 Concluding remarks

The obtained closed-loop state trajectories are shown in Figure 4.9, and the correspond-
ing closed-loop control inputs are shown in Figure 4.10. The initial state was x(0) =[
0 0.65 0 0

]>. It is observed that the TMPC controllers apply more aggressive control
inputs than the quasi min-max controller, and drive the state of the system to the origin somewhat
faster. In turn, the anticipative TMPC is able to exploit the description (4.28) of possible future
scheduling trajectories and drives the state to the origin faster than the non-anticipative TMPC.
Because the difference between the trajectories in Figure 4.9 can be difficult to distinguish,
an enlarged plot showing only the evolution of the first state variable is additionally given in
Figure 4.11.

4.6 Concluding remarks
This concluding section starts with Section 4.6.1, which contains a discussion on the possibility
of including a parameter-varying input matrix in the representation (4.1). A summary of the
chapter and outlook on future developments is presented in Section 4.6.2.

4.6.1 Parameter-varying input matrix
An extension of the theoretical results from this chapter to the case that the B-matrix in (4.1) is
also parameter-varying, is straightforward. However, if a gain-scheduled control policy is used,
the tube synthesis optimization problem is no longer convex due to the multiplication of the
parameter-dependent matrix with parameter-dependent control actions (decision variables).
This non-convexity is a problem that arises also in the synthesis of LPV controllers for LPV-PSS
representations (Daafouz and Bernussou 2001). Several workarounds to this issue exist:

• It is possible to revert to “robust” control, that is to make the controllers Ki : Xi ×Θi → U
independent of θ (or at least, independent of those elements in θ that appear in B(θ)). A
more detailed characterization of this approach is presented in this thesis in Chapter 5.

• Given an LPV-SS representation x(k + 1) = A(θ(k))x(k) + B(θ(k))u(k), it is possible
to add an input filter in the loop to obtain an augmented system where all parameter
dependencies are shifted into the A-matrix. For instance, in the case that the input filter
is chosen to be an integrator, the augmented system becomes[

x(k + 1)
u(k + 1)

]
=

[
A(θ(k)) B(θ(k))

0 I

] [
x(k)
u(k)

]
+

[
0
I

]
v(k),

where the state dimension is increased by nu. Due to the input filter, an input delay of
one sample is introduced. This may deteriorate performance and can even render the
system unstabilizable (Blanchini et al. 2007).

• It is possible to convexify the optimization problem by over-approximating the non-convex
constraints with a larger number of convex constraints. In (Besselmann et al. 2012) this
is achieved through (a reverse form of) Pólya’s relaxation. Similarly, (Casavola et al.
2012) gives a convex outer-approximation of the non-convex constraint set.
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Figure 4.9: Closed-loop state trajectories for the two-cart example.
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Figure 4.10: Closed-loop input trajectories for the two-cart example.
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Figure 4.11: Closed-loop trajectory of the first state variable for the two-cart example.
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Recently, it was proven that the problem of synthesizing an LPV state feedback for an
LPV-PSS representation with a parameter-dependent B-matrix can be formulated as a convex
semi-definite program (SDP) without the need for an input filter (Pandey and Oliveira 2017).
Whether or not it is possible to formulate the synthesis of vertex controls for such a representation
as a single convex problem, is currently an open question.

4.6.2 Summary
The present chapter has introduced finite-step terminal conditions in tube-based MPC for LPV
systems. It was shown that, under certain assumptions on the tube parameterization, the method
is recursively feasible. A new Lyapunov-like function on periodic sequences of PC-sets was
constructed, and it was subsequently used to derive a terminal cost. This construction enabled
to prove closed-loop asymptotic stability. The implementation of the proposed control approach
in terms of an LP was discussed, and its computational properties were demonstrated on a
numerical example. The developments from this chapter have provided an answer to Research
Question Q2: namely, how to design a stabilizing MPC strategy for LPV systems that can
exploit knowledge about possible future scheduling trajectories.
In the presented approach, a particular “periodic” tube parameterization is used. This is a

more elaborate tube parameterization than the one employed previously in Section 3.5. It can
then be questioned if it is possible to consider even more different tube parameterizations, for
instance with the goal of improving the trade-off between the computational complexity of the
controller and the size of its achieved DOA. This makes Research Question Q3—is it possible
to introduce an extra degree-of-freedom in the design of the tube parameterization?—a natural
follow-up question to be addressed. Indeed, this question will be addressed next in Chapter 5.
A possible topic for future research is the development of improved methods for the

computation of finite-step contractive sets for LPV systems.
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Chapter 5

Heterogeneously parameterized tube
MPC

This chapter presents a heterogeneously parameterized tube-based model predictive control
design applicable to linear parameter-varying systems. In a heterogeneous tube, the

parameterization of the tube cross sections and the associated control laws are allowed to
vary along the prediction horizon. Two extremes that can be described in this framework are
scenario MPC (high complexity, large domain of attraction) and homothetic tube MPC with a
simple time-invariant control parameterization (low complexity, small domain of attraction).
In the proposed framework these extreme parameterizations, as well as other parameterizations
of intermediate complexity, can be combined to form a single tube. By allowing for more
flexibility in the parameterization design, one can control the trade-off between computational
cost and the size of the domain of attraction of heterogeneously parameterized tube MPC.
Non-restrictive sufficient conditions on the parameterization structure are developed under
which recursive feasibility and closed-loop stability is guaranteed. A specific parameterization
that combines the principles of scenario and homothetic tube MPC is proposed and it is
shown to satisfy the required conditions. The computational properties of the approach are
demonstrated using a numerical example.

5.1 Introduction

Any tractable linear parameter-varying (LPV)model predictive control (MPC) design necessarily
incurs a degree of conservatism with respect to the DP solution in terms of the achievable
optimal cost and the resulting domain of attraction (DOA). In the tube-based framework, a
key question that should be addressed is how to parameterize the tube to strike a good balance
between control performance and computational complexity. However, this question seems
to be hardly addressed in the literature. Typically, a single parameterization is first selected
for the full prediction horizon, and properties such as the volume of the ensuing DOA are
analyzed a posteriori. It may then turn out that a computationally efficient controller based on
a simple parameterization such as (Fleming et al. 2015) attains an unsatisfactorily small DOA.
On the other hand, a controller utilizing a full vertex control parameterization (Chapter 4) or
even a scenario parameterization may achieve the required DOA, but at a disproportionate
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Chapter 5 Heterogeneously parameterized tube MPC

computational cost. There is currently no way to “interpolate” between these cases: one has to
use either the simple or the complex parameterization over the full prediction horizon.

Based on the observation that a simple controller usually works well in a small region around
the terminal set, whereas a complex controller is only necessary if the domain of attraction
is to be increased further, one can wonder if the same reasoning applies to the predictions
themselves. If so, it could be worthwhile to vary the complexity of the parameterization along
the prediction horizon. Then, it becomes possible to use the richest prediction structure where
it is needed most (far from the terminal set and close to the constraints), without needlessly
considering many degrees of freedom (DOFs) when the predictions are getting close to the
terminal set.

In this chapter, this intuitive idea is formalized by introducing the notion of a heterogeneously
parameterized tube (HpT). In a heterogeneously parameterized tube, the parameterization of
the cross sections and associated controllers is allowed to be time-varying along the prediction
horizon. The HpT concept can be used to describe a number of tube parameterizations that
have appeared in the literature in a unified fashion, including but not limited to scenario-,
homothetic-, and elastic tubes. Broadly speaking, this allows the use of a detailed but complex
prediction structure near the beginning of the horizon while gradually transitioning to a simpler
but more conservative structure as the predictions tend towards a neighborhood of the terminal
set. This framework provides a new degree of freedom in the parameterization design, which
can be exploited by the user to obtain new and improved performance/complexity trade-offs.

Based on the introduced HpT concept, an MPC algorithm based on repetitive on-line
construction of an HpT is presented. Sufficient conditions on the underlying heterogeneous
parameterization, under which the controller is guaranteed to be recursively feasible and
asymptotically stabilizing, are given. A specific heterogeneous parameterization, called
HpT-SF, is proposed. This HpT-SF parameterization combines the principles of scenario and
homothetic tube MPC, and it is shown to satisfy the required conditions.

The proposed HpT idea shares a conceptual similarity with the concept of move blocking
(MB) in nominal MPC (Cagienard et al. 2007). In MB, the number of control DOFs is reduced
by fixing the predicted control inputs to be constant over a part of the horizon. Although the
mathematical formulation and conditions are quite different, the MB and HpT approaches both
allow one to parameterize the predicted control inputs along a part of the prediction horizon in
a simpler way, thereby reducing the number of decision variables. Move blocking for robust
MPC based on constraint tightening for additively disturbed LTI systems was considered in
(Shekhar and Maciejowski 2012, 2013).

The remainder of this chapter is structured as follows. Section 5.1.1 introduces in more detail
the problem setting considered in this chapter. The concept of heterogeneously parameterized
tubes is presented in Section 5.2, and the tube model predictive control (TMPC) algorithm
based on these tubes is developed in Section 5.3. Conditions such that the algorithm is
recursively feasible and stabilizing are given. Subsequently, in Section 5.4, a cost function
and an implementable heterogeneous parameterization are provided that satisfy the required
assumptions. Numerical examples to demonstrate the properties of the method are provided in
Section 5.5, and the chapter ends with some concluding remarks in Section 5.6.
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5.2 Heterogeneously parameterized tubes

5.1.1 Problem setting

The control problem considered in this chapter is equal to Problem 3.1, i.e., it is desired to
design a controller Kmpc(·, ·, ·) that renders the origin of a given constrained polytopic LPV
state-space (LPV-PSS) representation regionally asymptotically stable.
In contrast to the situation in Chapter 4, all theoretical results in this chapter are derived

with respect to the general case that the input matrix B(θ) can be parameter-varying. The
necessary assumptions that enable the implementation of the proposed algorithms in terms of
finite-dimensional convex optimization problems are given in Section 5.4.

The control problem will, in this chapter, be addressed through an MPC algorithm based on
the construction of heterogeneously parameterized tubes.

5.2 Heterogeneously parameterized tubes

In this section, the concept of a heterogeneously parameterized tube (HpT) is introduced. The
resulting HpT tube synthesis problem, which will be at the core of the MPC strategy proposed
in this chapter, is specified.
Formally, an HpT is defined as follows.

Definition 5.1. Let T be a tube according to Definition 3.4. For all i ∈ N[0,N ], introduce
parameter sets P(i) = Px(i) × Pk(i). A tube T is called a heterogeneously parameterized tube
(HpT) if it satisfies the following conditions:

(i) For all i ∈ N[0,N ], there is a function Px (·|i) : Px(i) → Rnx and there exists a parameter
px
i ∈ P

x(i) such that Xi = Px (px
i |i

)
.

(ii) For all i ∈ N[0,N−1] there is a second-order function Pk (·|i) : Pk(i) →
(
Xi × Θi → U

)
and there exists a parameter pk

i ∈ P
k(i) such that Ki = Pk (pk

i |i
)
.

Further, define the shorthand P(p|i) =
(
Px (px |i

)
,Pk (pk |i

) )
where p =

(
px, pk) .

The distinguishing feature of the parameterization proposed in the above definition, and
the reason why it is called a heterogeneous parameterization, is the fact that the sets P(i) and
functions P(·|i) can be different for every prediction time instant i ∈ N[0,N ]. This can be
compared and contrasted with the approach in Chapter 4, where the parameterizations were
dependent on k + i in a prescribed periodic fashion. If the sets and functions in Definition 5.1
are chosen to be independent of i, then the setup of Chapter 4 with M = 1 (and equivalently,
the setup of Section 3.5) is recovered. With the above definition, the notion of heterogeneous
parameterization structure can be associated.

Definition 5.2. A heterogeneous parameterization structure PN is defined as the sequence of
2-tuples

PN =
{
(P(0),P(·|0)) , . . . , (P(N),P(·|N))

}
.
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Chapter 5 Heterogeneously parameterized tube MPC

The parameterization structure PN has to be selected by the user and determines the
computational complexity and the achievable performance (level of conservatism) of the
resulting tube-based controller.

In the HpT setting, the definition of the set of feasible tubes, the tube synthesis problem, and
the domain of attraction are comparable to the general definitions given in 3.4.1. The principal
difference is that these are now all defined given a designed parameterization structure PN .
Specifically, in this chapter, we write

TN (x,Θ|PN ) = {T | T satisfies Def. 5.1 with X0 = {x} and XN ⊆ Xf} (5.1)

for the set of feasible tubes,

V (x,Θ|PN ) = min
T

JN (T,Θ) subject to T ∈ TN (x,Θ|PN ) , (5.2)

for the tube synthesis problem, and

XN (Θ|PN ) = {x ∈ X |TN (x,Θ|PN ) , ∅} (5.3)

for the domain of attraction (DOA). Necessary conditions on the terminal set Xf in (5.1) in the
HpT setting will be given in this chapter. The definition of the cost function JN (·, ·, ·) in (5.2)
is the same as (3.9), and the stage cost (3.13) is employed. Like the terminal set, a suitable
terminal cost F(·) will be provided in this chapter.
In the next section, it is shown how the HpT-notion of Definition 5.1 can be employed to

construct a recursively feasible receding-horizon strategy along the lines of Algorithm 3.1.

5.3 The heterogeneous TMPC algorithm
In this section, the MPC algorithm based on the synthesis of heterogeneously parameterized
tubes is developed. Conditions on the tube parameterization and the cost function such that a
recursively feasible and stabilizing controller can be obtained are given in Section 5.3.1. In
Section 5.3.2, the algorithm is summarized and its properties are proven.

5.3.1 Parameterization conditions
In this subsection, a number of conditions is presented that allows for the derivation of
a recursively feasible and stabilizing MPC algorithm. These conditions come as a set of
assumptions on (i) the existence of a terminal set and local controller, (ii) the parameterization
structure PN , and (iii) the cost function JN (·, ·).

Given a controller K : X × Θ→ U, it is useful to consider controllers that are “the same” as
K on a subset of the original domain X ×Θ. Formally, the set of restrictions of a controller can
be defined as follows.

Definition 5.3. Let K : X ×Θ→ U. The set of restrictions of K to the subset X ′ ×Θ′ ⊆ X ×Θ
is R

(
K
��X ′,Θ′) = {

K ′ : X ′ × Θ′→ U
��∀(x, θ) ∈ X ′ × Θ′ : K ′(x, θ) = K(x, θ)

}
.
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5.3 The heterogeneous TMPC algorithm

The first set of assumptions specifies necessary terminal conditions.

Assumption 5.1. The terminal set Xf in (5.2) is controlled λ-contractive in the sense of
Definition 2.13. (Recall that a local controller which renders Xf λ-contractive in this sense, is
denoted as Kf : Xf × Θ→ U.)

In this chapter, finite-step terminal conditions, as used in Chapter 4, are not considered. It
should however be possible to extend the results from the present chapter to allow for finite-step
terminal conditions as well. This can be a topic for future research.
With the terminal conditions of Assumption 5.1 in place, the first step towards a proof of

recursive feasibility can be made. To do this, the following instrumental lemma on the existence
of “successor tubes” is required.

Lemma 5.1. Let N ∈ N[1,∞), let PN be a heterogeneous parameterization structure according
to Definition 5.2, and let (x, θ) be the current state and scheduling variable values. Furthermore,
let Θ =

{
{θ},

{
Θi

}N−1
i=1

}
⊆ ΘN and Θ+ =

{
Θ+i

}N−1
i=0 ⊆ Θ

N be two scheduling tubes satisfying
Θ+ v Θ. Suppose that there exists a tube T ∈ TN

(
x,Θ

��PN

)
. Then, there always exists a

γ ∈ [0,1] and a sequence of sets X+ =
{

X+i
}N
i=0 that satisfies

∀i ∈ N[0,N−2] : X+i ⊆ Xi+1, (5.4a)
X+N−1 ⊆ γXf, (5.4b)
X+N ⊆ λγXf, (5.4c)

∀i ∈ N[0,N−2] : I(X+i ,Θ
+
i |Ki+1) ⊆ X+i+1 ∩ X, (5.4d)

I(X+N−1,Θ
+
N−1 |Kf) ⊆ X+N . (5.4e)

Proof. By construction of T, X+0 = {A(θ)x + BK0(x, θ)} ⊆ X1. Recall that Θ+ v Θ means
that Θ+i ⊆ Θi+1 for all i ∈ N[0,N−2]. Thus, from Lemma 2.3, it follows that I(X+0 ,Θ

+
0 |K1) ⊆

I(X1,Θ1 |K1). Because it is known that I(X1,Θ1 |K1) ⊆ X2 ∩ X, there exists a subset X+1 ⊆ X2
such that I(X+0 ,Θ

+
0 |K1) ⊆ X+1 ∩ X. Repeating this argument for all subsequent time instances

i ∈ N[1,N−2] yields the existence of a sequence satisfying (5.4a) and (5.4d).
Let γ = inf{γ′ | XN ⊆ γ

′Xf}. By construction of T, it is known that the inclusion XN ⊆ Xf
holds, and so we have γ ∈ [0,1]. It was previously established that X+

N−2 ⊆ XN−1. Thus,
I(X+

N−2,Θ
+
N−2 |KN−1) ⊆ XN ⊆ γXf , which gives (5.4b).

Homogeneity of (2.4) combined with Assumption 5.1 imply that for all γ ∈ [0,1] the
inclusion I(γXf,Θ|Kf) ⊆ λγXf holds. Because X+

N−1 ⊆ γXf and Θ+N−1 ⊆ Θ this yields (5.4c)
and (5.4e), completing the proof. �

In the recursive feasibility proofs considered earlier, i.e., in Proposition 4.2, a successor tube
was explicitly constructed in a way analogous to the “shifting of the sequence”. The result
from the above lemma is different in that it establishes the existence of a successor tube that
satisfies certain properties, without explicitly constructing one. As apparent from the proof, a
sequence X+ that satisfies the stronger condition X+

N−1 ⊆ X+N ⊆ γXf instead of just (5.4b) can
exist. However, for proving recursive feasibility and stability later, condition (5.4b) is sufficient
and less restrictive in terms of the permissible designs of PN .

101



Chapter 5 Heterogeneously parameterized tube MPC

Remark 5.1 (Successor tube construction). Two particular constructions of the sequence X+
from Lemma 5.1 are the following. First, it is possible to set “⊆” in (5.4d)-(5.4e) to “=”: then,
conditions (5.4a)-(5.4c) are directly implied. Second, it is also possible to replace inclusion
with equality in (5.4a)-(5.4c) which, in turn, implies the satisfaction of (5.4d)-(5.4e). This
second option is analogous to “shifting the sequence” in standard MPC, and it is the same
method that was applied in Chapter 4. In this chapter, both constructions will be used to
prove recursive feasibility of the heterogeneous parameterization that will be proposed in
Section 5.4.2.

Under the condition that a feasible tube T exists, Lemma 5.1 established the existence of a
successor tube T+, but without considering the question if this successor can be parameterized
in the structure PN .

Assumption 5.2. Suppose the hypotheses of Lemma 5.1 hold true. Assume thatPN is designed
such that at least one of the possible sequences X+ fulfilling (5.4) satisfies the following
conditions:

(i) For all i ∈ N[0,N ], there exists a px+
i ∈ P

x(i) with Px (px+
i

��i) = X+i .

(ii) For all i ∈ N[1,N−2], there exists a pk+
i ∈ P

k(i) such that Pk (pk+
i

��i) ∈ R (
Ki+1

��X+i ,Θ+i ) .
(iii) There exists a pk+

N−1 ∈ P(N − 1) such that Pk (pk+
N−1

��N − 1
)
∈ R

(
Kf

��X+
N−1,Θ

+
N−1

)
.

In Assumption 5.2, it can be argued that conditions (ii)-(iii) could be replaced by Pk (pk+
i

��i) =
Ki+1 and Pk (pk+

N−1
��N − 1

)
= Kf , respectively. This is, however, more restrictive in the following

sense. Suppose for instance that, for a certain i, Xi is a set with 2 vertices and Xi+1 is a
structurally different set with 4 vertices (this exact situation can occur, e.g., in the “scenario”-
parameterization introduced later in Section 5.4.2). If the corresponding controllers (Ki,Ki+1)
are parameterized as vertex controllers on these sets, then Pk(i) is a set in dimension 2nu
whereas Pk(i + 1) is a set in dimension 4nu. Due to this structural difference, it is clearly
impossible to find a parameter pk

i ∈ P(i) such that Pk (pk+
i

��i) = K+i = Ki+1. In contrast, a
parameter pk

i ∈ P(i) could exist such that Pk (pk+
i

��i) is a controller K+i that produces the same
control inputs as Ki+1 when it would have been applied to the (2-vertex) subset X+i ⊆ Xi+1.
This is precisely the less restrictive condition which, in Assumption 5.2, is captured formally in
terms of sets of restrictions R(·|·, ·).
With Assumption 5.2 in place, it is already possible to establish recursive feasibility of a

receding-horizon predictive controller based on (5.2). The corresponding proof is given together
with the algorithm description and with the proof of closed-loop stability in Theorem 5.1
in Section 5.3.2. To prove closed-loop asymptotic stability, however, the following set of
assumptions on the cost and value function is needed first.

Assumption 5.3. In what follows, let K : X × Θ→ U be a controller.

(i) There exist K∞-functions sF , sF such that for all X ⊆ Xf , sF
(
d0
H

(
X
) )
≤ F

(
X
)
≤

sF
(
d0
H

(
X
) )
.
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(ii) Let Kf : Xf × Θ→ U be the local controller from Assumption 5.1. Then, for all X ⊆ Xf ,
it holds that F

(
I(X,Θ|Kf)

)
− F

(
X
)
≤ −`

(
X,Kf,Θ

)
.

(iii) For any set X ⊆ Xf and any subset X ′ ⊆ X , F(X ′) ≤ F(X). Further, let γ ∈ [0,1] be the
infimal γ such that X ⊆ γXf . Then, F(X) = F(γXf).

(iv) There exist K∞-functions sV , sV such that for all x ∈ Rnx and Θ ⊆ ΘN for which (5.2) is
feasible, it holds sV

(
‖x‖

)
≤ V

(
x,Θ

��PN

)
≤ sV

(
‖x‖

)
.

Observe that Assumptions 5.3.(i)-(ii) are comparable to the “standard” set of assumptions on
the terminal set and cost in stabilizing MPC (Mayne et al. 2000). The important difference
here is that in the tube-based setting, the function F(·) takes a set as its argument and can be
interpreted as being a Lyapunov-type function for set-valued dynamics.
Note that a terminal cost such that Assumption 5.3 is satisfied was already constructed

explicitly in Chapter 4. However, in this chapter, a more general approach is taken by proving
closed-loop stability under Assumption 5.3 alone without the need to construct a-priori the
function F(·). A construction for the terminal cost is provided together with an implementable
tube parameterization in Section 5.4.
From Definition 5.3 and Proposition 3.1.(i), the following result on the stage cost function

follows directly:

Corollary 5.1. For all subsets X ′ × Θ′ ⊆ X × Θ, it holds that `
(
X ′,K,Θ′

)
= `

(
X ′,K ′,Θ′

)
≤

`
(
X,K,Θ

)
for any K ′ ∈ R

(
K |X ′,Θ′

)
.

This result will also be useful in the proof of stability, which is presented as the main result
of this chapter, in the following subsection.

5.3.2 Main result
The receding-horizon heterogeneously parameterized tube MPC algorithm is given in Algo-
rithm 5.1. This algorithm is virtually the same as the prototype receding horizon implementation
of Algorithm 3.1, except that in lines 5–6 the parameterization structure PN is used.
In the next theorem, the main properties of Algorithm 5.1 are summarized and proven.

Theorem 5.1. Let the hypotheses of Lemma 5.1 be satisfied. If, at the initial time instant k,
there exists a solution T? =

({
X?i

}N
i=0,

{
K?
i

}N−1
i=0

)
∈ TN

(
x(k),Θ

��PN

)
to (5.2), Algorithm 5.1

achieves the following properties:

(i) After applying u(k) = K?
0 (x(k), θ(k)) to the system, there exists a guaranteed feasible

solution T+ ∈ TN
(
x(k + 1),Θ+

��PN

)
.

(ii) The closed-loop trajectories of (2.4) converge asymptotically to the origin, i.e., x(k) → 0
as k →∞.

Proof. Each statement is proven separately.
Proof of (i). From Definition 5.3, it follows that for any controller K : X × Θ → U and for
arbitrary subsets (X ′ × Θ′) ⊆ (X × Θ), we have that for all K ′ ∈ R

(
K
��X ′,Θ′) there holds
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Chapter 5 Heterogeneously parameterized tube MPC

Algorithm 5.1 The receding-horizon HpTMPC algorithm.
Require: N ∈ N[1,∞) and a parameterization structure PN

1: Θ−1 ← Θ
N

2: k ← 0
3: loop
4: Construct Θk =

{
{θ(k)},

{
Θi |k

}N−1
i=1

}
⊆ ΘN such that Θk v Θk−1

5: if TN (x(k),Θk |PN ) , ∅ then
6: Solve (5.2) to obtain T? ∈ TN (x(k),Θk |PN )

7: Apply u(k) = K?
0 (x(k), θ(k)) = u?0 to the system (2.4)

8: k ← k + 1
9: else
10: abort
11: end if
12: end loop

I(X ′,Θ′ |K ′) = I(X ′,Θ′ |K). Thus, with the sequence X+ =
{

X+i
}N
i=0 that is shown to exist

in Lemma 5.1, it is possible to associate a sequence of restricted controllers K+ =
{
K+i

}N−1
i=0

where

∀i ∈ N[0,N−2] : K+i ∈ R
(
K?
i+1

��X+i ,Θ+i ),
K+N−1 ∈ R

(
Kf

��X+N−1,Θ
+
N−1

)
.

Then, the successor tube
T+ =

(
X+,K+

)
satisfies the initial condition and terminal constraints and Condition (i) of Definition 5.1.
By Assumption 5.2 there exists at least one selection of X+ such that, under the given
parameterization structurePN , conditions (ii)-(iii) of Definition 5.1 are also satisfied. Therefore,
there exists a T+ ∈ TN

(
x(k + 1),Θ+

��PN

)
.

Proof of (ii). To prove asymptotic closed-loop stability, the standard approach to show that the
value function of (5.2) is a Lyapunov function for the closed-loop system will be used. Recall
that T? =

({
X?i

}N
i=0,

{
K?
i

}N−1
i=0

)
∈ TN

(
x(k),Θ

��PN

)
was the tube synthesized at the initial time

instant k. Denote ∆Vk = V
(
x(k + 1),Θ+

��PN

)
− V

(
x(k),Θ

��PN

)
:

∆Vk ≤ JN
(
T+,Θ+

)
− JN

(
T?,Θ

)
=

N−1∑
i=0

`
(
X+i ,K

+
i ,Θ

+
i

)
−

N−1∑
i=0

`
(
X?i ,K

?
i ,Θi

)
+ F

(
X+N

)
− F

(
X?N

)
.

(5.5)

Using (5.4a)-(5.4c), the order Θ+ v Θ, and Proposition 3.1.(i) gives that

N−1∑
i=0

`
(
X+i ,K

+
i ,Θ

+
i

)
≤

N−1∑
i=1

`
(
X?i ,K

?
i ,Θi

)
+ `

(
X+N−1,K

+
N−1,Θ

+
N−1

)
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and substituting this in (5.5) yields

∆Vk ≤

N−1∑
i=1

`
(
X?i ,K

?
i ,Θi

)
+ `

(
X+N−1,K

+
N−1,Θ

+
N−1

)
−

N−1∑
i=0

`
(
X?i ,K

?
i ,Θi

)
+ F

(
X+N

)
− F

(
X?N

)
= −`

(
X?0 ,K

?
0 ,Θ0

)
+ `

(
X+N−1,K

+
N−1,Θ

+
N−1

)
+ F

(
X+N

)
− F

(
X?N

)
.

(5.6)

It is known that both X+
N−1 ⊆ γXf and X?N ⊆ γXf , so K+

N−1 ∈ R(Kf |X+N−1,Θ
+
N−1) ⊆

R(Kf |γXf,Θ
+
N−1). InvokingProposition 3.1.(i) then gives `(X

+
N−1,K

+
N−1,Θ

+
N−1) ≤ `(γXf,Kf,Θ

+
N−1).

Assumption 5.3.(iii) yields F(X?N ) = F(γXf) and since X+N ⊆ λγXf , also F(X+N ) ≤ F(λγXf) =
F(I(γXf,Θ|Kf)). Substituting all of this in (5.6) leads to

∆Vk ≤ −`
(
X?0 ,K

?
0 ,Θ0

)
+ `

(
γXf,Kf,Θ

+
N−1

)
+ F (I(γXf,Θ|Kf)) − F (γXf) ,

and using the fact that Θ+
N−1 ⊆ Θ subsequently gives

∆Vk ≤ −`
(
X?0 ,K

?
0 ,Θ0

)
+ ` (γXf,Kf,Θ) + F (I(γXf,Θ|Kf)) − F (γXf) .

From Proposition 3.1.(ii) and Assumption 5.3.(ii) it follows finally that

∆Vk ≤ −`
(
X?0 ,K

?
0 ,Θ0

)
≤ −s`

(
d0
H

(
X?0

) )
= −s` (‖x(k)‖) .

This, in conjunction with Assumption 5.3.(iv), is sufficient to conclude that V(·, ·|PN ) is a
(regional) Lyapunov function for the closed-loop system according to Definition 2.9. As
established in Lemma 2.2, the existence of such a function implies that the origin is a
regionally asymptotically stable equilibrium of the closed-loop system. Therefore, x(k) → 0
as k →∞. �

The properties proven in Theorem 5.1 amount to recursive feasibility and regional asymptotic
closed-loop stability of the origin. Hence, Algorithm 5.1 possesses the desirable property
of “stability” in the sense of Definition 3.5 (i.e., asymptotic convergence of the state of the
closed-loop system to the origin). It is emphasized that this result was obtained on the basis of
general conditions alone, without employing explicit constructions of tube parameterization,
successor tube, and terminal cost. This is different from the situation in Chapter 4 where
specific constructions were considered.
Whether or not the tube synthesis problem (5.2) is computationally tractable, depends on

the specific choice of the parameterization structure PN . One possible choice that leads to
tractable problems is presented in the next section.

5.4 Parameterization construction
In this section, constructions are provided that enable the implementation of Algorithm 5.1.
First, in Section 5.4.1, a terminal cost that satisfies the necessary assumptions from the previous
section is proposed. Then, Section 5.4.2 presents a heterogeneous parameterization structure
that leads to a computationally tractable tube synthesis optimization problem.
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Chapter 5 Heterogeneously parameterized tube MPC

5.4.1 The HpT cost function
This subsection proposes a terminal cost function such that Assumption 5.3 is satisfied, so it is
possible to obtain a stabilizing MPC according to Theorem 5.1. The terminal cost is defined in
terms of the set-gauge ΨXf (·) (see Definition 2.2) corresponding to Xf as

F (X) =
¯̀

1 − λc
Ψ

c
Xf
(X) , (5.7)

where c has the same value as in (3.13), Xf and λ are according to Assumption 5.1, and where
¯̀ = ` (Xf,Kf,Θ) (5.8)

is a constant. This terminal cost is very similar to the cost that was considered previously in
Chapter 4. However, Chapter 4 considered the case where the norm in (3.13) is the infinity-
norm and where c = 1, but for a periodic tube parameterization. In contrast, here the tube
parameterization is non-periodic, but the norm can be arbitrary and it is allowed that c ≥ 1.

When the 2-norm is used together with c = 2, the cost (3.13) corresponds to a quadratic cost
because ‖Mv‖22 = v>

(
M>M

)
v.

In the next proposition, it is shown that the cost functions (3.13) and (5.7) satisfy Assump-
tion 5.3, and therefore lead to a stable closed-loop system.
Proposition 5.1. The stage and terminal cost (5.7) together satisfy Assumptions 5.3.(i)-(iii).
Furthermore, the value function V(·, ·|PN ) is K∞-bounded in the sense of Assumption 5.3.(iv).
Proof. Satisfaction of Assumption 5.3.(i). Because (5.7) is simply the set-gauge function of the
PC-set Xf raised to the power c ≥ 1 and multiplied with a constant scalar factor, this property
follows directly from the existence of the bounds sψ, sψ stated in Lemma 2.1.
Satisfaction of Assumption 5.3.(ii). By λ-contractivity of Xf (Assumption 5.1.(i)),
ΨXf

(
I(X,Θ|Kf)

)
≤ λΨXf

(
X
)
. Also, because of the homogeneity of Kf (Assumption 5.1.(ii)),

the stage cost (3.13) is positively homogeneous of degree c in the sense that for any X ⊆ Xf ,

` (X,Kf,Θ) ≤ `
(
ΨXf (X) Xf,Kf,Θ

)
= Ψc

Xf
(X) ` (Xf,Kf,Θ)︸        ︷︷        ︸

¯̀

.

Thus we have the inequality

F (I(X,Θ|Kf)) − F (X) =
¯̀

1 − λc
(
Ψ

c
Xf
(I(X,Θ|Kf)) − Ψ

c
Xf
(X)

)
≤

¯̀
1 − λc

(
λcΨc

Xf
(X) − Ψc

Xf
(X)

)
= − ¯̀Ψc

Xf
(X)

≤ −` (X,Kf,Θ) ,

which was to be proven.
Satisfaction of Assumption 5.3.(iii). This property is immediate from the definition of ΨXf (·),
see Definition 2.2.
Satisfaction of Assumption 5.3.(iv). Under the three assumptions that have been proven above,
this property has been shown to hold in Proposition 3.2. �
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5.4.2 The HpT-SF parameterization
In this subsection, a heterogeneous parameterization that satisfies Assumption 5.2 is proposed.
In other words, this subsection presents one possible design of the parameterization structure
PN in Definition 5.2. The focus is on developing an implementable parameterization leading
to a convex finite-dimensional optimization problem (5.2). For this reason, it should be avoided
that non-convex constraints arise due to the multiplication of a parameter-dependent input
matrix with a controller (i.e., a decision variable) which is dependent on the same scheduling
parameter. This is guaranteed by the following assumption.

Assumption 5.4. Assume that for all k, every set in the scheduling tube constructed in Step 4
of Algorithm 5.1 is a polytope. Denote Ki = Pk (pk

i |i
)
for some pk

i ∈ P(i). Let the elements of Θ
be partitioned as

θ =

[
θ̃1
θ̃2

]
, where θ̃1 ∈ Θ̃1 ⊆ R

nθ1, θ̃2 ∈ Θ̃2 ⊆ R
nθ2, nθ1 + nθ2 = nθ,

with Θ̃1 and Θ̃2 being the projections ofΘ onto the first nθ1 and last nθ2 dimensions, respectively.
Assume that the structure PN is such that for all i ∈ N[1,N−1] and for all

(
pk
i , θ

)
∈ P(i) × Θ the

product B(θ)Ki(x, θ) can be written as B(θ)Ki(x, θ) = B(θ̃1)Ki(x, θ̃2).

Essentially, Assumption 5.4 requires that if the input matrix B(·) of the LPV-PSS represen-
tation depends on a scheduling variable θ1, then the synthesized controllers are independent
of θ1. They are, however, allowed to depend on any other scheduling variable θ2 that is not
a dependency of B(·). Two straightforward possibilities that satisfy this condition are the
following:

Remark 5.2. Two possibilities that guarantee satisfaction of Assumption 5.4 are the following:

(i) The input matrix of (2.4) is constant, i.e., ∀θ ∈ Θ : B(θ) = B.

(ii) The structurePN is such that the controllers Ki : Xi×Θi → U are completely independent
of θ.

The two options of Remark 5.2 represent two “extreme” cases where either nθ1 = 0 or
nθ2 = 0; Option (i) has been used in Chapter 4. However, Assumption 5.4 can also include
intermediate cases, where both nθ1 > 0 and nθ2 > 0 (and where, consequently, both Θ̃1 and Θ̃2
are non-empty sets).

Under Assumption 5.4, a so-called full scenario tube can be described in the HpT framework
of Definition 5.1.

Definition 5.4 (HpT-S: scenario tube). A tube T ∈ TN (x,Θ|PN ) is a scenario tube or HpT-S if
∀i ∈ N[0,N−1] : Xi+1 = I(Xi,Θi |Ki) and each Ki is parameterized as a vertex controller on the
set Xi×Θi . Let qx(i) = qmax{0,i−1}

θ and qk(i) = qi
θ . Under Assumption 5.4, the parameterization

structure PN of an HpT-S equivalently satisfies

(i) For all i ∈ N[0,N ], it holds Px(i) = Rnxqx(i), px
i =

(
x̄1
i , . . . , x̄

qx(i)
i

)
, and Px (px |i) =

convh {px}.
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Parameterization DOF
1 Ki(x, θ) = ci + Kf(x − zi, θ) 1
2 Ki(x, θ) = ci(θ) + Kf(x − zi, θ) qθ
3 Ki(x, θ) = vertpol

(
pk
i

��Xi,Θi

)
(x, θ) qθqs

Table 5.1: Some possible control parameterizations that fit in the framework of Definition 5.5.
One control DOF corresponds to nu decision variables in the tube synthesis problem.

(ii) For all i ∈ N[0,N−1], it holds Pk(i) = Rnuqk(i), pk
i =

(
ū1
i , . . . , ū

qk(i)
i

)
, and Pk (

pk |i
)
=

vertpol
(
pk |Xi,Θi

)
.

AnHpT-S is non-conservative, but the number of vertices of the sets Xi increases exponentially,
as each set has qθ times more vertices than the preceding set. In (Lucia et al. 2013; Maiworm
et al. 2015; Muñoz de la Peña et al. 2006), it is proposed to avoid this explosive growth by
assuming that the uncertainty resolves after N0 prediction time instances, at which point the
tree stops branching. If this assumption is not met in reality, the scheme loses its feasibility and
stability properties. Here the exponential growth is avoided differently: namely, by switching
from a scenario parameterization to a parameterization with fixed-complexity cross sections
after N0 prediction steps. (This idea is illustrated in Figure 5.1, which will be explained later
in more detail.) In this way, theoretical feasibility and stability guarantees are retained under
a more realistic handling of the uncertainty. The specific fixed-complexity parameterization
which is employed is defined next.

Definition 5.5 (HpT-F: fixed-cross section heterogeneously parameterized tube). A tube
T ∈ TN (x,Θ|PN ) is an HpT-F if for all i ∈ N[0,N−1], Xi = zi ⊕ αiXf where αi ∈ R+ is the
corresponding cross-section scaling and zi ∈ Rnx is the cross-section center. Equivalently, in
terms of Definition 5.1, the parameterization structure PN of an HpT-F satisfies that

(i) For all i ∈ N[0,N ], it holds Px(i) = R1+nx , px
i = (zi, αi), and Px (px

��i) = z ⊕ αXf .

(ii) For i ∈ N[1,N−1], the sets Pk(i) and functions Pk(·|i) are such that if ∃pk
i ∈ P

k(i) with
Pk (pk

i

��i) = K , then ∃pk
i−1 ∈ P

k(i − 1) satisfying Pk (pk
i−1

��i − 1
)
= K .

In the HpT-F, as the cross-sections Xi are scaled and translated versions of the same set Xf ,
it is said that the cross sections are homothetic to Xf . In contrast to the previous formulation of
homothetic LPV TMPC from Section 3.5, the parameterization of the associated control laws is
allowed to be time-varying along the prediction horizon, i.e., the sets and functions (Pk(·),P(·|·))
are dependent on i. Thus, an HpT-F satisfying 5.5 can still be called “heterogeneous”.
The condition of Definition 5.5.(ii) is required to ensure that an HpT-F satisfies Assump-

tion 5.2.(ii)-(iii), so that it leads to a recursively feasible MPC. In Table 5.1, some control
parameterizations are listed for the purpose of illustration.
Next, the HpT-S and HpT-F are combined into a single tube. Such a tube which will be

called an HpT-SF (where “SF” stands for “scenario/fixed-complexity”).
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X0 = {x} X2 X3 X4 X5 X6 ⊆ Xf

I (X3,Θ3 |K3) HpT-S

HpT-F

X1

Figure 5.1: Example of a HpT-SF prediction structure in a 2-dimensional state space (N = 6).

Definition 5.6 (HpT-SF). Let N ∈ N[2,∞) and N0 ∈ N[1,N ]. A heterogeneously parameterized
tube T ∈ TN (x,Θ|PN ) satisfying Definition 5.1 is an HpT-SF, if it can be decomposed as
T =

(
T0,T1) with

T0 =
({

X0
i

}N0−1
i=0 ,

{
K0
i

}N0−1
i=0

)
,

T1 =
({

X1
i

}N
i=N0

,
{
K1
i

}N−1
i=N0

)
,

(5.9)

whereT0 is an HpT-S according to Definition 5.4 andT1 is an HpT-F according to Definition 5.5.

In the above definition, since both sections T0 and T1 are heterogeneously parameterized
according to Definition 5.1, it follows directly that the same holds for the complete tube
T =

(
T0,T1) .

To clarify the concept, a graphical representation of an example HpT-SF is given in Figure 5.1.
For the first prediction time instances, the HpT-S structure is employed. It can be observed that
the number of vertices of these cross sections doubles at every prediction step after the first one.
Then, at prediction step N0 = 4 a transition is made to the HpT-F structure: from this point
forwards, the complexity of the tube cross sections remains constant as they are all homothetic
to the same polytope.

The next proposition confirms that the HpT-SF prediction structure satisfies Assumption 5.2,
and therefore leads to a recursively feasible MPC as proven in Theorem 5.1.

Proposition 5.2. Suppose Assumption 5.4 is satisfied. Then, the HpT-SF structure of Defini-
tion 5.6 satisfies Assumption 5.2.(i).

Proof. First, consider the HpT-S part T0. In reference to Lemma 5.1, recall that X+0 ⊆ X1
is a singleton. Applying the first construction of Remark 5.1 for i ∈ N[0,N0−1] (and noting
that Θ+0 = {θ(k + 1)}), gives a sequence

{
X+i

}N0−1
i=0 where the amount of vertices of the

i-th set equals qx(i) = qmax{0,i−1}
θ . This is in accordance with Definition 5.4: hence, for all

i ∈ N[0,N0−1] there exist px+
i : Px (px+

i

��i) = X+i . Next, for all i ∈ N[0,N0−1], the restricted
controllers K+i ∈ R

(
Ki+1

��X+i ,Θ+i ) are the vertex controllers on the sets X+i , which also agrees
with Definition 5.4. Because X+i ⊆ Xi+1, the corresponding vertex control actions in pk+

i ∈ P(i)
can be taken as convex combinations of the elements of pk

i+1 ∈ P(i + 1). Therefore, for all
i ∈ N[0,N0−1], the existence of pk+

i ∈ P
k(i) such that P

(
pk+
i

��i) = K+i is guaranteed.
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Second, consider the HpT-F part T1. Applying the second construction of Remark 5.1 for
i ∈ N[N0 ,N−1] gives the sequence

{
X+i

}N
i=N0

where
{

X+i
}N−2
i=N0
=

{
Xi

}N−1
i=N0+1, X+

N−1 = γXf , and
X+N = λγXf . Because all sets in

{
X+i

}N
i=N0

can be represented as X+i = zi ⊕ αiXf , it follows
immediately from Definition 5.5 that for all i ∈ N[N0 ,N ], there exists a px+

i : Px (px+
i

��i) = X+i .
From this construction, it also follows that for i ∈ N[N0 ,N−2], K+i = Ki+1 ∈ R

(
Ki+1

��X+i ,Θ+i ) ,
and that K+

N−1 ∈ R
(
Kf

��γXf,Θ
+
N−1

)
. Thus, Definition 5.5 guarantees that for all i ∈ N[N0 ,N−1]

there exist pk+
i : P

(
pk+
i |i

)
= K+i . This concludes the proof. �

The HpT-F part in the HpT-SF structure can be implemented similarly to the implementation
of Section 4.4.2. Hence, for fixed N0, the number of variables and constraints in the tube
synthesis (5.2) will be in the order of O(N). Therefore:

Corollary 5.2. Using the HpT-SF parameterization, for fixed N0, the tube synthesis problem
(5.2) is computationally tractable in the sense of Definition 3.6.

On the other hand, for variable N0, the complexity of the tube synthesis problem is in
the order O(qN0

θ ). Therefore, a remaining question is how to design N0. To obtain the least
conservative control law for a given prediction horizon N , one can choose N0 ≤ N as large as
computational resources reasonably allow. Another approach is to compare the complexity of
an HpT-S of length N0 with the complexity of an HpT-F of the same length. Suppose that the
shape set Xf from Definition 5.5 has qf vertices. The last cross-section XN0−1 of an HpT-S of
length N0 has qN0−2

θ vertices. Thus it is possible to select N0 such that qN0−2
θ ≈ qf , i.e.,

N0 = round
(

log qf
log q

)
+ 2. (5.10)

The value of N0 of (5.10) represents the approximate value where the complexity—in terms of
the number of vertices of the tube cross sections—of the HpT-S part starts to grow beyond that
of the HpT-F part, implying that it is computationally advantageous to switch to the HpT-F
structure after N0 prediction steps.

5.5 Numerical examples

In this section, two numerical examples are provided to demonstrate the heterogeneously param-
eterized TMPC (HpTMPC) algorithm. It is shown how different choices in the heterogeneous
parameterization structure affect properties such as size of the DOA and computation time.
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5.5.1 Parameter-varying double integrator
In this example, the following LPV state-space (LPV-SS) representation is considered

x(k + 1) =

([
1 1
0 1

]
+

[
0.1 0
0 0.1

]
θ1(k)+[

0.5 0.5
0 0

]
θ2(k) +

[
0 0
0 0.2

]
θ3(k)

)
x(k) +

[
0.5
1

]
u(k)

with the constraint and scheduling sets given as

X =
{

x ∈ R2 �� ‖x‖∞ ≤ 6
}
,

U = {u ∈ R | |u| ≤ 1} ,

Θ =
{
θ ∈ R3 �� ‖θ‖∞ ≤ 1

}
.

The set Θ is a hypercube in 3 dimensions and therefore has 8 vertices.
The purpose of this example is to demonstrate the effect of changing the heterogeneous

parameterization structure. Therefore, all other design parameters are set to constant values
based on the following choices:

• The prediction horizon is set to N = 10.

• The scheduling tubes Θ ⊆ ΘN are constructed such that Θk = {{θ(k)},Θ, . . . ,Θ} for
all k. In this way, attention is focused on the effect of changing the heterogeneous
parameterization structure, and not on different possible ways of constructing a scheduling
tube.

• The tuning parameters were set to Q = I and R = 1.

• The terminal set Xf was computed to be 0.95-contractive with respect to a robust linear
time-invariant (LTI) terminal controller Kf(x, θ) = Kf x. This set was computed by
Algorithm 2.1 and is described by 10 vertices. The restriction to a robust LTI terminal
controller in this case yields a set Xf with a relatively small volume, but also with a
relatively low number of vertices. Furthermore, in this example, the relatively small
volume of the set allows to illustrate more clearly the effect of the tube parameterization
on the DOA of the resulting controllers.

• The maximal “worst-case” DOA is X0
N = Xmax

N (Θworst) where Θworst = {Θ, . . . ,Θ}
(see Section 3.4.4 for the definition of maximal DOA). This corresponds to the largest
possible DOA that can be achieved by any controller.

Now, three tube-based controllers based on different parameterization structures PN are
compared in terms of the achieved DOA and the number of required control DOFs:

Design 1 Homothetic tube with vertex controls, i.e., parameterization 3 from Table 5.1.
Identical to the controller developed in Section 3.5.
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Figure 5.2: Realized (estimated) DOAs for the three designs in Example 1. Here, X0
N =

Xmax
N (Θworst), whereas Xi

N is the DOA corresponding to Design i for i ∈ {1,2,3}.

DOA vol. DOF
Design 1 (homothetic, vertex controls) 12.5 1 + (N − 1)qθqs = 721
Design 2 (homothetic, simple controls) 7.51 N = 10
Design 3 (heterogeneous) 13.2

(
1 + qθ + q2

θ

)
+ 3qθqs + 4 = 317

Table 5.2: Comparison of the three designs in Example 1.

Design 2 Homothetic tube with “simple” control parametrization, namely parameterization 1
from Table 5.1.

Design 3 A heterogeneous design, consisting of a scenario three for the first 3 prediction time
instances, a homothetic tube with vertex control parameterization for the next 3 instances,
and a homothetic tube with the simple control parameterization 1 of Table 5.1 for the
remaining prediction steps.

It is noted that constructing a full scenario tree of length N = 10 for this system would be
intractable: the deepest level of the tree would have 810 ≈ 109 nodes.

The realized DOAs for the three designs were estimated using the method of Appendix B.2
and are displayed in Figure 5.2. These DOAs are all “worst-case” in the sense that they are
computed with respect to a scheduling tube Θworst = {Θ, . . . ,Θ}. The associated set volumes
and the number of control DOF are displayed in Table 5.2.

Example closed-loop trajectories for an initial state at which all the three designs are feasible
is shown in Figure 5.3, and the corresponding scheduling trajectory is depicted in Figure 5.4.
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Avg. time [ms] Max. time [ms]
Design 1 (homothetic, vertex controls) 55 69
Design 2 (homothetic, simple controls) 42 45
Design 3 (heterogeneous) 37 44

Table 5.3: Illustration of complexity: solver time per sample in the simulation of Example 1.

CPU Intel Core i7-4790 @ 3.60 GHz
Memory 8 GB
Operating system GNU/Linux 64-bit
MATLAB version 9.3.0.713579 (R2017b)
LP solver Gurobi 7.0.2

Table 5.4: Computer details.

For this initial state, the realized closed-loop inputs are slightly different, but the resulting state
trajectories are virtually indistinguishable. This confirms the idea that when a small feasible
set is sufficient, one could use a simple controller, but that more complex parameterizations
become necessary whenever the DOA is to be enlarged.
For further illustration of the resulting computational complexity of the different designs,

a summary of the computation times for the closed-loop simulations is given in Table 5.3.
Note that Design 2 has only 10 DOF, but that the complexity of the tube synthesis problem
is dominated by the number of constraints necessary to verify the tube set inclusions in that
case. The simulations were executed on a computer with the specifications listed in Table 5.4.
These figures (especially for Designs 2 and 3) could be further improved by optimizing
the linear program (LP) implementation of the tube synthesis problem: the straightforward
implementation that was used here, for instance, generates many redundant constraints when
using the simple control parameterizations 1 or 2 from Table 5.1.
As a closing remark, it is emphasized that the DOAs in this example were computed with

respect to all possible initial scheduling values θ ∈ Θ. For a specific measured initial scheduling
value θ(k), the tube synthesis might also be feasible for initial states outside of these domains.
Also, the scheduling tubes were constructed in a “worst-case” sense: whenever anticipative
knowledge is available to construct refined scheduling tubes Θ ⊆ ΘN , the size of the set of
stabilizable states can become larger.

5.5.2 Parameter-varying third-order system
In this example, a third-order system is considered. Its dynamics are described by the difference
equation

x(k + 1) = ©­«I + τ


0 1 0
−0.7θ1(k) −0.4 0.2

0 −0.3 −0.1θ2(k)

ª®¬ x(k) + τ

0
0
1

 u(k)
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Figure 5.3: Illustrative closed loop trajectories for Example 1.
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Figure 5.4: Used scheduling trajectory in Example 1.

and the constraint and scheduling sets are

X =
{

x ∈ R3 �� |x1 | ≤ 0.5, |x2 | ≤ 0.1, |x3 | ≤ 0.2
}
,

U = {u ∈ R | |u| ≤ 0.2} ,

Θ =
{
θ ∈ R2 �� θ1 ∈ [0.5,1.5], θ2 ∈ [0.8,1.2]

}
.

In the simulations that follow, the sampling time τ = 0.36 s was used. Similar to the previous
example, all design parameters except the parameterization structure are kept at constant values.
The following choices were made:

• The prediction horizon was set to N = 8.

• The scheduling tubes Θ ⊆ ΘN were constructed such that Θk = {{θ(k)},Θ, . . . ,Θ} for
all k. As in the previous example, this means that attention is focused on the effect of
changing the heterogeneous parameterization structure, and not on different possible
ways of constructing a scheduling tube.

• The tuning parameters were set to Q = I and R = 5.

• The terminal set Xf was computed—using Algorithm 2.1—to be 0.98-contractive with
respect to a robust LTI terminal controller Kf(x, θ) = Kf x. This set is described by 48
vertices and, equivalently, by 28 hyperplanes.

Now, similarly to the previous example, three tube-based controllers based on different
parameterization structures PN are compared in terms of the achieved DOA and the number of
required control DOFs:

Design 1 Homothetic tube with vertex controls, i.e., parameterization 3 from Table 5.1.
Identical to the controller developed in Section 3.5.
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Figure 5.5: Realized (estimated) DOAs for the three designs in Example 2: projection on
(x1, x2)-space.

DOA vol. DOF
Design 1 (homothetic, vertex controls) 3.13 · 10−3 1 + (N − 1)qθqs = 1345
Design 2 (homothetic, simple controls) 2.43 · 10−3 N = 8
Design 3 (heterogeneous) 3.23 · 10−3 (

1 + qθ + q2
θ

)
+ 4 = 25

Table 5.5: Comparison of the three designs in Example 2.

Design 2 Homothetic tube with “simple” control parametrization, namely parameterization 1
from Table 5.1.

Design 3 A heterogeneous design, consisting of a scenario three for the first 4 prediction time
instances, and a homothetic tube with the simple control parameterization 1 of Table 5.1
for the remaining prediction steps.

A projection on the (x1, x2)-space of the estimated DOAs realized by the three designs is
shown in Figure 5.5 (an attempt to plot the full three-dimensional sets would be illegible). For
this example, the DOAs were estimated using the method from Appendix B.3 with the point
set X̂init

N consisting of the vertices of a one-norm ball, an infinity-norm ball, and the terminal
set Xf . The corresponding DOA volumes and the number of control DOF are summarized in
Table 5.5. As in the previous example, an illustration of the computation times required to solve
the tube synthesis problems for the three different designs is given in Table 5.6. These times
were obtained by simulating the closed-loop system with an initial state x0 =

[
0.05 0 0

]>.
116



5.6 Concluding remarks

Avg. time [ms] Max. time [ms]
Design 1 (homothetic, vertex controls) 613 778
Design 2 (homothetic, simple controls) 310 342
Design 3 (heterogeneous) 317 360

Table 5.6: Illustration of complexity: solver time per sample in the simulation of Example 2.

As was remarked before, it should be possible to improve these figures by considering a more
optimized linear programming implementation.

5.6 Concluding remarks
An LPV MPC algorithm based on the construction of so-called heterogeneously parameterized
tubes was presented. In an HpT, different cross-section parameterizations can be combined
into a single tube. This adds an additional degree of freedom into the design, which can be
exploited to achieve different trade-offs between computational complexity and achievable
control performance: hence, this chapter has provided one possible affirmative answer to
Research Question Q3. A few directions for further research are suggested:

• One important question for further research is how heterogeneous parameterization
structures can be optimally designed. In the LTI case, the design of optimal move
blocking strategies that guarantee, e.g., a minimum size of the achieved DOA are
considered in (Gondhalekar and Imura 2010; Shekhar and Manzie 2015). It would be of
interest to investigate if similar design approaches can be exported to the heterogeneously
parameterized tube-setting.

• It would furthermore be interesting to consider also the implementation of various
cross section parameterizations next to the “scenario” and “homothetic” cases, such
as the “elastic” parameterization from (Raković et al. 2016b). Including the elastic
parameterization in the framework of Section 5.2, is straightforward. It must however be
investigated if the approximations that are necessary to render the elastic tube synthesis
convex, do not introduce possible violations of Lemma 5.1 in an implementation.

• Further improving the computational implementation of HpTMPC is also of interest.
For instance, one could eliminate redundant constraints or avoid the use of the vertex
representation for those cross sections that use a “simple” control parameterization like
u = c + Ke.
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Chapter 6

Reduced-complexity tube
parameterizations

In this chapter, an alternative tube parameterization design is proposed as a second answer to
Research Question Q3. The starting point of the design is a given set of initial conditions that

represents an inner-approximation of the desired domain of attraction (DOA) of the controller.
Then, an off-line procedure based on sparsity-inducing `1-optimization is used to determine—
one for each vertex of the initial condition set— a collection of tube parameterizations with
a reduced number of degrees of freedom (DOFs). The method is developed based on the
assumption that only the vertex representation of the sets that define the tube cross section shapes
is given: because this representation has to be available anyway to enable the synthesis of vertex
control policies, this avoids the need for computing equivalent hyperplane representations. On-
line, on the basis of the measured state and scheduling values, a complete tube parameterization
is constructed as the combination of a suitable selection from the parameterizations that were
computed off-line. It is shown that this construction leads to a DOA that is at least as large
as the set of initial states that was considered initially. As it is difficult to guarantee a-priori
recursive feasibility and closed-loop stability in a receding-horizon control (RHC) setting, a
decreasing-horizon control (DHC) algorithm that does possess these desirable properties is
presented. The achievable reduction in the number of decision variables is demonstrated on
two numerical examples.

6.1 Introduction

In the tube-based model predictive control (MPC) designs proposed in the previous chapters,
as well as in other existing methods in the literature, a certain tube parameterization is selected
and its effect on the domain of attraction of the resulting controller is evaluated a-posteriori.
With respect to MPC designs methods of the literature, the heterogeneous tubes from Chapter 5
introduced an extra degree of freedom in the design by allowing the tube parameterization to
be different along the prediction horizon. This heterogeneous parameterization is required to
be chosen—subject to conditions that guarantee recursive feasibility—by the control designer
before its effect on the DOA can be analyzed.

This chapter proposes an alternative, reversed, procedure. Instead of designing a parameteri-
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zation first and investigating its effect on the DOA afterwards, it is now proposed to first design
a set of initial conditions that corresponds the minimal desired DOA. Subsequently, an efficient
parameterization which leads to a controller that is guaranteed to be feasible on the given set is
computed by means of an off-line design procedure. This makes it possible to directly optimize
the trade-off between the computational complexity of the controller and the achieved DOA as
specified in terms of the initial condition set.

A well-known method for reducing the computational complexity of MPC is move blocking
(Cagienard et al. 2007). In move blocking, the number of control degrees of freedom is reduced
by requiring that control inputs are held constant for some parts–as described in terms of a
so-called blocking structure—of the prediction horizon. The work (Shekhar and Manzie 2015)
considers “optimal” design of move blocking structures. An off-line design method based
on mixed-integer programming is proposed, which aims to find the most efficient blocking
structure subject to the constraint that the DOA of the reduced-complexity controller contains a
desired set of initial conditions.

In (Oldewurtel et al. 2009), a blocking strategy to decrease the number of degrees of freedom
in the robust MPC of (Goulart et al. 2006) is proposed. As in (Goulart et al. 2006), the
on-line optimization is carried out over feedback policies that are affine functions of the past
disturbances. However, these feedback policies are now parameterized by a vector of decision
variables of reduced dimension and a blocking matrix. This blocking matrix is chosen by the
designer and determines the structure (e.g., diagonal) of the disturbance feedback matrices.
In (Oldewurtel et al. 2009), the word “blocking” does not mean that the control input is held
constant along several samples, but instead that the feedback policies are parameterized by a
vector of reduced dimension.

An alternative approach that aims to decrease the computational complexity of linear
time-invariant (LTI) MPC is given by (Jost et al. 2015b). Therein, a complexity reduction is
achieved not by eliminating degrees of freedom (i.e., decision variables), but by eliminating
redundant constraints. Based on a measurement of the current state, constraints that are known
to be redundant are removed from the on-line optimization problem. This method was extended
to tube-based MPC for additively disturbed LTI (LTI+) systems in (Jost et al. 2015a).
In this chapter, a method for reducing the computational complexity of tube-based linear

parameter-varying (LPV)MPC by eliminating unnecessary DOF from the tube parameterization
is proposed. The approach consists of two parts: an off-line design part, and an on-line part. In
the off-line design phase, a reduced-complexity parameterization that guarantees feasibility on
a specified set of initial conditions is computed. The set of initial conditions, which can be
chosen by the designer, is only subject to the constraint that it is contained inside the DOA
corresponding to a full-complexity tube-based MPC. By using reweighted `1-minimization,
it is determined how many degrees of freedom can be eliminated from the control problem
that is to be solved on-line, while still guaranteeing feasibility on the initial condition set. This
off-line part of the procedure requires the solution of a number of instances of modified version
of the tube MPC optimization problem itself, i.e., of a number of linear programs (LPs). The
end result is a collection of “sparse” parameterizations, each one corresponding to a single
vertex of the initial condition set.

On-line, based on the measured state and scheduling variable value, a tube parameterization
is obtained as a combination of a suitable selection from the parameterizations that were
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designed off-line. This combined parameterization is subsequently used in the solution of the
on-line tube synthesis problem. In contrast to the parameterizations from the previous chapters,
this sparse parameterization does not by construction guarantee recursive feasibility when used
in an RHC scheme. It is however possible to obtain a guaranteed recursively feasible controller
by considering a DHC approach.
The proposed approach from this chapter shares conceptual similarities with (Jost et al.

2015b; Oldewurtel et al. 2009; Shekhar and Manzie 2015). As in (Shekhar and Manzie 2015),
the purpose of the approach is to find an efficient parameterization that guarantees feasibility
on a designed initial condition set. However, the computational reduction is not achieved by
forcing control inputs to be constant along parts of the prediction horizon, but by employing a
reduced-complexity parameterization like (Oldewurtel et al. 2009). In (Oldewurtel et al. 2009),
this parameterization has to be chosen manually, but in this chapter a computational procedure
for designing the parameterization is proposed in the context of tube-based MPC for LPV
systems. Finally, the similarity between (Jost et al. 2015b) and the proposed approach is that
both approaches use a measurement of the current system state to construct the optimization
problem that is to be solved. In the case of (Jost et al. 2015b) this involves selecting which
constraints to eliminate, while in the approach of this chapter this involves constructing a
suitable state-dependent tube parameterization.

The remainder of this chapter is structured as follows. In Section 6.1.1, the problem setting
of this chapter is specified. Subsequently, Section 6.2 introduces some preliminary concepts
related to sparsity and reweighted `1-optimization. The reduced-complexity MPC algorithm is
described in Section 6.3. In Section 6.4, two numerical examples to demonstrate the reduction
in decision variables that can be achieved are given. Finally, the chapter ends with some
concluding remarks in Section 6.5.

6.1.1 Problem setting
This chapter considers a constrained polytopic LPV state-space (LPV-PSS) representation of
the system that is to be controlled, where similarly to Chapter 4, only the state transition matrix
A is parameter-varying, i.e.,

x(k + 1) = A(θ(k))x(k) + Bu(k). (6.1)

Again, the problem setting is identical to that of Problem 3.1, i.e., it is desired to design an
MPC such that the origin is a regionally asymptotically stable equilibrium for the closed-loop
system. In this chapter, a solution to this problem is proposed in terms of a tube-based LPV
MPC, which employs a tube parameterization that is optimized off-line such that it contains the
minimum DOF necessary to achieve feasibility on a selected set of initial conditions.
In this chapter, it is assumed that only the vertex representation of the shape sets that are

used to construct the tube are available. In the implementation of the previous chapters,
the vertex representation was used to enable the synthesis of vertex control policies, but
an equivalent half-space representation was employed to verify set inclusions. Because the
V-representation has to be available anyway if vertex policies are to be used, the requirement
that the H-representation is also known can be considered undesirable. This is especially true if
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a set is designed directly in V-representation with a fixed number of vertices using, for instance,
the method from Appendix A. Then, it may be the case that the set is represented by many
more hyperplanes than vertices, thus negating the benefit of designing a set with a low number
of vertices in the first place.

If there is no H-representation available, the LP formulation of Section 4.4.2 can not be used,
and therefore this chapter develops an alternative LP.

6.2 Preliminaries and reweighted `1-optimization
This section introduces a few preliminary concepts related to sparsity. These will be used later
in the development of the reduced-complexity tube MPC formulation.
The so-called `0-“norm” (which is, in fact, not a norm because it is not homogeneous) is

used to measure the number of non-zero elements in a vector:

Definition 6.1 (`0-“norm”). Let x ∈ Rn. The `0-“norm” ‖x‖0 equals the number of non-zero
elements in x.

Sometimes, ‖ · ‖0 is also called the “support” of a vector. The “sparsity pattern” of a vector
can be defined as follows.

Definition 6.2 (Sparsity pattern). For a vector x ∈ Rn, spar (x) ∈ {0,1}n is a vector containing
only zeros and ones, where the position of the ones corresponds to the positions of the nonzero
elements in x.

The following result, called Carathéodory’s theorem, is well-known in combinatorial
convexity:

Proposition 6.1 (Carathéodory’s theorem). (Schneider 2013a, Theorem 1.1.4) If V ⊂ Rn and
v ∈ convh{V}, then v is a convex combination of n + 1 or fewer points in V .

In particular, if V =
{
v̄1, . . . , v̄q

}
is the set of vertices defining a convex polytope P =

convh{V}, then v ∈ P if and only if there exists a vector λ ∈ Rq+ containing at most n + 1
non-zero elements such that 1>λ = 1 and

∑q
i=1 λi v̄

i = v. This means that if the inclusion v ∈ P
needs to be verified, it is in principle sufficient to solve a linear feasibility problem in n + 1
decision variables corresponding to the non-zero elements in λ ∈ Rq+. However, it is not known
a-priori which elements can be set to zero and which should be left as decision variables. In the
approach developed in this chapter, suitable sparsity patterns for vectors of convex multipliers
λ ∈ R

q
+ are going to be identified as part of the off-line tube parameterization design. As

suggested by Proposition 6.1, this can lead to a significant reduction in the number of decision
variables.

As the final preliminary, a reweighted `1-optimization algorithm is introduced. Let x ∈ Rn

and consider the set of linear (in)equalities

Aix ≤ bi,

Aex = be.
(6.2)
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The goal is to find a vector x which satisfies (6.2) and is sparse, i.e., contains relatively few
non-zero elements. Because minimizing ‖x‖0 directly is intractable, an approximation has to be
employed. It is well-known that minimizing the `1-norm of x, i.e., solving the linear program

x = arg min
x
‖x‖1 subject to (6.2) (6.3)

usually gives a sparse solution, though not necessarily the most sparse. To improve upon
the sparsity of the solutions obtained by (6.3), the reweighted `1-minimization algorithm was
introduced by (Candès et al. 2008) in the context of sparse signal reconstruction. It is shown in
Algorithm 6.1.

Algorithm 6.1 Reweighted `1-optimization (Candès et al. 2008).
Require: A set of linear (in)equalities (6.2), iteration limit kmax ∈ [1..∞), tolerance ε ∈ R+,

termination tolerance δ ∈ R+
1: k ← 1
2: For all i ∈ N[1,n], set w(1)i = 1
3: For all i ∈ N[1,n], set w(0)i = ∞ . Or large enough such that ‖w(1) − w(0)‖ > δ holds
4: while k < kmax and ‖w(k) − w(k−1)‖ > δ do
5: Solve x(k) = arg minx

∑n
i=1 w

(k)
i |xi | subject to (6.2)

6: For all i ∈ N[1,n], set w(k+1)
i = 1

|x
(k)
i |+ε

7: k ← k + 1
8: end while

In Algorithm 6.1, ε should be set to a small value (e.g., ε = 10−6). The termination tolerance
δ is used to terminate the algorithm whenever the values of the weights converge. By applying
this iterative algorithm, sparser solutions to (6.2) than those returned by (6.3) are typically
obtained. Although there is no a-priori convergence guarantee, it was observed in (Candès et al.
2008) that the algorithm usually needs only a few iterations to converge to a sparse solution of
(6.2).

6.3 The reduced-complexity TMPC algorithm

In this section, the reduced-complexity LPV MPC algorithm is presented. Section 6.3.1
introduces the concept of sparsily parameterized tubes (SpTs), which is central to the developed
approach. An LP formulation of the tube synthesis problem is developed in Section 6.3.2. The
design of a “sparse” tube parameterization that guarantees feasibility on an assigned set of
initial conditions consists of two parts: an off-line part and an on-line part. The off-line design
procedure is discussed in Section 6.3.3, and the on-line part of the algorithm is presented in
Section 6.3.4. Finally, in Section 6.3.5, the complete algorithm is summarized and its main
properties are proven.
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6.3.1 Sparsely parameterized tubes
In this section, first, the concept of a sparsily parameterized tube (SpT) is introduced. The
resulting SpT tube synthesis problem, which will be at the core of the MPC strategy proposed
in this chapter, is specified.

Definition 6.3. Let T be a tube according to Definition 3.4. For all i ∈ N[0,N ], introduce
parameter sets P(i) = Px(i) × Pk(i) × Pλ(i). A tube T is called a sparsily parameterized tube
(SpT) if it satisfies the following conditions:

(i) For all i ∈ N[0,N ] there is a function Px (·|i) : Px(i) → Rnx and there exists a parameter
px
i ∈ P

x(i) such that Xi = Px (px
i |i

)
.

(ii) For all i ∈ N[0,N−1] there is a second-order function Pk (·|i) : Pk(i) →
(
Xi × Θi → U

)
and there exists a parameter pk

i ∈ P
k(i) such that Ki = Pk (pk

i |i
)
.

(iii) For all i ∈ N[0,N−1] and for all x ∈ I(Xi,Θi |Ki) there exists a vector pλi ∈ P
λ(i) satisfying

pλi ∈ Convm(x |Xi+1).

Further, define the shorthand P(p|i) =
(
Px (px |i

)
,Pk (pk |i

) )
where p =

(
px, pk, pλ

)
.

The SpTs of Definition 6.3 look similar to the heterogeneously parameterized tubes (HpTs)
of Definition 5.1. The main difference is that in Definition 6.3 the convex multipliers that are
necessary to verify the tube inclusions I(Xi,Θi |Ki) ⊆ Xi+1 are also considered to be part of
the tube parameterization, as described in terms of the sets Pλ(·) (see Definition 2.1 for the
definition of Convm(·|·)). Although in Definition 6.3 a requirement on “sparsity” is not yet
imposed, the name SpT is motivated by the specific approach that is developed in this chapter
to design the parameterization structure

PN =
{
(P(0),P(·|0)) , . . . , (P(N),P(·|N))

}
. (6.4)

In particular, sparsity-promoting `1-optimization will be employed to determine which DOF can
be removed from (6.4) when compared to a given full-complexity parameterization structure
(this full-complexity or “dense” structure is introduced later in Section 6.3.2).

Similarly to Chapter 5, the set of feasible tubes is denoted by

TN (x,Θ|PN ) = {T | T satisfies Def. 5.1 with X0 = {x} and XN ⊆ Xf} (6.5)

the tube synthesis problem by

V (x,Θ|PN ) = min
T

JN (T,Θ) subject to T ∈ TN (x,Θ|PN ) , (6.6)

and the corresponding DOA by

XN (Θ|PN ) = {x ∈ X |TN (x,Θ|PN ) , ∅} . (6.7)

In this chapter, the focus is on the design of a computationally efficient parameterization
structure (6.4), such that the resulting controller achieves a DOA (6.7) that is guaranteed to

124



6.3 The reduced-complexity TMPC algorithm

contain a desired set of initial states X0. The issues of recursive feasibility and closed-loop
asymptotic stability whenever the controller is executed in an RHC fashion are not considered
in this chapter. Therefore, the selection of the cost function JN (·, ·, ·) in (5.2) is not constrained
by stability considerations. It is however suggested to use the cost function from Section 3.4.5
with the terminal cost from Chapter 4.

It is furthermore assumed that the terminal set Xf is controlled λ-contractive for the system
(6.1) in the sense of Definition 2.13. In the absence of recursive feasibility and stability
guarantees in the RHC setting, this property can be exploited to easily obtain a stabilizing DHC
implementation instead, as shown later in Section 6.3.5.

6.3.2 Dense parameterization and LP formulation
In this section, an LP that solves (6.6) is derived. To make this possible, it is first necessary to
define a concrete parameterization structure PN . The tube cross sections are parameterized in
the familiar homothetic manner, i.e., there holds

px
i = (αi, zi) ∈ P

x
(i),

P
x
(i) = R+ × Rnx,

P
x (

px
i

��i) = zi ⊕ αiS,

(6.8)

where S is a polytopic PC-set specified in V-representation as

S = convh
{
s̄1
i , . . . , s̄

qs
i

}
. (6.9)

An augmented control parameterization is defined as

pk
i =

(
ūi,u

(1,1)
i , . . . ,u(qs ,1)

i , . . . ,u(qs ,qθ )
i

)
∈ P

k
(i),

P
k
(i) = R(qθqs+1)nu,

P
k (

pk
i

��i) = ūi + Kf (· − zi, ·) + vertpol
(
pk
i

��Xi,Θi

)
(·, ·),

(6.10)

where Kf : S × Θ → U is a pre-designed CH1 control law and ūi are “nominal” control
actions to be optimized. This augmented policy does not affect the DOA with respect to a
standard gain-scheduled vertex control policy. Therefore, at first sight, the addition of the
additional control input ūi and the local controller Kf can seem unnecessary. The purpose of
this augmented policy is to aid the off-line parameterization design in its capability to remove
as many of the degrees of freedom u(j ,l)i that define the vertex policy vertpol(·|·, ·) as possible,
while still retaining feasibility on the desired set of initial conditions.

In Definition 6.3, the convex multipliers necessary to verify the tube set inclusions if
only the vertex representation (6.9) is available, are also considered to be part of the tube
parameterization. For now, the following full parameterization for the convex multipliers is
used:

pλi =
(
λ
(1,1)
i , . . . , λ

(qs ,1)
i , . . . , λ

(qs ,qθ )
i

)
∈ P

λ
(i),

P
λ
(i) = Rqθq

2
s

+ .

(6.11)
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Chapter 6 Reduced-complexity tube parameterizations

The tube parameterization structure as defined by (6.8), (6.10), and (6.11) will be referred
to as the “dense” structure and will be denoted by PN . At first sight, the dependence of(
P

x
(·),P

k
(·),P

λ
(·)

)
on i seems unnecessary. However, in the off-line design procedure, a

time-dependent sparse parameterization will be computed based on the time-invariant dense
parameterization defined above: therefore, for consistency with later developments, the
time-dependence is kept in the notation.

A construction of the optimization problem (6.6) and the corresponding number of variables
and constraints is now provided along the same line as in Section 4.4.2, but using the
parameterization structurePN and using only the vertex representation (6.9). The cost function
is omitted from the formulation presented here for the sake of simplicity, but the cost function
of Section 3.4.5 can be included according to the construction in Section 4.4.2.

Cross section parameterization According to (6.8), each tube cross section is characterized
by a scaling αi ∈ R+ and a center zi ∈ Rnx . As there are N + 1 cross sections in the tube
(counting X0 up to and including XN ), this introduces (N + 1)(1 + nx) decision variables.
Furthermore, the scalings must be non-negative, leading to the N + 1 inequality constraints

∀i ∈ [0..N] : αi ≥ 0. (6.12)

Control parameterization At each prediction time instant i ∈ [0..N−1], the parameterization
(6.10) consists of qsqθ + 1 control actions, i.e., nu(qsqθ + 1) decision variables. Thus the
control parameterization introduces a total of N(nuqsqθ + 1) variables. However, because of
the constraint X0 = {x} and the availability of the measurement θ(k) all control actions for
i = 0 are equal. Thus the number of introduced decision variables can be slightly reduced to
nu + (N − 1)(nuqsqθ + 1).

Initial condition constraint The constraint X0 = {x} in (6.5) is implemented by nx + 1
equality constraints

z0 = x,

α0 = 0.
(6.13)

Tube dynamics constraints The transition constraints I(Xi,Θi |Ki) ⊆ Xi+1 from Defi-
nition 3.4 are equivalent to the existence of convex multipliers λ(j ,l)i ∈ R

qs
+ , that for all

(i, j, l) ∈ [0..N − 1] × [1..qs] × [1..qθ ] satisfy the conditions

qs∑
t=1

[
λ
(j ,l)
i

]
t

s̄t = A(θ̄l)
(
zi + αi s̄ j

)
+ B

(
ūi + αiKf(s̄ j, θ̄l) + u(j ,l)i

)
− zi+1,

1>λ(j ,l)i ≤ αi+1,

(6.14)

which amount to Nqsqθnx equality constraints and Nqsqθ inequalities. Furthermore, the convex
multipliers λ(j ,l)i ∈ R

qs
+ correspond to Nq2

s qθ decision variables.
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6.3 The reduced-complexity TMPC algorithm

State constraints The state constraints I(Xi,Θi |Ki) ⊆ X in Definition 3.4 can be expressed
by Nrxqsqθ linear inequalities

∀i ∈ [0..N − 1] : ∀( j, l) ∈ [1..qs] × [1..qθ ] :

Hx

(
A

(
θ̄li

) (
zi + αi s̄ j

)
+ B

(
ūi + αiKf(s̄ j, θ̄l) + u(j ,l)i

))
≤ 1. (6.15)

Input constraints The input constraints are realized by Nruqsqθ linear inequalities

∀i ∈ [0..N − 1] : ∀( j, l) ∈ [1..qs] × [1..qθ ] : Hu

(
ūi + αiKf(s̄ j, θ̄l) + u(j ,l)i

)
≤ 1. (6.16)

Terminal constraint The terminal constraint XN ⊆ Xf is equivalent to the condition that for
all j ∈ N[1,qs ], there exist multipliers η j ∈ Rqs

+ and a γ ∈ R+ such that

qs∑
t=1

[
η j

]
t

s̄t = zN + αN s̄ j,

1>η j ≤ γ,
η j ≥ 0,
0 ≤ γ ≤ 1,

(6.17)

which correspond to nxqs equalities and qs(1 + qs) + 2 inequalities. Furthermore, the convex
multipliers η j and the scaling γ correspond to q2

s + 1 decision variables.

The total LP Given the above constructions, the total LP to be solved-online becomes

V
(
x,Θ

���PN

)
= min

d
JN (d) subject to (6.12)–(6.17) (6.18)

with the decision variable d being the collection of all the variables introduced above, and
possible additional slack variables to realize the cost function JN (d) = JN (T) along the same
lines as in Section 4.4.2. Summing up the numbers of decision variables nd, equality constraints
neq, and inequality constraints nineq given above for each sub-part of the problem (excluding, as
stated before, the cost function for simplicity) yields

nd = (N + 1)(1 + nx) + nu + (N − 1)(nuqsqθ + 1) + Nq2
s qθ + q2

s + 1
= O(N),

neq = nx + 1 + Nqsqθnx + nxqs

= O(N),

nineq = N + 1 + Nqsqθ + Nrxqsqθ + Nruqsqθ + qs(1 + qs) + 2
= O(N).
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Chapter 6 Reduced-complexity tube parameterizations

It can be observed that the dominant component of nd is

(N − 1)(nuqsqθ + 1) + Nq2
s qθ (6.19)

which corresponds to the number of control actions in the augmented parameterization (6.10)
and to the convex multipliers in (6.11) necessary to verify the tube dynamics constraints. In
order to improve the computational complexity of the tube synthesis problem (6.6), decreasing
this term would be most beneficial. Indeed, the approach developed in the next section is aimed
at decreasing this number.

6.3.3 Off-line parameterization design

The purpose of the proposed design is to determine a parameterization structure PN that
corresponds to a reduced number of DOF with respect to the “dense” parameterization
introduced previously, under the condition that for all Θ ⊆ ΘN , there holds X0 ⊆ XN (Θ|PN )

where X0 ⊆ X is an initial condition set that can be selected by the user. In this section, the
off-line part of this design procedure is discussed. First, the requirements on X0 are given, and
a way of selecting X0 is proposed. Then, as the main step in the off-line part of the design,
reweighted `1-optimization is employed to determine sparsity patterns indicating which DOF
can be eliminated from the tube parameterization without affecting feasibility on X0. Later, in
the on-line part of the algorithm that is described in the next section, these patterns will be
combined into the final parameterization structure based on measurements of the state and
scheduling variable values.
The requirements on the design of the initial condition set X0 are that

(i) It must be a polytopic PC-set;

(ii) It must not be larger than the DOA achieved using the dense structurePN , i.e., there must
hold X0 ⊆ XN

(
Θ

���PN

)
.

A simple approach for the design of the set X0 such that these conditions are always satisfied,
based on the scaling of a fixed “initial condition shape”-set, is proposed next. Let a polytopic
PC-set X̂0 ⊂ R

nx be given as

X̂0 = convh
{

x̂1
0, . . . , x̂

q0
0

}
. (6.20)

Reasonable choices that can be made for X̂0 are e.g., the terminal set, the unit cube- or rhombus,
or a combination of these. For all i ∈ N[1,q0], solve the optimization problems

βi = max
β

β subject to TN

(
β x̂i0,Θ

N
��PN

)
, ∅ (6.21)

and compute the initial condition set X0 as

X0 = X ∩ convh
{
β1 x̂1

0, . . . , βq0 x̂q0
0

}
:= convh

{
x̄1

0, . . . , x̄
q0
0

}
. (6.22)
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6.3 The reduced-complexity TMPC algorithm

Note that the maximization in (6.21) can be formulated as an LP simply by replacing the
constraint (6.13) with

z0 = β x̂ j
0 . (6.23)

Once an initial condition set X0 has been determined, a computationally efficient parame-
terization structure that guarantees initial feasibility on this set can be determined. For the
subsequent developments, it is convenient to partition the tube parameters and the corresponding
parameter sets as pi = (p1

i , p
2
i ) and P(i) =

(
P1(i),P2(i)

)
where

p1
i =

(
pk
i , p

λ
i

)
, P1(i) =

(
Pk(i),Pλ(i)

)
,

p2
i = px

i , P2(i) = Px(i).
(6.24)

Furthermore, for a tube of length N , let all the corresponding tube parameters be denoted as

p1 =
(
p1

0, . . . , p
1
N−1

)
, p2 =

(
p2

0, . . . , p
2
N

)
, p =

(
p1,p2

)
, (6.25)

and let T(p) denote the tube that is parameterized by the parameters collected in p.
In the partitioning introduced in (6.24)–(6.25), the parameters in p1 correspond to DOF that

will possibly be eliminated from the sparse tube parameterization structure that is going to be
designed. The parameters in p2 are not included in the design, and therefore these parameters
will be the same in both the “dense” structure and in the sparse structure.

The parameterization design proceeds as follows. Define Θ(θ) = {{θ},Θ, . . . ,Θ} ⊆ ΘN .
Given the set X0 which was designed previously, for all (i, j) ∈ N[1,q0] ×N[1,q] the optimization
problems

psp

(
x̄i0, θ̄

j
)
= arg min

p
‖p1‖0 subject to T (p) ∈ TN

(
x̄i0,Θ

(
θ̄ j

)���PN

)
(6.26)

are approximately solved using the reweighted `1-minimization described in Algorithm 6.1.
Each iteration in the reweighted `1-minimization algorithm requires the solution of one LP.With
respect to (6.18), minimizing the `1-norm of p1 only requires the introduction of slack variables
corresponding to the absolute values of the respective parameters. If kmax is the maximum
number of iterations of the reweighted algorithm, then this part of the design procedure requires
solving at most kmaxq0q LPs, where the size of each LP is approximately the same as that of
the tube synthesis problem with the parameterization structure PN .
After solving all problems, the resulting sparsity patterns

spar
(
p1

sp

(
x̄i0, θ̄

j
))
, (i, j) ∈ N[1,q0] × N[1,q] (6.27)

are stored. In the on-line part of the algorithm, which is described in the next subsection, these
stored patterns are used to construct the final tube parameterization that is used in solving (6.6)
based on the measured state and scheduling values.

It is noted that reweighted `1-optimization is not the only possible approach that can be used
to obtain sparse approximate solutions to (6.26). Other methods that can be considered are,
e.g., Lasso and Non-negative garrotte (NNG) (Tibshirani 1996; Yuan and Lin 2007).
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Chapter 6 Reduced-complexity tube parameterizations

6.3.4 On-line parameterization construction

In this section, the on-line part of the algorithm is presented. On-line, at each sampling instance,
a measurement (x, θ) is obtained. Then, the patterns (6.27) that were designed off-line are
combined to form one final parameterization structure such that the tube synthesis problem is
feasible for the measured state and scheduling values.

To construct this parameterization, the first step is to find multipliers ξ ∈ Rq0
+ to certify that

x ∈ βX0 for some β ≥ 0, and convex multipliers ζ ∈ Rq+ proving that θ ∈ Θ. This is done by
solving the two small LPs

ξ(x) = arg min
ξ ∈R

q0
+

{
‖ξ‖1

����� q0∑
i=1

ξi x̄i0 = x

}
, (6.28a)

ζ(θ) = arg min
ζ ∈R

q
+

{
‖ζ ‖1

����� q∑
i=1

ζi θ̄
i = θ, ‖ζ ‖1 = 1

}
. (6.28b)

Note that because X0 is PC, if x ∈ X0, then the solution of (6.28a) satisfies ‖ξ‖1 ≤ 1.
Furthermore, the solution is sparse due to 1-norm objective, and typically does not contain
more than nx + 1 non-zeros in agreement with Proposition 6.1. The condition ‖ξ‖1 ≤ 1 is not
included as a constraint, because it allows to also consider the case that x , X0 (equivalently,
x ∈ βX0 for some β > 1). This allows the construction of a parameterization also for initial
states x < X0, thus possibly rendering the DOA of the controller larger than X0.

The formulation of problem (6.28b) seems counterintuitive, because it is asked to “minimize”
‖ζ ‖1 under the constraint that ‖ζ ‖ = 1. However, by formulating the problem in this way as
an LP, in practice typically a sparse solution having at most nθ + 1 non-zeros—according
to Proposition 6.1—is obtained. In (6.28b), the equality ‖ζ ‖1 = 1 must be used instead of
‖ζ ‖ ≤ 1 because Θ is not necessarily a PC-set.
Note that the sparsity of the solutions (6.28a)–(6.28a) could possibly be further improved by

employing reweighted `1-minimization here as well. This is not further pursued here.
The next step is to construct the sets of indices

Iξ (x) = {i ∈ N[1,q0] | ξi(x) , 0},
Iζ (θ) = {i ∈ N[1,qθ ] | ζi(θ) , 0},

(6.29)

corresponding to the locations of the non-zero multipliers in ξ(x) and ζ(θ), and to compute the
combined sparsity patterns

∀i ∈ [0..N − 1] : SPARi(x, θ) =
∨

r ∈Iξ (x)

∨
s∈Iζ (θ)

spar
(
p1
i

(
x̄r0 , θ̄

s ) ) (6.30)

where the patterns spar
(
p1
i

(
x̄r0 , θ̄

s
) )

are extracted from the off-line designed patterns (6.27)
according to the partitioning of (6.25). The element-wise disjunction operator ∨ is defined as
follows:
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6.3 The reduced-complexity TMPC algorithm

Definition 6.4 (Element-wise disjunction). Let x ∈ {0,1}n and y ∈ {0,1}n be vectors. Then,
x ∨ y = z ∈ {0,1}n is defined as

∀i ∈ N[1,n] : zi =

{
1, xi = 1 or yi = 1,
0, otherwise.

Based on (6.30), the final sparse tube parameterization that will be used in solving the
tube synthesis problem (6.6) can be defined. First, construct the sets of tube parameters
corresponding to the patterns SPARi(x, θ) as

P1(i |x, θ) =
{
p1 ∈ P(i)

��� spar
(
p1

)
≤ SPARi(x, θ)

}
. (6.31)

This leads to the initial state- and scheduling-dependent parameterization structure

PN (x, θ) =
{(
P(0|x, θ),P(·|0)

)
, . . . ,

(
P(N − 1|x, θ),P(·|N − 1)

)
,
(
P(N),P(·|N)

)}
(6.32)

where P(i |x, θ) = P1(i |x, θ) × P2(i).
Finally, the on-line tube synthesis problem is constructed as in (6.6), given the parameter-

ization structure PN (x, θ) of (6.32). Decision variables that correspond to parameters that
are identically zero in the structure PN (x, θ) can be directly eliminated from the optimization
problem, resulting in reduced computational complexity of the proposed method.

6.3.5 Main result
The full algorithm, consisting of both the on- and off-line parts described in the preceding
sections, is summarized in Algorithm 6.2. In Algorithm 6.2, Step 4 involves the solution of
two small LPs, and Step 9 requires the solution of one larger LP. The tube synthesis problem as
solved in Step 9 is guaranteed to be feasible for all the initial states on the designed set X0 and
for all measured scheduling variable values in the set Θ, as stated in the next theorem.

Theorem 6.1. The tube synthesis problem (6.6), given the parameterization structure (6.32),
is feasible for all initial conditions (x, θ) ∈ X0 × Θ. That is, for all (x, θ) ∈ X0 × Θ,
TN (x,Θ(θ)|PN (x, θ)) , ∅, where Θ(θ) = {{θ},Θ, . . . ,Θ} ⊆ ΘN .

Proof. Recall the vertex representations X0 = convh
{

x̄1
0, . . . , x̄

q0
0

}
andΘ =

{
θ̄1, . . . , θ̄qθ

}
. Sup-

pose that (x, θ) ∈ X0×Θ. The construction of Steps 4–6 of Algorithm 8.1 yields a tube synthesis
problem that is feasible for every initial point (x̄, θ̄) ∈ F =

{(
x̄i, θ̄ j

)
| i ∈ Iξ (x) , j ∈ Iζ (θ)

}
.

In other words, ∀(x̄, θ̄) ∈ F : TN (x, θ |PN (x, θ)) , ∅. Because (6.6) is an LP, this implies
feasibility on convh {F} as well. By construction, (x, θ) ∈ convh {F} and therefore (6.6) is
feasible for any (x, θ) ∈ X0 × Θ. �

The sparse parameterization structurePN (x, θ) guarantees initial feasibility on X0 ×Θ, but it
does not by construction lead to guaranteed recursive feasibility. Based on the assumption that
the terminal set Xf is controlled λ-contractive, it is however possible to formulate a DHC variant
of Algorithm 6.2 that does possess the desirable properties of guaranteed recursive feasibility
and regional asymptotic stability. This DHC modification is summarized in Algorithm 6.3 and
its properties are summarized in the following Theorem.
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Algorithm 6.2 RHC sparsely parameterized TMPC.
Require: N ∈ [1,∞) and an initial condition set X0 ⊆ X

Off-line part
1: Compute the patterns spar

(
p1

sp

(
x̄i0, θ̄

j
))
, (i, j) ∈ N[1,q0] × N[1,q] as described in Sec-

tion 6.3.3
On-line part

2: k ← 0
3: loop
4: Find ξ (x(k)) and ζ (θ(k)) by solving (6.28a)-(6.28b)
5: For all i ∈ [0..N − 1], compute SPARi(x(k), θ(k)) according to (6.30)
6: Construct PN (k) := PN (x(k), θ(k)) according to (6.32)
7: Construct Θk =

{
{θ(k)},

{
Θi |k

}N−1
i=1

}
⊆ ΘN such that Θk v Θk−1

8: if TN (x(k),Θk |PN (k)) , ∅ then
9: Solve (6.6) to obtain T? ∈ TN (x(k),Θk |PN (k))
10: Apply u(k) = K?

0 (x(k), θ(k)) = u?0 to the system (6.1)
11: k ← k + 1
12: else
13: abort
14: end if
15: end loop

Theorem 6.2. Suppose that the terminal set Xf is controlled λ-contractive in the sense of
Definition 2.13 with Kf : Xf × Θ→ U being the corresponding local controller. Furthermore,
let Θ =

{
{θ},

{
Θi

}N−1
i=1

}
⊆ ΘN and Θ+ =

{
Θ+i

}N−1
i=0 ⊆ Θ

N be two scheduling tubes satisfying
Θ+ v Θ. Then, the DHC Algorithm 6.3 satisfies the following properties:

(i) It is recursively feasible, i.e., if ∃T ∈ TN (x,Θ|PN ), then ∃T+ ∈ TN−1
(
x+,Θ+

��P+
N−1

)
where x+ = A(θ)x + BK0(x, θ) and where P+

N−1 is constructed as in Step 12 of Algo-
rithm 6.3.

(ii) The state of the controlled system reaches Xf in N steps or less, i.e., ∃k? ∈ N[0,N ] such
that ∀k ≥ k? : x(k) ∈ Xf .

(iii) The origin of (8.1) is regionally asymptotically stabilized in the sense of Definition 2.8.

Proof of (i). Recall that the tube T ∈ TN (x,Θ|PN (k)) synthesized at time k is

T = ({{x},X1, . . . ,XN } , {K0, . . . ,KN−1})

with XN ⊆ Xf . Then, at time k + 1, the length of the synthesized tube is reduced to N − 1.
Therefore, and because Θ+ v Θ and x+ ∈ X1, a successor tube can be constructed as

T+ =
({{

x+
}
,X2, . . . ,XN

}
, {K1, . . . ,KN−1}

)
.
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Algorithm 6.3 DHC sparsely parameterized TMPC.
Require: N ∈ [1,∞) and an initial condition set X0 ⊆ X

Off-line part
1: Compute the patterns spar

(
p1

sp

(
x̄i0, θ̄

j
))
, (i, j) ∈ N[1,q0] × N[1,q] as described in Sec-

tion 6.3.3
On-line part

2: k ← 0
3: Find ξ (x(k)) and ζ (θ(k)) by solving (6.28a)-(6.28b)
4: For all i ∈ [0..N − 1], compute SPARi(x(k), θ(k)) according to (6.30)
5: Construct PN (k) := PN (x(k), θ(k)) according to (6.32)
6: loop
7: if N > 0 then
8: Construct Θk =

{
{θ(k)},

{
Θi |k

}N−1
i=1

}
⊆ ΘN such that Θk v Θk−1

9: if TN (x(k),Θk |PN (k)) , ∅ then
10: Solve (6.6) to obtain T? ∈ TN (x(k),Θk |PN (k))
11: Apply u(k) = K?

0 (x(k), θ(k)) = u?0 to the system (6.1)
12: PN−1(k + 1) ← {(P(1),P(·|1)) , . . . , (P(N),P(·|N))}
13: N ← N − 1
14: else
15: abort
16: end if
17: else
18: Apply u(k) = Kf (x(k), θ(k)) to the system (6.1)
19: end if
20: k ← k + 1
21: end loop
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By its construction, the tube T+ can be parameterized in the shifted parameterization structure
P+

N−1, i.e., T+ ∈ TN−1
(
x+,Θ+

��P+
N−1

)
. Observe that this result is independent of how the

parameterization structure PN was chosen initially.
Proof of (ii). Given the property of recursive feasibility, finite-time convergence to Xf is
guaranteed by the fact that at every time instant the last cross section of the constructed tube is
inside Xf . Eventually the length of the tube is reduced to 1, which implies that after at most N
steps the initial state of the closed-loop system is in Xf as well.
Proof of (iii). After N time steps, once the state of the controlled system has reached Xf ,
asymptotic convergence of the state to the origin is ensured by the local controller Kf(·, ·). �

6.4 Numerical examples
The purpose of this section is to demonstrate the computational properties of the proposed
method on two different example systems. For each considered system, the following sets are
calculated:

• The terminal set Xf . Specific details of how this set is calculated are discussed for each
example.

• The initial state set X0 is computed according to the procedure of (6.20)–(6.22), starting
with X̂0 = Xf .

• The controlled invariant set Xmax
N (ΘN ) is computed using the iterative approach of

Algorithm 2.1.

• An approximate domain of attractionXdense
N =XN (Θ

N |PN ) is calculated for the full
complexity controller (i.e., a controller using the dense structure defined by (6.8), (6.10),
and (6.11)). The approximation is computed according to the procedure of Appendix B.3
with the initial set X̂init

N being equal to the union of the vertices of Xf ,Xmax
N (ΘN ) and X.

• An approximate domain of attractionXred
N =XN (Θ

N |PN (·, ·)) of the reduced complexity
controller (i.e., a controller using the sparse parameterization (6.32) proposed in this
chapter) is obtained by using again the method of Appendix B.3. The choice for X̂init

N is
the same as for the computation of Xdense

N .

After the design has been carried out, the computational performance is verified by solving
the tube synthesis problem for randomly generated samples (x, θ) fromXred

N ×Θ. Details of the
computer used for this simulation study are displayed in Table 6.1. The computation times for
solving the LPs as reported by the solver are shown (Gurobi Optimization 2017). In case of the
reduced-complexity controllers, the time needed for solving (6.28a)-(6.28b) is also included.

In order to investigate the computational properties of the proposedmethod, the tube synthesis
problems are solved using different LP algorithms that are implemented in the solver: dual
simplex, primal simplex, interior point (barrier), and automatic. In the automatic case the
solver decides which one of the three methods to use based on its own analysis of the problem.
The small LPs (6.28) are always solved using the automatic setting.
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6.4 Numerical examples

CPU Intel Core i7-4790 @ 3.60 GHz
Memory 8 GB
Operating system GNU/Linux 64-bit
MATLAB version 9.3.0.713579 (R2017b)
LP solver Gurobi 7.0.2

Table 6.1: Computer details.

Xf Xmax
N X̂dense

N X̂red
N

Volume 2.747 14.79 13.87 13.72

Table 6.2: Example 1: set volumes.

6.4.1 Numerical example 1: second-order system
Consider the system from (Casavola et al. 2012)

x(k + 1) =
( [

2 −0.1
0.5 1

]
θ1(k) +

[
1 0.1

2.5 1

]
θ2(k)

)
x(k) +

[
1
−0.3

]
u(k),

with the corresponding scheduling and constraint sets given by

Θ = convh
{[

1
0

]
,

[
0
1

]}
,

U = {u ∈ R | |u| ≤ 1} ,

X =
{

x ∈ R2 �� |x1 | ≤ 1, |x2 | ≤ 5
}
.

A 0.90-contractive terminal set with the specified fixed complexity of 10 vertices was
computed using the method of Appendix A. The prediction horizon is set to N = 6.
The sets shown in Figure 6.1 were computed as explained before in the introduction of

Section 6.4. It is observed that, as expected, the DOA X̂red
N for the reduced-complexity

controller is larger than X0, but slightly smaller than the DOA X̂dense
N of the full-complexity

controller. The corresponding set volumes are shown in Table 6.2.
In Table 6.3, the achieved reduction in decision variables in the tube synthesis problem

with respect to the dense parameterization structure PN is shown. The number of DOF
refers to the vertex control actions and convex multipliers that are possibly eliminated from
the sparse reduced-complexity parameterization structure, whereas the total number nd of
decision variables in the tube synthesis problem is slightly higher because this also includes the
parameters p2 that are not eliminated by the sparse parameterization design (e.g., the centers
and scalings of the tube cross sections). The “simulated worst”-column shows the greatest
number of decision variables that resulted when solving the tube synthesis problem for 125
randomly generated initial states and scheduling values. In addition, the column “guaranteed
worst” in Table 6.3 lists the number of variables that would result when combining all the
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-1 -0.5 0 0.5 1

-5

0

5

Figure 6.1: Example 1: computed sets.
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6.4 Numerical examples

Dense Reduced Reduced
(simulated worst) (guaranteed worst)

Vertex control actions u(j ,l)i 100 99 100
Nominal control actions ūi 1 6 6
Convex multipliers 1110 301 462

Total DOF 1211 406 562
Ratio DOF 1 0.34 0.46

Total nd 1251 441 603
Ratio nd 1 0.35 0.48

Total neq 224 224 224
Total nineq 1128 1128 1128

Table 6.3: Example 1: complexity of the tube synthesis problems.

patterns that were discovered in the design phase. This gives an obvious but pessimistic upper
bound on the maximum complexity that can possibly occur in practice. The amount of equality
and inequality constraints (neq and nineq) in the tube synthesis problem, which is not affected
by the sparse design, is also shown.
In this example, by applying the sparse parameterization, the number of decision variables

could be reduced from 1251 to 441. That is, the number of decision variable in the tube
synthesis problem when using the sparse parameterization is approximately 35% of the number
of variables when using the “dense” parameterization. It is noted that almost the full reduction
in the number of variables in this case results from the elimination of unnecessary convex
multipliers. Furthermore, it is worth noting that by using the sparse parameterization the
number of variables in the tube synthesis problem is always guaranteed to be reduced to at
most 48% of its original value.

The effect of the reduction of decision variables on the computation time was investigated by
solving the tube synthesis problem for 125 random initial state and scheduling values sampled
from X̂red × Θ. The performance of three different LP algorithms implemented in the Gurobi
solver is compared as explained in the introduction to this section. The computational results
are visualized in Figure 6.2 by means of box plots. In these plots, the bottom and top of the box
respectively indicate the 25th and 75th percentiles of the measured computation times (i.e., 25%
of the measured times are below the lower edge of the box, and 75% of the measured times are
below the top edge of the box). A line inside of each box indicates the median. The lines that
extend from the bottom and top of the boxes indicate the full range of the measured computation
times, but excluding times that are considered to be outliers. Outliers (i.e., unusually high or
low computation times) are depicted by the “+”-symbol.
On this problem, the dual simplex method shows the best performance both in the dense-

and reduced-complexity cases. A concise summary of the computation times for the dual
simplex-case is given in Table 6.4. From Table 6.2 it can be concluded that using the sparse
tube parameterization from this chapter leads to a reduction of approximately 29% in the mean
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Figure 6.2: Example 1: reported solver times for various LP algorithms.

computation time required to solve the tube synthesis problem, and to a reduction of 35% of
the worst-case measured computation time.

6.4.2 Numerical example 2: third-order system

Consider the third-order system

x(k + 1) = ©­«

1 1 0.5
0 1 1
0 0 1

 +

0 0.5 0
0 0 0.5
0 0 0

 θ1(k) +

0 0 0.2
0 0 0
0 0 0

 θ2(k)
ª®¬ x(k) +


0
0
1

 u(k),
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6.4 Numerical examples

Mean solvertime (ms) Max. solvertime (ms)

Dense PN with dual simplex 11.8 15.9
Reduced PN (x, θ) with dual simplex 8.37 10.2

Table 6.4: Example 1: summary of reported solver times.

Xf Xmax
N X̂dense

N X̂red
N

Volume 18.79 170.3 170 169.5

Table 6.5: Example 2: set volumes.

with the corresponding scheduling and constraint sets given by

Θ = convh
{[

0
0

]
,

[
1
0

]
,

[
1
1

]}
,

U = {u ∈ R | |u| ≤ 4} ,

X =
{

x ∈ R2 �� |x1 | ≤ 5, |x2 | ≤ 3, |x3 | ≤ 8
}
.

A 0.90-contractive terminal set with the specified fixed complexity of 10 vertices was
computed using the method of Appendix A. The prediction horizon is N = 8.

The volumes of the resulting sets, whichwere computed as explained before in the introduction
of Section 6.4, are shown in Table 6.5. The numbers of decision variables and constraints in
the tube synthesis problems are shown in Table 6.6. The total number of decision variables in
the tube synthesis problem is reduced from 7586 to 2566, i.e., to 34% of the original value.
In contrast to the previous example, some complexity reduction is also achieved from the
elimination of unnecessary vertex control actions.

The computational results are visualized in Figure 6.3 in terms of box plots (see the previous
example in Section 6.4.1 for an explanation of the box plots). A summary of these results
is given in Table 6.7. In this example, it is noted that the interior point (barrier) algorithm
performs the fastest on the full-size problem. However, for the reduced-complexity case, the
dual simplex method gives the least computation times. From Table 6.7, it is concluded that in
this case the sparse tube parameterization leads to a reduction of approximately 30% in the
mean computation time required to solve the tube synthesis problem, and to a reduction of
about 44% in the worst-case measured computation time.
In this example, it is interesting and somewhat surprising to note that the computational

performance of the interior point method actually deteriorates when using the sparse parame-
terization. It can therefore be concluded that the obtained performance improvements can be
dependent on the algorithm that is used to solve the LP.
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Figure 6.3: Example 2: reported solver times for different LP algorithms.
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Dense Reduced Reduced
(simulated worst) (guaranteed worst)

Vertex control actions 378 204 308
Nominal control actions 1 8 8
Convex multipliers 7146 2300 3063

Total DOF 7525 2512 3371
Ratio DOF 1 0.33 0.45

Total nd 7586 2566 3433
Ratio nd 1 0.34 0.45

Total neq 1194 1194 1194
Total nineq 4956 4956 4956

Table 6.6: Example 2: complexity of the tube synthesis problems.

Mean solvertime (ms) Max. solvertime (ms)

Dense PN with interior point 121 168
Reduced PN (x, θ) with dual simplex 84.8 93.6

Table 6.7: Example 2: summary of reported solver times.

6.5 Concluding remarks
An approach for designing a computationally efficient tube parameterization that guarantees
initial feasibility on an assigned set of initial conditions was presented. Sparsity-promoting
reweighted `1-optimization was employed to determine which decision variables can be
eliminated from the tube parameterization. Although the method as presented does not
guarantee recursive feasibility when used in an RHC scheme, a recursively feasible DHC
variant was constructed.

The result of this chapter is an alternative answer to Research Question Q3, besides the
answer that was provided in Chapter 5. In Chapter 5 a new degree of freedom was introduced
in the tube parameterization design by allowing the parameterization to be heterogeneous along
the prediction horizon. The approach of the current chapter introduces a different design degree
of freedom, namely the choice of an initial condition set: an efficient tube parameterization that
guarantees feasibility on this set is then computed automatically. Some directions for further
research on this approach are the following:

• In the approach of this chapter, to achieve a reduction of computational complexity,
decision variables were eliminated from the tube synthesis problem. An important next
step that has to be made to improve the method further, is to study the elimination of
redundant constraints as well.

• In numerical experiments, it was observed that the computation time required to solve
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Chapter 6 Reduced-complexity tube parameterizations

the “reduced” tube synthesis problem can sometimes increase when using an interior
point solver. It would be interesting to study further why this is the case, and to obtain a
more complete understanding of how the structure of the tube synthesis problem affects
the relative performance of different linear programming algorithms.

• The effect of the reduced-complexity parameterization on control performance as
measured in terms of the closed-loop cost must be studied as well.

Lastly, it is remarked that if the H-representation of the set S is available, the multipliers pλ

can be removed from the tube parameterization in Definition 6.3. Then, the tube dynamics
constraints can be checked in the same way as was done in Section 4.4.2. It is then still
possible to apply the method from this chapter to obtain sparse control parameterizations, but
the reduction in decision variables will not be as large.
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Chapter 7

Towards constrained LPV reference
tracking

This chapter addresses constrained output tracking of constant references for linear
parameter-varying systems. In model predictive control based on linear parameter-

varying state-space representations, it is recognized that offset-free output tracking is generally
not possible to achieve due to the variations in the scheduling signal. Therefore, in this chapter,
it is proposed instead to guarantee a pre-specified tracking error bound ε which is achievable
for all admissible variations of the scheduling variable. The construction of an invariant set in
which such a bound can be satisfied is described. Subsequently a tube-based model predictive
controller is designed which brings the state of the system inside this set in finite time. The
properties of the approach are demonstrated on two numerical examples.

7.1 Introduction

The model predictive control (MPC) approaches described in the previous chapters were all
aimed at asymptotically stabilizing the origin of a given linear parameter-varying (LPV) system.
Besides stabilization of the state around the origin, it is often desired to bring the output of
the system to a specified value, leading to a reference tracking problem. Related to the LPV
case, robust tracking MPC approaches for linear parametrically uncertain (LPU) systems were
developed in, e.g., (Pannocchia 2004; Y. J. Wang and Rawlings 2004). It was shown that, with
these methods, offset-free tracking is achieved if the uncertainty (corresponding to θ in an LPV
system) is time-invariant. However, no hard bounds on the tracking error have been given for
the general case when θ is a time-varying signal.
When controlling a constrained LPV system described by a state-space representation,

it is usually impossible to achieve offset-free output tracking even of constant reference
signals because variations in θ also influence the output. Indeed, in MPC, offset-free tracking
can generally only be achieved for (asymptotically) constant disturbances or uncertainties
(Pannocchia et al. 2015). Then, it becomes a natural approach to look for a set around the
desired reference to which convergence can be established.
Previously, in the linear time-invariant (LTI) case, (Alvarado et al. 2007) considered the

tracking of piecewise constant references for LTI systems subject to additive disturbances
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using a tube-based approach. Asymptotic convergence of the output towards a bounded region
around the reference was established. The paper (Betti et al. 2013) presents similar results
using prediction models in the velocity form. In (Falugi and Mayne 2013), undisturbed LTI
systems with randomly time-varying references are considered: again, a bounded set to which
the tracking error converges is characterized.

An alternative form of LTI tracking MPC, guaranteeing strict error bounds, has been recently
proposed (Di Cairano and Borrelli 2016). The reference is assumed to be generated by a
reference generator, which itself is a constrained LTI system subject to bounded additive
disturbances. An invariant set is designed in a lifted state/reference space. When the state
of the system and the state of the reference generator are inside this set, the tracking error is
contained within an ε-ball for all possible reference trajectories. An MPC law is designed
which brings the state of the system inside this set, provided that the initial tracking error is
already within the specified ε-ball.

To resolve theMPC tracking problem for LPV systems, this chapter adopts the basic reasoning
of (Di Cairano and Borrelli 2016) and modifies it to handle the LPV setting. It is recognized
that offset-free tracking is generally impossible when θ is time-varying. An invariant set in
which the tracking error with respect to a given constant reference satisfies a pre-specified
bound is derived. Then, a tube-based predictive controller based on the concepts detailed in
Chapter 3 is designed to control the state of the system towards this set. To ensure finite-time
convergence, a time-varying terminal constraint is employed. The finite-horizon cost function
is designed to optimize local tracking performance. In this proposed method, which can serve
as a stepping stone towards the development of more sophisticated constrained LPV output
reference tracking controllers, only constant references are considered in lieu of the more
general signal class from (Di Cairano and Borrelli 2016).

The remainder of this chapter is structured as follows. The notation and the problem setting
are introduced in Section 7.1.1 and Section 7.1.2, respectively. Next, Section 7.2 introduces the
concept of bounded-error invariant sets, which will be used as the basis of the MPC approach
that is developed in Section 7.3. The properties of the approach are demonstrated on some
numerical examples in Section 7.4, and the chapter ends with some concluding remarks in
Section 7.5.

7.1.1 Notation

In this chapter, all vector norms refer to the ∞-norm, i.e., ‖ · ‖ = ‖ · ‖∞. A closed ε-ball is
defined as

B(ε) := {x | ‖x‖ ≤ ε}

where the dimension of the space will be clear from the context.
The abbreviation “CPI set” refers to a controlled positively invariant set in the sense of

Definition 2.13.
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7.2 Bounded-error invariant set

7.1.2 Problem setting
This chapter considers constrained polytopic LPV state-space (LPV-PSS) representations (see
Definitions 2.6 and 2.7) of the form

x(k + 1) = A(θ(k))x(k) + Bu(k),

y(k) = C(θ(k))x(k).
(7.1)

For simplicity, the direct feedthrough matrix is omitted and similarly to Chapter 4 the
input matrix is assumed to be constant. This latter choice is made mainly for implementation
reasons; the discussion of Section 4.6.1 on how to handle system representations with a
parameter-varying B applies to the situation in the current chapter as well. In contrast to the
previous chapters, an output equation y(k) = C(θ(k))x(k) is present, and constraints on the
output signal y : N→ Y are assumed.

Assumption 7.1. With respect to the output constraint set Y, assume the following:

(i) The output constraint set Y ⊂ Rny is a PC-set.

(ii) The state- and output constraint sets are consistent, i.e., ∀(x, θ) ∈ X×Θ : y = C(θ)x ∈ Y.

Due to Assumption 7.1.(ii), it is sufficient to consider only the two constraint sets X and U
explicitly, as any output constraints Y are implicitly satisfied through satisfaction of X. The
following assumption is also made.

Assumption 7.2. In (7.1) the IO dimensions satisfy 1 ≤ ny ≤ nu, and

∀θ ∈ Θ : rank
[
A(θ) − I B

C(θ) 0

]
= nx + ny.

Assumption 7.2 implies that for any reference r ∈ Y and any constant scheduling value
θ ∈ Θ, it is possible to find a steady state/input pair (x̄(θ,r), ū(θ,r)) such that C(θ)x̄(θ,r) = r.
This will prove to be useful later in the design of a tracking MPC cost function. The following
problem is considered in this chapter.

Problem 7.1. Given a reference value r ∈ Y and a bound ε ∈ R+, design a controller which (i)
brings the tracking error e(k) = y(k) − r into the ε-ball B(ε) in finite time, and (ii) subsequently
keeps it there despite of the variations of θ ∈ Θ.

This problem is different from Problem 3.1, because asymptotic stability of the origin is now
not required.

7.2 Bounded-error invariant set
This section introduces the concept of a bounded-error invariant set, which will be used in
the development of a tracking tube-based LPV MPC strategy. In an LPV system, due to the
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variations in θ, it is generally impossible to achieve offset-free tracking even for constant
references r . Instead, it is proposed to keep the tracking error

e(k) := y(k) − r = C(θ(k))x(k) − r

within a certain bound which can be maintained for all admissible scheduling trajectories. This
bound will be characterized in terms of an ε-ball B(ε). It is first assumed that a reference r
and a bound ε ∈ R+ are given. The case when only a desired error bound is specified a-priori
is considered later. To construct a bounded-error invariant set, first define augmented state
constraints as

XE(r, ε) := X ∩ E(r, ε)

where
E(r, ε) := {x ∈ Rnx | ∀θ ∈ Θ : (C(θ)x − r) ∈ B(ε)}

contains all states that render the constraint e(k) ∈ B(ε) satisfied irrespective of θ. Then, the set

P(r, ε) := CPI set for (7.1) w.r.t. XE(r, ε) × U (7.2)

is a controlled invariant set inside of which the tracking error constraint e(k) ∈ B(ε) is satisfied.
Therefore, this set can be used as the target set that is to be reached within finite time using the
proposed MPC solution.

It is possible that there exist combinations of reference values r and error bounds ε for which
such a set does not exist (e.g., if the ε is chosen too small). This gives rise to the following
notion of ε-achievable reference.

Definition 7.1. Let ε ∈ R+ be given. A reference value r ∈ Y is called ε-achievable for the
system (7.1) and with respect to the constraints X × U if P(r, ε) , ∅.

For the computation of (7.2) it was assumed that both the reference and the error bound were
known and fixed. It is also possible to define the set of all references which are ε-achievable for
(7.1) in the sense of Definition 7.1 as

R(ε) := {r ∈ Y | P(r, ε) , ∅} . (7.3)

To characterize this set, consider the extended system[
x(k + 1)
r(k + 1)

]
=

[
A (θ(k)) 0

0 I

] [
x(k)
r(k)

]
+

[
B
0

]
u(k)

e(k) =
[
C (θ(k)) −I

] [
x(k)
r(k)

] (7.4)

and the associated (nx + ny)-dimensional constraint set

X̃E(ε) := (X × Y) ∩ Ẽ(ε)

with
Ẽ(ε) :=

{[
x
r

]
∈ Rnx+ny

����∀θ ∈ Θ :
[
C(θ) −I

] [
x
r

]
∈ B(ε)

}
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containing all pairs (x,r) satisfying the error bound for all θ ∈ Θ. Note that in (7.4), if the
“initial” reference is r(0) = r0, then r(k) = r0 for all k ≥ 0. This system can be viewed as a
special case of the setup from (Di Cairano and Borrelli 2016), where the reference evolves
according to more general non-autonomous constrained LTI dynamics. The invariant set

P̃(ε) := CPI set for (7.4) w.r.t. X̃E(ε) × U (7.5)

can now be computed. It is a subset of an extended state/reference space of dimension nx + ny.
The corresponding set R(ε) is found by projecting P̃(ε) onto the reference space, i.e.,

R(ε) =

{
r ∈ Y

���� ∃x ∈ X :
[
x
r

]
∈ P̃(ε)

}
.

Similarly, given P̃(ε) and a r ∈ R(ε), the corresponding set P(r, ε) from (7.2) can be recovered
by projection as

P(r, ε) =
{

x ∈ X
���� [x

r

]
∈ P̃(ε)

}
. (7.6)

The projection in (7.6) can be computed efficiently, because it only considers one fixed reference
r . If r , R(ε), i.e., the reference is not ε-achievable, the result will be P(r, ε) = ∅.

Finally, for a given reference r , it can be useful to know the minimal ε for which P(r, ε) , ∅.
This minimal achievable error bound is defined as

ε?(r) := inf {ε ≥ 0 | P (r, ε) , ∅} (7.7)

and the corresponding invariant set is denoted by

P?(r) := P(r, ε?(r)). (7.8)

In principle, the optimal value ε?(r) in (7.7) can be computed by a bisection search. Such
a procedure can be carried out relatively efficiently for low-order systems, where invariant
sets of the form (7.2) can be computed reasonably fast using one of the methods described in
Section 2.2.5.

7.3 The tracking TMPC algorithm
When a set P(r, ε) has been obtained using the procedures from the previous section, it can
be used as a terminal set in an MPC algorithm. If the MPC manages to bring the state of the
system into this set and keep it there (which should be possible due to the invariance property),
it cam provide a solution to Problem 7.1. In this section, such an MPC is developed based on
the synthesis of homothetic tubes which were introduced in Section 3.5.

To obtain the desired finite-time convergence to P(r, ε), for a tube synthesized at time instant
k, a time-varying terminal constraint

∀i ∈ N[max{0,N−k },N ] : Xi ⊆ P(r, ε) (7.9)
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is proposed which at the initial time k = 0 constrains the state of the system to be inside P(r, ε)
after N steps. At time k + 1, the state is required to reach P(r, ε) in N − 1 steps: the pattern
continues until it is finally required that the initial state x is inside P(r, ε).
This leads to a set of feasible tubes which depends on the reference r , on the selected error

bound ε , and on the current time instant k, i.e., to

TN (x,Θ|r, ε, k) =
{
T

�� T satisfies Def. 3.9 with X0 = {x}

and ∀i ∈ N[max{0,N−k },N ] : Xi ⊆ P(r, ε)
}

(7.10)

and an associated tube synthesis problem

V (x,Θ|r, ε, k) = min
T

JN (T,Θ|r, k) subject to T ∈ TN (x,Θ|r, ε, k) . (7.11)

The cost function used in this chapter does not fit into the class presented in Section 3.4.5.
Instead the tracking stage cost

` (X,K,Θ|r) = max
(x,θ)∈X×Θ

‖Q (x − x̄(r, θ))‖ + ‖R (K(x, θ) − ū(r, θ))‖ (7.12)

is used, where θ = Θ0 = {θ(k)} is the measured value of the scheduling variable (see
Assumption 2.1). The pair (x̄(r, θ), ū(r, θ)) is computed according to

(x̄(r, θ), ū(r, θ)) = arg min
(x̄,ū)



[ x̄> ū>
]

2

2

s.t.
[
A(θ) − I B

C(θ) 0

] [
x̄
ū

]
=

[
0
r

] (7.13)

which always has a solution due to Assumption 7.2. In (7.13), a least-norm cost function is
selected, preferring solutions with small input energy whenever nu > ny. If ny = nu, there
exists only one unique solution regardless of the minimization objective. Note that if ny > u,
Assumption 7.2 is violated, and it is possible that no solution to (7.13) exists.

The main reasoning behind selecting the stage cost (7.12) is that it aims to bring the output
close to the reference if θ is slowly varying, and possibly even yields offset-free tracking if θ
stops varying (i.e., if ∃k? ∈ N such that ∀k ≥ k? : θ(k) = θ̄).

Remark 7.1. Offset-free tracking under constant θ is not guaranteed in the considered control
solution. One principal reason is that this objective is not necessarily compatible with the
bounded-error requirement that e(k) ∈ B(ε) for all k. Indeed, it can happen that there exists
θ ∈ Θ for which x̄(r, θ) < P(r, ε): an example of such a case is given in Section 7.4.

Because stability of the origin is of no concern, no terminal cost is being used and the
stage cost does not have to satisfy any further properties such as being K∞-lower bounded.
Instead, finite-time convergence to the target set P(r, ε) is ensured by (7.9). The resulting
reference-tracking algorithm is summarized in Algorithm 7.1 and its important properties are
stated in Theorem 7.1.
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7.3 The tracking TMPC algorithm

Algorithm 7.1 The reference-tracking receding-horizon TMPC algorithm.
Require: N ∈ [1..∞), ε ∈ R+, r ∈ R(ε)
1: Θ−1 ← Θ

N

2: k ← 0
3: loop
4: Construct Θk =

{
{θ(k)},

{
Θi |k

}N−1
i=1

}
⊆ ΘN such that Θk v Θk−1

5: if TN (x(k),Θk |r, ε, k) , ∅ then
6: Compute (x̄(r, θ), ū(r, θ)) according to (7.13)
7: Solve (7.11) to obtain T? ∈ TN (x(k),Θk |r, ε, k)
8: Apply u(k) = K?

0 (x(k), θ(k)) = u?0 to the system (7.1)
9: k ← k + 1
10: else
11: abort
12: end if
13: end loop

Theorem 7.1. Let ε ∈ R+ and r ∈ R(ε) be given, and let Θ ⊆ ΘN , Θ+ ⊆ ΘN be two sequences
related as Θ+ v Θ. Then, Algorithm 7.1 achieves the following properties:

(i) It is recursively feasible, i.e., if ∃T ∈ TN (x,Θ|r, ε, k), then ∃T+ ∈ TN (x+,Θ+ |r, ε, k + 1)
where x+ = A(θ)x + BK0(x, θ). Here, (x, θ) are the measured values of the state and
scheduling variables, and K0 is the first controller in the tube T according to Definition 3.4.

(ii) The state of the controlled system reaches P(r, ε) in N steps or less, i.e., ∃k? ∈ N[0,N ]
such that ∀k ≥ k? : x(k) ∈ P(r, ε).

(iii) The tube synthesis problem (7.11) is a linear program. The numbers of variables and
constraints are linear functions of the prediction horizon N .

Proof of (i). Recursive feasibility is established exactly in the same way as in Proposition 4.2
(with M = 1) or Theorem 5.1 (with a fully homothetic parameterization structure). The
candidate feasible tubes used in the proofs of Proposition 4.2 and Theorem 5.1 are by
construction already compatible with the time-varying terminal constraint that is employed
in the current chapter. The only difference is that now the terminal set P(r, ε) is invariant
instead of λ-contractive with λ < 1, but this does not have any consequences for the recursive
feasibility proof.
Proof of (ii). When Property (i) is satisfied, this property is implied by the construction of the
time-varying terminal constraint in the set of feasible tubes (7.10).
Proof of (iii). Implementation of (7.11) proceeds in the same way as described in Section 4.4,
leading to Property (iii). The modifications necessary to use the tracking cost function (7.12)
are straightforward and do not influence the O(N)-scaling of the number of variables and
constraints. �

The property Theorem 7.1.(ii) is similar to that of the “decreasing horizon tube controller”
from (Langson et al. 2004, Proposition 7), where finite-time convergence to a robustly invariant
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set is established for an LTI system subject to additive disturbances. The approach of this
chapter, in contrast, varies the time at which the terminal constraint becomes active instead of
the horizon length N itself. This preserves degrees of freedom to optimize local performance
once P(r, ε) has been reached. Because the finite-time convergence of the tracking error is
obtained by construction of the constraints and asymptotic stability is not of interest, no terminal
cost is necessary in this particular MPC formulation.
Finally, observe that the proof of Theorem 7.1 does not require e(k) ∈ B(ε), where

e(k) = x(k) − r .

7.4 Numerical examples

Two numerical examples that demonstrate the tracking LPV algorithm developed in this chapter
are now provided.

7.4.1 Minimal ε for fixed r

In this example, a fixed constant reference r is given, which is required to be tracked with the
minimal achievable error bound ε? defined in (7.7). The system used is of the form (7.1) with

x(k + 1) =
( [

0.95 1
0 −0.59

]
+

[
0 0.5
0 0

]
θ1(k) +

[
0 0

0.2 0

]
θ2(k)

)
x(k) +

[
1

0.5

]
u(k)

y(k) =
( [

0.8 −0.6
]
+

[
0 −0.03

]
θ1(k) +

[
0.04 0

]
θ2(k)

)
x(k)

and with the scheduling- and constraint sets

Θ =
{
θ ∈ R2 | ‖θ‖ ≤ 1

}
,

X =
{

x ∈ R2 | −6 ≤ x1 ≤ 4, −4 ≤ x2 ≤ 6
}
,

U = {u ∈ R | −1 ≤ u ≤ 2} .
(7.14)

The constant reference to be tracked is chosen to be r = −0.85.
Using the bisection procedure proposed in Section 7.2, it was found that ε? = 0.37. The

corresponding set P?(r) is shown in Figure 7.1. In light of Remark 7.1, the convex hull of the
set of all steady states X̄(r) =

{
x̄(r, θ) | θ ∈ Θ

}
is also depicted. It can be clearly seen that there

exist θ ∈ Θ for which offset-free tracking of r is, by definition, impossible to achieve without
violating the guarantee that e(k) ∈ B(ε?) for all time given all possible trajectories of θ.

A tracking tube-based MPC was implemented according to the construction of Section 7.3.
In this simulation, the following parameters were used:

• The prediction horizon was N = 7;

• The tuning parameters for the stage cost (7.12) were set as Q = I and R = 10.
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Figure 7.1: The sets P?(r) and convh{X̄(r)} in the example of Section 7.4.1.

A simulation result for the initial state x(0) =
[
−4 3

]> is shown in Figure 7.2. It can be
observed that the tracking error converges to B(ε) in less than N steps as given by Theorem 7.1.
The scheduling signal used in this simulation corresponds to a “harsh” scenario, with rapid
variations consisting of random switches between the vertices of Θ.

7.4.2 All ε -achievable references
In this second example, a desired error bound ε is specified. Now, the purpose is to determine
the set R(ε) of all ε-achievable references according to (7.3). The system used in this example
has the same dynamics as the system of Example 1. To make the computation of R(ε) more
interesting, a second input and output are added, which gives the system

x(k + 1) =
( [

0.95 1
0 −0.59

]
+

[
0 0.5
0 0

]
θ1(k) +

[
0 0

0.2 0

]
θ2(k)

)
x(k) +

[
1 0.7

0.5 −1

]
u(k)

y(k) =
( [

1.2 1.0
0.7 0

]
+

[
0 −0.03

0.08 0

]
θ1(k) +

[
0.04 0

0 −0.06

]
θ2(k)

)
x(k).

The corresponding input constraint set is

U =
{
u ∈ R2 | −1 ≤ u1 ≤ 1, −0.4 ≤ u2 ≤ 0.4

}
.

and the state constraints and scheduling set are the same as in (7.14).
A desired tracking error bound of ε = 0.1 is specified. The corresponding set R(ε) ⊂ Rny

was calculated according to the procedure in Section 7.3 and the result is shown in Figure 7.3.
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Figure 7.2: Simulation result for the example of Section 7.4.1.

152



7.5 Concluding remarks
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Figure 7.3: The set R(ε) obtained in the example of Section 7.4.2.

Based on this analysis, the constant reference r =
[
0.5 0.3

]> was chosen, which is in the
interior of R(ε). A corresponding simulation result for the initial state x(0) =

[
2 2

]> is
displayed in Figure 7.4. The prediction horizon N = 7 and tuning settings Q = I and R = 10I
were equal to the previous experiment. The scheduling signal consisted of random switching
between the vertices of Θ until the 18th sample, after which θ(k) remained constant at its last
value.

In Figure 7.4, it can be observed that the tracking error goes to zero: thus, in this special
case the controller achieves offset-free tracking when the scheduling variable stops varying.
However, there also exist references r ∈ R(ε) for which this is not possible (see Remark 7.1).
An example of such a case was already considered in the previous experiment of Section 7.4.1,
where in Figure 7.1, it was shown that convh{X̄(r)} * P(r, ε).

7.5 Concluding remarks
A tube-based MPC algorithm to track constant references for LPV systems with a guaranteed
error bound was presented. The results of this chapter are a possible first step towards more
sophisticated reference-tracking LPV predictive controllers. Some ideas for further development
are the following:

• It would be of interest to develop an approach that combines a guaranteed ε-error bound
with the ability to always achieve asymptotically offset-free tracking if θ(k) stops varying.

• An issue with the current method is that the domain of attraction of the controller can
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Figure 7.4: Tracking error of the MPC in the example of Section 7.4.2. In this special case, the
tracking error goes to zero after θ stops varying.

be small if ε is chosen small. Hence, it would also be relevant to see if it is possible to
construct an extended terminal set around P(r, ε) and use an appropriate terminal cost to
ensure convergence, possibly without the time-varying terminal constraint.

• The more advanced tubes of, e.g., Chapters 4 and 5 could be considered for the
construction of a reference-tracking LPV MPC algorithm as well.

• The approach could be extended to handle a larger class of references, e.g., piecewise-
constant signals or those generated by reference generators as in (Di Cairano and Borrelli
2016).
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Chapter 8

Non-linear MPC through LPV embeddings

This chapter addresses Research Question Q5, and proposes a model predictive control
(MPC) approach for non-linear systems based on linear parameter-varying (LPV) repre-

sentations. The non-linear dynamics are assumed to be embedded inside an LPV representation.
Hence, the non-linear MPC problem is replaced by an LPV MPC problem. When compared to
general non-linear model predictive control (NMPC), the two main advantages of this approach
are that it requires the on-line solution of a convex program, and that it allows for the systematic
derivation of a terminal set and cost. Naturally, this may come at the sacrifice of achievable
performance with respect to NMPC. The key idea behind the approach that enables a proof
of recursive feasibility and stability, is to first restrict the the state evolution of the non-linear
system to belong to a time-varying sequence of state constraint sets. Because in an LPV
embedding, there exists a relationship between the scheduling and state variables, these state
constraints are then used to construct a corresponding future scheduling tube. Compared to
non-time-varying state constraints, tighter bounds on the future scheduling trajectories can
be obtained. Two simple approaches to compute the initial sequence of state constraint sets
are presented. Furthermore, the computation of a scheduling tube in this setting requires
the application of a non-linear function to this sequence of constraint sets. Hence, outer
approximations of this non-linear projection-based scheduling tube can be found, e.g., via
methods based on interval analysis that were previously employed in reachability analysis of
non-linear systems. Finally, the computational properties of the approach are demonstrated on
numerical examples.

8.1 Introduction

In an LPV system, it is assumed that the scheduling variable is a signal that is independent from
the states or control inputs. This assumed freedom enables the use of computationally efficient
control design procedures. If an LPV model is used to embed an underlying non-linear system,
the scheduling signal represents the non-linear behavior. Therefore, a controller designed on
the basis of this linear model can be used to control the original non-linear system.
This idea is illustrated in Figure 8.1, in a way similar to the exposition in Section 2.3.

The starting point in Figure 8.1.(a) is a non-linear system connected in closed-loop with a
non-linear predictive controller. Next, scheduling variables θ ∈ Θ ⊆ Rnθ are introduced such
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(c)

Non-linear
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Non-linear
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LPV
MPC

T (·, ·)

Figure 8.1: Principle of non-linear MPC via LPV embeddings. (a) The true non-linear system
connected in closed-loop with a non-linear MPC. (b) The non-linear system is
equivalently represented as an LPV system by describing the non-linearities in
terms of a scheduling variable: the control problem is still non-linear. (c) The
scheduling variable is “disconnected” to obtain an LPV embedding: the non-linear
MPC is replaced by an LPV MPC.

that the non-linear system is equivalently represented in an LPV form. Typically, the introduced
scheduling variables are related to the state and input signals, i.e., there exists a map T(·, ·) such
that T(x,u) = θ (Figure 8.1.(b)). Because this is just an equivalent representation of the same
system, the MPC problem is still non-linear. Then, to construct the embedding, the relation
T(·, ·) is discarded and only an inclusion θ(k) ∈ Θ is assumed (Figure 2.1.(c)).

The NMPC—which typically requires non-convex optimization problems to be solved
on-line—can therefore be replaced by an LPV MPC. Although the optimization problems in
LPVMPC often have more decision variables and constraints, they can still be solved efficiently
due to their convex structure. Furthermore, systematic approaches for the computation of the
necessary terminal set and cost to guarantee recursive feasibility and closed-loop stability are
available in the LPV setting. However, because the scheduling variable is considered to be a
free signal that can take any value inside of the set Θ independently of the other signals in the
system, some conservatism is introduced. A few MPC approaches for LPV embeddings from
the literature are reviewed next.

In the MPC scheme of (Lu and Arkun 2002), which is based on the quasi min-max scheme
(Lu and Arkun 2000b), it is assumed that the underlying non-linear system can be represented
by an LPV model obtained as a family of linearized models around various operating points.
It is shown that if the optimization remains feasible, the closed loop is asymptotically stable.
However, because the family of linearized models is not guaranteed to embed the true non-linear
dynamics along closed-loop trajectories, recursive feasibility can not be established a-priori.
In the method of (Chisci et al. 2003), the non-linear dynamics are embedded in an LPV
representation with a discrete scheduling set, effectively representing a collection of uncertain
linear models. Rate-of-variation (ROV) bounds on the state—and hence, on the scheduling
variable—are imposed in a way reminiscent of classical gain scheduling (Rugh and Shamma
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2000).
Based on the pure LPV MPC algorithm of (Casavola et al. 2002), the work (Casavola et al.

2003) presents an MPC algorithm applicable to LPV embeddings. A known and bounded ROV
on the scheduling variable is assumed. The LPV MPC algorithm used in (Casavola et al. 2003)
contains a mistake that can cause input constraint violation, as pointed out in (Ding and Huang
2007). Even when this mistake is corrected, there is no guarantee that the assumed ROV on
the scheduling variable will hold along realized closed-loop trajectories. Recursive feasibility
and stability can therefore only be established under the assumption that the controller will not
excite the system in a way that violates the assumed ROV bounds.

In (Cisneros et al. 2016; Cisneros and Werner 2017), an “iterative” MPC scheme is presented
to control non-linear systems embedded in an LPV representation. Unlike the previously
discussed approaches, knowledge of the scheduling map is exploited in the prediction stage.
Based on an initial guess of the future scheduling trajectory, a simple linear time-varying (LTV)
MPC problem is solved. The resulting optimal state and input trajectories are used to generated
a new future predicted scheduling trajectory through the scheduling map, and the procedure
is iterated until the predicted trajectories converge. This is computationally highly efficient
because at each time instant, only the solution of a sequence of LTV MPC problems is required.
The authors demonstrated that it works well on some examples, but there are no guarantees
concerning convergence of the iterations: hence, closed-loop stability can not be guaranteed.

In this chapter, a non-linear MPC based on LPV embeddings is developed, which integrates
the explicit use of a scheduling map from (Cisneros et al. 2016; Cisneros and Werner 2017)
into a tube-based LPV MPC formulation. In this way, achievable performance with respect to
NMPC is traded off for computational efficiency, without sacrificing guarantees on recursive
feasibility and stability. In the proposed approach, the state constraints are allowed to be
time-varying along the prediction horizon. These constraints are computed for a measured
initial state as part of the “initialization” of the controller. The key feature that enables an
a-priori guarantee of recursive feasibility and stability, is the use of the scheduling map to
construct the scheduling sets that are valid along all possible closed-loop trajectories that are
allowed by the designed state constraints. Such a guarantee is missing in, e.g., the approaches
of (Casavola et al. 2003; Lu and Arkun 2002).

Previously, tube-based methods have been used to derive efficient non-linear model predictive
controllers based on linearization. In (Cannon et al. 2011; Y. I. Lee et al. 2002) the non-linear
dynamics are linearized around a given feasible “seed” trajectory, and the arising linearization
errors are represented as additive perturbations. Although both the proposed method of this
chapter and (Cannon et al. 2011; Y. I. Lee et al. 2002) belong to the class of tube-based policies,
the linearized system representation adopted in (Cannon et al. 2011; Y. I. Lee et al. 2002) is
different from the LPV embedding considered in the current chapter.
The remainder of this chapter is structured as follows. Section 8.1.1 specifies the problem

setting considered in this chapter. The tube-basedMPCalgorithm applicable to LPVembeddings
is developed in Section 8.2. Several implementable methods for initializing the controller and
for computing the scheduling tubes, are given in Section 8.3 and Section 8.4 respectively. The
control performance of the method is demonstrated on some numerical examples in Section 8.5.
Finally, a few concluding remarks are provided in Section 8.6.
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8.1.1 Problem setting
This chapter considers constrained non-linear systems represented as

x(k + 1) = f (x(k),u(k)) , k ∈ N, x(0) = x0, (8.1)

that can be embedded in a constrained polytopic LPV state-space (LPV-PSS) representation of
the form

x(k + 1) = A (θ(k)) x(k) + Bu(k), (8.2a)
θ(k) = T (x(k)) . (8.2b)

The following assumptions on the system (8.1) are made.

Assumption 8.1. The system (8.1) satisfies the following properties:

(i) The function f : X ×U→ Rnx is continuously differentiable, and it is bounded on X ×U.

(ii) The origin is an equilibrium of (8.1), i.e., f (0,0) = 0.

An overview of the concept of LPV embedding was provided in Section 2.3. In (8.2), the
function T : X → Θ is called the scheduling map. This function describes the relationship
between the state and scheduling variables. In the definition of an LPV embedding, the
scheduling map is important because it is connected to the validity of the embedding on X ×U.
In contrast, when controlling an LPV embedding, T(·) typically appears only in a limited and
implicit way, because the scheduling variable is considered to be a free signal. Knowledge of
T(·) can however be exploited to obtain refined sets of all possible scheduling trajectories based
on the possible future state evolution; this is what will be done in the MPC developed in this
chapter.

The class of polytopic LPV embeddings described by (8.2) is somewhat restricted, because
the map T(·) does not depend on u and because the input matrix B does not depend on θ. Some
remarks on the extension of the results of this chapter to more general embeddings are provided
later in Section 8.6.1. A class of systems that can always be embedded in the required form of
(8.2) are, for instance, Lur’e systems of the form

x(k + 1) = Ax + φ (x) + Bu

where φ(·) is Lipschitz continuous and bounded on a compact setX ⊂ Rnx . Sufficient conditions
under which an embedding of the form (8.2) can be constructed for an arbitrary continuous-time
non-linear system can be found in (Abbas et al. 2014, 2017). The discrete-time case is still
a topic of ongoing research. Some further remarks on the possible extension of the methods
presented in this chapter to more general classes of embeddings, are provided in Section 8.6.1.
The control problem considered in this chapter is equal to Problem 3.1, i.e., it is desired

to design a controller Kmpc(·, ·, ·) that renders the origin of the representation (8.2) regionally
asymptotically stable. From the basic properties of embeddings (see again Section 2.3), it
follows directly that if the developed MPC stabilizes the LPV representation (8.2), then it
stabilizes the original non-linear system (8.1) as well. This work can be seen as a necessary
first step towards the development of an MPC approach for LPV embeddings that can stabilize
other equilibrium points besides the origin.
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8.2 The non-linear TMPC algorithm
In this section, the tube-basedMPC algorithm for polytopic LPV embeddings is presented. First,
some necessary modifications to the basic tube synthesis approach are given in Section 8.2.1.
Then, in Section 8.2.2, an alternative class of stage cost function is presented in addition to the
class that was introduced in Section 3.4.5. Necessary conditions on the terminal set are also
given to enable the proof of recursive feasibility and stability. Finally, the complete algorithm
together with a proof of its main properties is provided in Section 8.2.3.

8.2.1 Tubes for LPV embeddings
The type of tubes employed in this chapter are modified slightly with respect to those of
Definition 3.4, which were used in the previous chapters:

Definition 8.1. Let Θ ⊆ ΘN be given according to Definition 3.1. A tube for embeddings of
length N is a pair

T = (X,K) =
({

Xi

}N
i=0,

{
Ki

}N−1
i=0

)
where Xi ⊆ R

nx are sets and where Ki : Xi × Θi → U are CH1 control laws such that for all
i ∈ [0..N − 1], the conditions I(Xi,Θi |Ki) ⊆ Xi+1 and Xi ⊆ Xi hold. Each set Xi is called a
cross section.

With respect to Definition 3.4, the following two differences exist:

• The state constraints are allowed to be time-dependent sequences ⇀X= {X0, . . . ,XN−1}.

• The state constraint inclusion condition Xi ⊆ Xi is more stringent than the condition
I(Xi,Θi |Ki) ⊆ X which was used previously. In the setting of this chapter, as will
become clear later, this stricter condition is necessary to guarantee consistency between
the transition constraints I(Xi,Θi |Ki) ⊆ Xi+1 and the system dynamics (8.2).

Note that with these modifications, all the conditions appearing in Definition 8.1 can still
be expressed in terms of linear inequalities along the line of Section 4.4.2. The role of the
scheduling tube Θ ⊆ ΘN is to bound all possible behaviors of θ in the embedding (8.2). To
this end, the sequence of time-varying state constraints allowed by Definition 8.1

⇀
X= {X0, . . . ,XN−1} ⊆ X

N (8.3)

is constructed at each time instant k, and an associated scheduling sequence Θ is generated
by applying the scheduling map T(·). So, the signal θ is still free, but all its possible future
trajectories are known to belong to the scheduling tube Θ in a way that is consistent with
all possible future state trajectories allowed by the constraints (8.3). This setup, that allows
constraint sequences consisting of arbitrary sets, is more general than the bounds on the state
ROV assumed in (Chisci et al. 2003).
For simplicity, this chapter considers homothetic tubes similar to those of Definition 3.9:
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Definition 8.2. A tube for embeddings T according to Definition 8.1 is called a homothetic
tube for embeddings if, in addition, it satisfies Definition 3.9.

The only difference between Definition 8.2 and Definition 3.9, is the fact that Definition 8.1
is with respect to tubes of the type of Definition 8.1 instead of Definition 3.4. This does not
cause any contradiction, because a tube that satisfies Definition 8.1 also satisfies Definition 3.4.

To obtain a scheduling tube consistent with the state constraints (8.3), the map T(·) has to be
applied to set-valued arguments X ⊆ X according to

T (X) := {T(x) | x ∈ X} . (8.4)

Because T(·) is a non-linear function in general, Equation 8.4 is not straightforward to compute
directly. If X is a polytope then there is no guarantee thatT(X) is also a polytope, or even convex.
Therefore, in the sequel, it is assumed that there exists a so-called convex outer-approximator
T̂(·) of T(·).

Definition 8.3. The function T̂ : 2X → 2Θ is a convex outer-approximator of T : 2X → 2Θ if

(i) For a singleton set X = {x}, T̂(X) = T̂({x}) = T(x).

(ii) For all convex and compact sets X ⊆ X, T̂(X) is a convex set and T(X) ⊆ T̂(X).

(iii) For all convex and compact sets X0 ⊆ X1 ⊆ X, T̂(X0) ⊆ T̂(X1).

(iv) If X ⊆ X is a polytope, then T̂(X) is a polytope as well.

In this section, the existence of a convex outer-approximator is simply assumed. Possible
constructions of such an approximator are presented later in Section 8.4.
In the MPC approach for LPV embeddings, the set of feasible tubes depends on the

time-varying state constraints as

TN

(
x
��⇀X)
=

{
T

�� T satisfies Def. 8.2 with X0 = {x},XN ⊆ Xf,

and ∀i ∈ [0..N − 1] : Θi = T̂ (Xi)
}
. (8.5)

Hence, the associated tube synthesis problem is

V
(
x
��⇀X)
= min

T
JN

(
T,⇀X

)
subject to T ∈ TN

(
x
��⇀X)

. (8.6)

In contrast to the setup described in Section 3.4.1, (8.5)–(8.6) are not dependent on Θ, but on
⇀
X. This is because in the proposed approach, the scheduling sets in the sequence Θ ⊆ ΘN are
generated by applying the outer-approximator T̂(·) to the sequence ⇀X⊆ XN .
This construction is also the reason why the state constraints in Definition 8.1 have to be

of the form Xi ⊆ Xi instead of the more relaxed form adopted previously in Definition 3.4.
The tube transition constraints are of the form I(Xi,Θi |Ki) ⊆ Xi+1 where, according to (8.5),
Θi = T̂(Xi). If Xi would not be a subset of Xi , there could exist x ∈ Xi such that T(x) < Θi ,

160



8.2 The non-linear TMPC algorithm

and therefore the transition constraint I(Xi,Θi |Ki) ⊆ Xi+1 would not be consistent with the
dynamics (8.2). Therefore the condition Xi ⊆ Xi is necessary.
In the this chapter, the cost function takes the standard form of Section 3.4.1, i.e.,

JN
(
T,⇀X

)
=

N∑
i=0

`
(
Xi,Ki, T̂ (Xi)

)
+ F (XN ) (8.7)

with `(·, ·, ·) being the stage cost and F(·) being the terminal cost. The type of stage cost
employed in this chapter can be that of Section 3.4.5, but an alternative choice of cost will
also be presented in Section 8.2.2. Furthermore the conditions on the terminal set in (8.5)
need to be adapted to take into account the relationship θ = T(x) between state and scheduling
variables. These elements will be presented in the next subsection.

8.2.2 Center-based cost function and terminal set
In the MPC algorithms presented previously, the worst-case stage cost function introduced in
Section 3.4.5 was used. This cost can be used in the setting of this chapter without modification.
However, it can also be of interest to optimize an average- or expected cost instead of the
worst-case one. For this purpose, this section introduces an alternative, center-based, stage cost
that can be used if desired.
It was found that the center-based cost is especially useful when controlling a non-linear

system represented by an LPV embedding, because the worst-case cost of Section 3.4.5 can
sometimes lead to non-smooth closed-loop trajectories. For this reason, it is introduced here in
this chapter. It should, however, be noted that this new center-based cost can also be employed
in the controllers from the previous chapters with suitable modifications made to the stability
proofs.
Define r(2) := 2 and r(∞) := 1. The alternative center-based stage cost function, which is

applicable to sets of the form X = z ⊕ αS where S = convh{s̄1, . . . , s̄qs }, is then designed as

`p (X,K,Θ) = ‖Qz‖r(p)p + P |α |r(p) +
1

qθqs

qs∑
i=1

qθ∑
j=1
‖RK

(
x̄i, θ̄ j

)
‖
r(p)
p (8.8)

where p ∈ {2,∞}, and where Q ∈ Rnq×nx , R ∈ Rnr×nu and the scalar P > 0 are tuning
parameters. The matrices (Q,R)must be of full column rank. In (8.8), the vectors {θ̄1, . . . , θ̄qθ }
represent the vertices of the set Θ that is being passed as the third argument of `(·, ·, ·).
Because the center-based cost (8.8) is only defined for sets represented as X = z ⊕ αS, it is

less general than the worst-case cost of Section 3.4.5 used previously, which could be applied
to arbitrary sets. Like the worst-case stage cost, the cost (8.8) has some useful properties:

Proposition 8.1. In what follows, let K : X × Θ→ U be a CH1-controller. The cost function
(8.8) satisfies the following properties:

(i) For p ∈ {2,∞}, there exists a K∞-function ` such that `
(
d0
H

(
X
) )
≤ `p(X,K,Θ)

(ii) For p ∈ {2,∞}, the stage cost is homogeneous of degree r(p) in the sense that for all
α ∈ R+, `(αX,K,Θ) = αr(p)`(X,K,Θ).
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Proof of (i). Trivially, ‖Qz‖r(p)p + P |α |r(p) ≤ `
(
X,K

)
. As Q is assumed to be full column rank,

x 7→ ‖Qx‖ is a norm (in particular, ‖Qx‖ = 0 if and only if x = 0). Therefore, for p ∈ {2,∞},
∃cp > 0 such that ∀z ∈ Rnx : cp ‖z‖p ≤ ‖Qz‖p . Let X = z ⊕ αS ∈ Ω where S is a polytope as
stated in Definition 8.2. Define M := maxi∈N[1,qs ] ‖ s̄

i ‖p. By the definition of the Hausdorff
distance in the relevant norm,

cpd0
H (X) = cp max

i∈N[1,qs ]
‖z + αs̄i ‖p ≤ cp ‖z‖p + cpM |α |,

so that if cpM ≤ P, cpd0
H (X) ≤ ‖Qz‖p + P |α | is satisfied. Because the set S can always be

scaled by an arbitrary factor β > 0, the property cpM ≤ P can be assumed without loss of
generality. This proves the existence of a class-K∞ lower bound `(dH (X)) for `

(
X,K

)
if p = ∞.

If p = 2,

1
2

(
cpd0

H (X)
)2
=

1
2

c2
p max
i∈N[1,qs ]

‖z + αs̄i ‖2p ≤
1
2

c2
p

(
‖z‖p + M |α |

)2
≤ c2

p

(
‖z‖2p + M2 |α |2

)
where again it can be assumed without loss of generality that the set S is scaled such that
c2
pM2 ≤ P, proving the existence of a lower bound `(dH (X)) also for p = 2.

Proof of (ii). Let X ⊂ Rnx be an arbitrary set represented as X = z ⊕ αS with S ⊂ Rnx being
convex and compact. Then, βX = βz ⊕ βαS, and therefore Property (ii) follows from the
CH1-property of the controller K(·, ·) combined with homogeneity of the vector norm ‖ · ‖. �

It is important to note that the cost (8.8) does not satisfy the subset inclusion property of
Proposition 3.1.(i). This has a consequence for the proof of closed-loop stability. In particular,
if the cost (8.8) is used, it is necessary to relax the initial condition constraint in the set of
feasible tubes (8.5) from X0 = {x} to x ∈ X0. That is, it is necessary to replace (8.5) with

TN

(
x
��⇀X)
=

{
T

�� T satisfies Def. 8.2 with x ∈ X0,XN ⊆ Xf,and Θi = T̂ (Xi)
}
. (8.9)

The full proof of stability, where this point is taken into account, will be presented later for
Theorem 8.1.

As is usual, to guarantee recursive feasibility of (8.6), a terminal set constraint XN ⊆ Xf is
included in (8.5). The set Xf must be designed to be controlled λ-contractive for (8.2) in a sense
similar to Definition 2.13. However, because in the current setting there exists a relationship
between the state and scheduling variables that definition has to be adapted slightly:

Definition 8.4. Let X and X̆ both be PC-sets such that X ⊆ X̆ ⊆ X. Then, the set X is called
controlled λ-contractive for an LPV-PSS embedding (8.2), if there exists a local CH1 controller
K : X × T̂

(
X̆
)
→ U such that λ = inf{µ | I(X, T̂

(
X̆
)
|K) ⊆ µX} < 1.

In light of the above definition, the procedure for computing the terminal set Xf consists of
first choosing a constraint set X̆, after which Xf can be computed using any of the standard
approaches (e.g., Algorithm 2.1 or the method from Appendix A) available for LPV systems. If
no Xf can be found or if its volume is smaller than desired, the constraint set X̆ can be changed
and the procedure repeated. Observe that Xf is always bounded as Xf ⊆ X̃, but that a large X̃
also results in a large scheduling set T̂

(
X̆
)
.
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Suppose that Xf is λ-contractive according to Definition 8.4. Then a suitable terminal cost
F(·) to be used in (8.7) can be computed with the same basic structure as the terminal costs
used in Chapters 4 and 5. Define

F (X) =
ΨXf (X)
1 − λ

max
X̃⊆Xf ,θ∈T (X̆)

`p
(
X̃,Kf

)
=

¯̀
1 − λ

ΨXf (X) , (8.10)

where the maximization is done with respect to sets X = z ⊕ αS. The function ΨXf (·) is the
set-gauge of Xf , as specified in Definition 2.2, and Kf : Xf × T

(
X̆
)
→ U is a local set-induced

controller that renders Xf λ-contractive. Because `p(·, ·, ·) is convex, (8.10) reduces to a
finite-dimensional optimization problem provided that T

(
X̆
)
is a polytope, as then `p(·, ·, ·)

takes its maximum on one of the vertices of Xf × T(X̆). For the stage cost of Section 3.4.5, the
terminal cost (8.10) is exactly the same as the cost from Chapter 5. For the center-based stage
cost of the present section, however, the numerical value can be different.

It is important to note that the stage cost (8.8) and the terminal cost (8.10) satisfy the necessary
conditions that enable the construction of K∞-bounds on the value function according to
Proposition 3.2.

8.2.3 Main result

Algorithm 8.1 The MPC algorithm for LPV embeddings.
Require: N ∈ [1..∞)
Require: A given sequence ⇀X (0)
1: k ← 0
2: loop
3: if TN

(
x(k)

��⇀Xk

)
, ∅ then

4: Solve (8.6) to obtain T? ∈ TN
(
x(k)

��⇀X (k))
5: Apply u(k) = K?

0 (x(k), θ(k)) = u?0 to the system (8.1)

6: ∀i ∈ N[0,N−1] : Xi(k + 1) ←

{
Xi+1(k), i < N − 1,
X̆, i = N − 1.

7: k ← k + 1
8: else
9: abort
10: end if
11: end loop

The proposed MPC approach is summarized in Algorithm 8.1, and Theorem 8.1 gives the
main result concerning its properties:

Theorem 8.1. Suppose that T̂(·) is a convex outer-approximator of the scheduling map T(·)
according to Definition 8.3. Let Xf satisfy Definition 8.4, let F(·) be as in (8.10), and in
Definition 8.2 set S = Xf . Furthermore let

⇀
X= {X0, . . . ,XN−1} and let ⇀X

+
⊆ XN be related
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to ⇀
X as ⇀X

+
=

{
X1, . . . ,XN−1, X̆

}
according to Step 6 of Algorithm 8.1. Then, the algorithm

satisfies the following properties:

(i) It is recursively feasible, i.e., if ∃T ∈ TN

(
x
��⇀X)

, then ∃T+ ∈ TN

(
x+

���⇀X+) where
x+ = A(θ)x + BK0(x, θ) = A(T(x))x + BK0(x,T(x)).

(ii) The state of the controlled system reaches X̆ in N steps or less, i.e., ∃k? ∈ N[0,N ] such
that ∀k ≥ k? : x(k) ∈ X̆.

(iii) The origin of (8.1) is asymptotically stabilized in the sense of Definition 2.8.

(iv) The tube synthesis problem (8.6) is a quadratic program (QP) if p = 2 and a linear
program (LP) if p = ∞. The numbers of variables and constraints are linear functions of
the prediction horizon N .

Proof of (i). The particular construction of ⇀X
+ in Step 6 of Algorithm 8.1 means that the

relationship Θ+ v Θ holds, where

Θ =
{
T̂ (X1) , . . . , T̂ (XN−1)

}
, Θ+ =

{
T̂

(
X+1

)
, . . . , T̂

(
X+N−1

)}
.

Therefore, Property (i) is proven in the same way as was done in Proposition 4.2. If the tube T
satisfies the state constraints of Definition 8.1, then the feasible candidate tube T+ constructed
therein also satisfies the state constraints ⇀X

+.
If the center-based stage cost (8.8) is used, the set of feasible tubes has a different initial

condition constraint, and it is given by (8.9). The tube T+ used to establish recursive feasibility
consequently has to be changed into

T+ = ({X1,X2, . . . ,XN−1, γXf, γλXf} , {K1, . . . ,KN−1,Kf}) . (8.11)

No other modifications are necessary.
Proof of (ii). Given Property (i), the satisfaction of Property (ii) follows by construction of the
constraint set sequences ⇀Xk in Step 6 of Algorithm 8.1.
Proof of (iii). The first step is to show closed-loop asymptotic local stability of the origin
of the LPV embedding (8.2). Whenever the stage cost of Section 3.4.5 is used, this proof is
equal to the proofs presented in Theorem 4.1 (with M = 1) and Theorem 5.1 (with a fully
homothetic parameterization structure). If use is made of the center-based stage cost (8.8), the
only necessary modification stems from the fact that (8.8) does not satisfy a subset inclusion
property like Proposition 3.1.(i). Therefore, the feasible, but not necessarily optimal tube T+
used in the proof must be changed into (8.11).
Once closed-loop stability of the origin (8.2) is established, stability of the origin of the

non-linear system (8.1) follows by the fundamental properties of embeddings as outlined in
Section 2.3.
Proof of (iv). A construction similar to that of Section 4.4.2 applies. The necessarymodifications
to accommodate the more stringent constraint inclusion condition of Definition 8.1 and—if
applicable—the alternative cost function (8.8) are straightforward. The modifications do not
affect the O(N)-scaling of the number of variables and constraints. �
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8.3 Initializing the state constraints

8.3 Initializing the state constraints
This section presents two possible methods for determining the initial state constraint sequence
⇀
X. The first method of Section 8.3.1 is based on restricting the ROV of the state variable,
whereas the second method of Section 8.3.2 constructs the sets around a given initially feasible
“seed” trajectory.

Note that although this section presents two particular constructions, the feasibility and
stability properties established in the previous section are valid for any arbitrary construction
of the sequence ⇀X.

8.3.1 Bounded rate of variation
Let δ ∈ Rnx

+ denote a bound on the ROV of the state variable and define

∆(δ) =
{

x ∈ Rnx
�� ∀i ∈ N[1,nx] : |xi | ≤ δi

}
. (8.12)

Then, the initial constraint sequence ⇀X can be computed as

∀i ∈ N[0,N ] : Xi =

{
{x0}, i = 0,
(Xi−1 ⊕ ∆(δ)) ∩ X, i > 0.

(8.13)

The bounded ROV-construction is similar to what was used in (Chisci et al. 2003). A relevant
question is how to choose the value δ. A large δ allows a lot of freedom in the state variation,
but also leads to large corresponding scheduling sets, which can lead to infeasibility as the
uncertainty in the future evolution of θ becomes too great. On the other hand, a small δ may
give state constraints that are too restrictive, also causing infeasibility. Therefore, a trade-off
between these two undesirable extremes has to be found.

Note that if there exists a partitioning of the state vector x = (x1, x2) such that T(x) = T(x1),
then it is sufficient to impose a bounded ROV on the x1-component only.

8.3.2 Initial feasible trajectory
Suppose that a feasible initial state and input trajectory

T̃0 = ({ x̃0, x̃1, . . . , x̃N } , {ũ0, . . . , ũN−1})

is known where x̃N ∈ Xf and where for all i ∈ N[0,N−1]: x̃i ∈ X, ũi ∈ U, and x̃i+1 =
A
(
T(x̃i)

)
x̃i + Bũi . Then, by defining some tolerance δ ∈ Rnx

+ , the initial state constraint sets
can be computed according to the relationship

∀i ∈ N[0,N ] : Xi =

{
{x0}, i = 0,
(x̃i ⊕ ∆(δ)) ∩ X, i > 0,

(8.14)

with ∆(·) as in (8.12). In comparison to the bounded ROV initialization discussed earlier,
this approach is generally more likely to yield a feasible solution to (8.6), but the assumed
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availability of the initially feasible trajectory T̃0 can be considered a disadvantage (note that
linearization-based approaches (Cannon et al. 2011; Y. I. Lee et al. 2002) also presume the
knowledge of such a trajectory). If ⇀X (0) is constructed according to (8.14) with δ = 0, then
(8.6) is always feasible at k = 0. Due to the constraint update Step 7 of Algorithm 8.1, a value
of δ = 0 however means that the controller can never deviate from the initial trajectory, thus
blocking the feedback action of MPC. On the other hand, a value δ that is too large can lead to
infeasibility as the corresponding scheduling sets become too large. Similarly to the situation
with the ROV bound from the previous subsection, a trade-off for the value of δ has to be found.

The trajectory T̃0 can be obtained by solving a non-linear MPC problem. This could be
computationally expensive, but this problem only needs to be solved once at the first sample. An
efficient approach that can be used to generate an initial trajectory is (Cisneros et al. 2016). The
method (Cisneros et al. 2016) is not guaranteed to converge to a solution, but if it converges, the
result can be used to initialize the MPC proposed in this chapter which subsequently guarantees
recursive feasibility and stability.

8.4 Bounding the scheduling tube
In this section, several ways of constructing outer-approximations T̂(X) are discussed. The
easy special case of an affine scheduling map is presented first in Section 8.4.1. For general
non-linear scheduling maps, some methods to construct the approximations are discussed
in Section 8.4.2. These methods include the straightforward computation of bounds using
global optimization or gridding, and a more advanced approach based on Taylor expansion and
interval analysis. This latter approach was used previously—in a slightly different form—for
the purpose of reachability analysis of non-linear systems.
Throughout this section, X ⊆ X is assumed to be a convex and compact set. This is in

agreement with the state constraint sets that are being used in the MPC algorithm of Section 8.2.

8.4.1 Affine scheduling map
Suppose that T : X→ Θ is affine, i.e., of the form

T(x) = Tx + b,

where T ∈ Rnθ×nx and b ∈ Rnθ . An affine scheduling map will typically result when
constructing an embedding of a bilinear system (8.1). Furthermore suppose that the vertex
representation of X is available as

X =
{

x̄1, . . . , x̄qx
}
. (8.15)

Then, the outer-approximation T̂(X) is exact and is given by

T̂(X) = T(X) = convh
{
T x̄1 + b, . . . ,T x̄qx + b

}
. (8.16)

The assumption that the vertex representation (8.15) is available is not restrictive, because
the H- and V-representations of the sets in the sequence ⇀X can be constructed simultaneously
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in the constructions of Section 8.3. Hence, no computationally expensive conversion between
the two representations has to be performed.

8.4.2 General scheduling map

In the general case, the scheduling map T : X→ Θ is a non-linear function of the form

T(x) =


t1(x)
...

tnθ (x)

 (8.17)

where for each i ∈ [1..nθ ], ti : X→ R. For a possibly non-linear and non-convex function T(·),
obtaining a convex outer-approximator T̂(·) is not always straightforward. This section suggest
a few ways that can be used to obtain these approximations in a practical setting.

Perhaps the simplest way, conceptually, to get an outer approximation T̂(X) of T(X) is to use
gridding or sampling of X . Suppose that a number of M points x̂i ∈ X , i ∈ [1..M], has been
selected. Then,

T̂(X) = convh
{
T

(
x̂1

)
, . . . ,T

(
x̂M

)}
(8.18)

where the computation of the convex hull only requires the elimination of redundant vertices
(Fukuda 2004). In low dimensions, gridding can work efficiently. The main caveat is that the
grid has to be dense enough in order to guarantee that T̂(·) is indeed a valid outer-approximation
in the sense of Definition 8.3.

Another conceptually simple way of constructing the convex outer-approximation T̂(X) is to
compute the interval hypercube

T̂(X) =
[
min
x∈X

t1(x),max
x∈X

t1(x)
]
× · · · ×

[
min
x∈X

tnθ (x),max
x∈X

tnθ (x)
]
. (8.19)

Because the functions ti(·) are non-convex in general, computing the minima and maxima in
(8.19) requires the use of an optimization algorithm that is guaranteed to find global optima, e.g.,
(Breiman and Cutler 1989). This optimization has to be done on-line, but only once when the
controller is initialized with the constructed initial constraint sequence. Besides the potentially
heavy computational burden of global optimization, a possible downside of this approach is
that the restriction to an interval hypercube may lead to a conservative over-approximation.
Possibly, this conservatism can be reduced by also considering rotations.

An alternative approach that avoids both the need for global optimization and gridding, can
be derived based on the method for non-linear reachability analysis presented in (Althoff et al.
2008). Therein, the idea is to construct outer approximations of non-linear functions applied
to sets using a combination of Taylor expansion and interval analysis (Jaulin et al. 2001). To
apply this approach to the present setting, the following assumption is necessary.

Assumption 8.2. The function T(·) in (8.17) is twice continuously differentiable.
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Let D f (z) denote the gradient of a function f : Rn → R evaluated at the point x = z with
z ∈ Rn, and let D2 f (z) denote its Hessian matrix evaluated at x = z. The functions ti(·) can be
approximated by a first-order Taylor series plus a Lagrange remainder term as

ti(x) ∈ ti
(
x?

)
+

(
x − x?

)> Dti
(
x?

)
⊕Li

(
x, x?

)
(8.20)

where the linearization point x? ∈ X is arbitrary and where the set of possible values of the
Lagrange remainder is given by

Li

(
x, x?

)
=

{
1
2

(
x − x?

)> D2ti
(
x? + α

(
x − x?

) ) (
x − x?

) ����α ∈ [0,1]} , (8.21)

see (Berz and Hoffstätter 1998). The idea is to construct a “global” bound L̄i for the remainder,
such that

∀(x, x?) ∈ X × X : Li

(
x, x?

)
⊆ L̄i

and, evidently,
ti(x) ∈ ti

(
x?

)
+

(
x − x?

)> Dti
(
x?

)
⊕ L̄i .

An expression for the set L̄i can be derived following the same basic approach as (Althoff et al.
2008). Nonetheless, due to the different problem setting adopted in this chapter, the result is
summarized together with a self-contained proof in the following proposition.

Proposition 8.2 (Based on (Althoff et al. 2008, Propositions 1–2)). An overbound L̄i for the
Lagrange remainder L

(
x, x?

)
is

∀(x, x?) ∈ X × X : Li

(
x, x?

)
∈ L̄i

=

[
−

1
2

e>
(
x?

)
max
x∈X

��D2ti (x)
�� e

(
x?

)
,

1
2

e>
(
x?

)
max
x∈X

��D2ti (x)
�� e

(
x?

) ]
where

e
(
x?

)
=


maxi∈[1..qx]

��x̄i1 − x?1
��

...
maxi∈[1..qx]

��x̄inx − x?nx

��
 .

Furthermore, the choice of linearization point

x? =
1
qx

qx∑
i=1

x̄i (8.22)

is “optimal” in the sense that it gives the smallest possible interval L̄i .

Proof. Starting from the definition ofL
(
x, x?

)
in (8.21), for fixed x? ∈ X , the following chain
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of inclusions can be derived:��L (
x, x?

) �� = {
1
2

��� (x − x?
)> D2ti

(
x? + α

(
x − x?

) ) (
x − x?

) ��� ����α ∈ [0,1]}
⊆

1
2

{���(x − x?
)> D2ti

(
x? + α

(
x − x?

) ) (
x − x?

) ��� ���α ∈ [0,1], x ∈ X
}

⊆
1
2

[
0, max

x∈X ,α∈[0,1]

��� (x − x?
)> D2ti

(
x? + α

(
x − x?

) ) (
x − x?

) ���]
⊆

1
2

[
0, max

x∈X ,α∈[0,1]

��x − x?
��> ��D2ti

(
x? + α

(
x − x?

) ) �� ��x − x?
��]

⊆
1
2

[
0,max

x∈X

��x − x?
��> max

x∈X ,α∈[0,1]

��D2ti
(
x? + α

(
x − x?

) ) �� max
x∈X

��x − x?
��]

⊆
1
2

[
0,max

x∈X

��x − x?
��>max

x∈X

��D2ti (x)
�� max
x∈X

��x − x?
��]

(8.23)

where all max-operations are done element-wise. The last line follows because

S(x?) =
{

x? + α
(
x − x?

) �� x ∈ X, α ∈ [0,1]
}
= X

independently of x?. (It can be shown that for any x? ∈ X , S(x?) ⊆ X and X ⊆ S(x?), and
therefore S(x?) = X). Considering that a vertex representation of X is assumed to be available
in terms of (8.15), it holds that

max
x∈X

��x − x?
�� = 

maxx∈X

��x1 − x?1
��

...
maxx∈X

��xnx − x?nx

��
 =


maxi∈[1..qx]

��x̄i1 − x?1
��

...
maxi∈[1..qx]

��x̄inx − x?nx

��
 .

In the above relation, the linearization point x? is arbitrary, and the result holds for any choice
x? ∈ X . However, it makes sense to find the point x? ∈ X that minimizes the size of the
interval to which

��L (
x, x?

) �� belongs according to (8.23). This is done by taking x? as the
centroid of X , i.e., as the arithmetic mean of its vertices

x? =
1
qx

qx∑
i=1

x̄i . (8.24)

This can be seen by noting that in L̄i , the function D2ti(·) is independent of x?. Thus,
minimizing size of the interval L̄i as a function of x? amounts to minimizing the absolute
values of the elements of e(x?): this is accomplished by choosing x? as (8.24). �

In Proposition 8.2, evaluation of the intervals L̄i still requires computing the maximum
maxx∈X |D2ti(x)| where D2ti(·) is the second derivative of ti(·). In (Althoff et al. 2008), it is
proposed to compute this bound using interval analysis (Jaulin et al. 2001). The principal idea

169



Chapter 8 Non-linear MPC through LPV embeddings

of interval analysis is to determine, given a (multi-dimensional) interval [a, b] ⊂ Rn and a
function f : Rn → Rm the bounds

f ([a, b]) =
[

min
x∈[a,b]

f (x), max
x∈[a,b]

f (x)
]

in a computationally efficient manner, i.e., without using global optimization (the max- and
min-operations in the above given equation are taken element-wise). A list of how interval
approximation for a number of common functions can be computed is given in (Althoff and
Grebenyuk 2016), and a commercially available toolbox implementing computationally efficient
interval methods is (Rump 1999).
It can be expected that this approximation works well for weakly non-linear functions with

small second derivatives, such that the linearization error bound from Proposition 8.2 is small.
In (Althoff et al. 2008) it is shown that, if necessary, the linearization error bounds can be
reduced by splitting the sets X . This approach is not further pursued here.

Based on the discussion above, some other approaches that could be considered in a practical
scenario are the following:

• Apply interval analysis directly on the non-linear function (8.17), using, e.g., the
implementation of (Rump 1999). This yields an interval hypercube of the form (8.19),
but depending on function, it may result in a coarse over-approximation.

• Consider the first-order approximation (8.20). Instead of the interval result in Proposi-
tion 8.2, another method (such as gridding or sampling) to bound the Lagrange remainder
could be used.

8.5 Numerical examples
In this section, the properties of the approach are demonstrated on numerical examples: a
controlled Van der Pol oscillator, an inverted pendulum driven by a DC motor, and a two-tank
system.

8.5.1 Controlled Van der Pol oscillator
This example considers a controlled Van der Pol oscillator described by Üq(t) = µ

(
1 − q2) Ûq(t)−

q(t) + u(t), similar to the system used in (Cisneros et al. 2016). An equivalent LPV form of
this non-linear model is

Ûx(t) =
[

0 1
−1 µ (1 − θ)

]
x(t) +

[
0
1

]
u(t)

θ(t) = T (x(t)) =
( [

1 0
]

x(t)
)2

with the state vector x =
[
q Ûq

]>. For control and simulation, the continuous-time LPV
representation above is discretized with sampling time τ using the Euler approach, which gives
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Case Mean Min Max Standard deviation
NMPC (fmincon) 48 34 74 13
TMPC (proposed method) 10 9.1 12 1.0

Table 8.1: Computation times per sample for the Van der Pol-example (values in ms).

the discrete-time representation

x(k + 1) =
[

1 τ
−τ 1 + τµ (1 − θ)

]
x(k) +

[
0
τ

]
u(k)

θ(k) = T (x(k)) =
( [

1 0
]

x(k)
)2
.

The used damping parameter is µ = 2 and the sampling time is set to τ = 0.1. The scheduling
map is not affine, however it is convex and exact upper and lower bounds on T(X) can be
obtained for polytopes X ⊆ X. In this example, the following settings were used:

• The stage cost was of the center-based quadratic type, i.e., of the form (8.8) with p = 2;

• The MPC tuning parameters were set to Q = I, R = 0.1 and P = 15;

• The prediction horizon was N = 10;

• The state constraints are X = {x | ‖x‖∞ ≤ 1};

• The input constraint is U = {u | |u| ≤ 1};

• The set X̆ was chosen to be X̆ = 0.5X.

• A controlled 0.96-contractive set Xf satisfying Definition 8.4 was computed using the
method of Appendix A. The set has 4 vertices.

The simulation results are shown in Figure 8.2. For this example, no special initialization of
⇀
X (0) was necessary: the method already works well with ⇀

X (0) = XN . The performance of
the proposed LPV-embedding based MPC is compared to that of a full NMPC formulation.
The same terminal set and terminal cost (8.10) were used in both the proposed tube-based
and in the NMPC. In Figure 8.2, it can be seen that the obtained closed-loop trajectories are
comparable. The computation time per sample of the proposed method was lower than that of
the NMPC implemented with the fmincon function of MATLAB R2017b, as summarized in
Table 8.1. The greater efficiency comes at the cost of a slightly reduced domain of attraction
XN (·, ·), as visible in Figure 8.2.

8.5.2 Electrically driven inverted pendulum
In this numerical example, the purpose is to control the angle q of the electrically driven
inverted pendulum shown in Figure 8.3. Define the state vector

x =

q
Ûq
i

 =

x1
x2
x3

 (8.25)
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Figure 8.2: Phase plot of the closed-loop trajectory in the Van der Pol-example with terminal
set (green), set X̆ (dashed grey), and estimated domains of attraction.
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Figure 8.3: The electrically driven inverted pendulum.
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Description Symbol Value Unit
Electrical resistance R 1.0 Ω
Electrical inductance L 1.0 · 10−3 H
Motor constant k 6.0 · 10−2 NA−1

Friction coefficient b 1.0 · 10−3 Nsm−1

Pendulum mass m 7.0 · 10−2 kg
Pendulum length l 1.0 · 10−1 m
Pendulum inertia J = ml2 7.0 · 10−4 kgm2

Standard gravity g 9.81 ms−2

Table 8.2: Model parameters for Example 2.

where q is the angle of the pendulum, Ûq is the angular velocity, and i is the motor current. Then,
the system is described by the non-linear differential equation

Ûx(t) =


x2(t)
mgl
J sin x1(t) − b

J x2(t) + k
J x3(t)

− k
L x2(t) − R

L x3(t) + 1
Lu(t)


where u is the input voltage that is applied to the motor. The model parameters are displayed in
Table 8.2. Introduce a scheduling variable

θ(k) = T(x(k)) = sinc (x1(k)) ,

where

sinc (x) :=

{
1, x = 0,
sin(x)
x , x , 0.

The dynamics (8.25) can now be written in the equivalent LPV embedding form as

Ûx(t) =


0 1 0
0 − b

J
k
J

mgl
J θ(t) − k

L
−R
L

 x(t) +

0
0
1
L

 u(t),

θ(t) = sinc (x1(t)) .

(8.26)

For control design, (8.26) is discretized using a second-order polynomial approximation
(Tóth 2010, Chapter 6). This polynomial approximation is more accurate than the first-order
(Euler) approximation that is frequently used, but has the disadvantage that it can introduce
polynomial parameter dependencies and a parameter-varying input matrix in the discrete-time
model. Due to the particular structure of (8.26), however, the second-order discretization still
has an affine dependency on θ and a constant B-matrix. The sampling time that is used in
this experiment is τ = 0.04 s, which leads to a discrete-time embedding with the following
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numerical values:

x(k + 1) = ©­«

1.00 0.04 0.07

0 0.90 2.64
0 −0.02 0.64

 +


0.08 0 0
3.81 0.08 0
−0.05 0 0

 θ(k)ª®¬ x(k) +


0
0.69
0.32

 u(k),

θ(k) = sinc (x1(k)) .

(8.27)

The system is subject to the constraints

X =
{

x ∈ R3 �� |x1 | ≤ 2π, |x2 | ≤ 18, |x3 | ≤ 6
}
,

U = {u ∈ R | |u| ≤ 8} .

For the simulation, the following settings were used:

• The prediction horizon and tuning parameters were set to N = 6, Q = I, and R = 10.
The infinity-norm based cost (3.13) was used.

• A 0.98-contractive terminal set Xf was computed using Algorithm 2.1, with X̆ ={
x ∈ R3

�� |x1 | ≤
1
2π, |x2 | ≤ 18, |x3 | ≤ 2

}
. The set Xf is contractive under a robustly

stabilizing linear state feedback u = K x, and has 32 vertices.

• The initial state constraints sequence and the corresponding scheduling sets were
generated using the bounded ROV method of Section 8.3.1 with δ =

[ 1
4π ∞ ∞

]>.
Because in (8.27) the scheduling map T(·) is only dependent on x1, it is only necessary
to bound the ROV of x1.

The obtained simulation result is shown in Figure 8.4. The initial state was x0 =
[
π 0 0

]>.
It was found that the tube synthesis problem is infeasible for the considered initial state if
all state variables are allowed to vary arbitrarily fast. Thus, the more complex initialization
procedure of Sections 8.3–8.4 in this case is really necessary. As expected, the pendulum
is driven to its upright equilibrium position x1 = q = 0 and state and input constraints are
respected. Note that the discrete-time embedding (8.27) was used as a prediction model in the
controller, while the non-linear continuous-time model was used for simulation.

8.5.3 Two-tank system
The two-tank system from (Angeli et al. 2000; Casavola et al. 2003) is depicted in Figure 8.5.
A flow of liquid u with density ρ is being pumped into the upper tank. This tank has a
cross-sectional area (CSA) S1. Through a pipe with CSA A1, liquid flows out into the lower
tank which has a CSA S2. From the lower tank, in turn, liquid flows out through a pipe with
CSA A2. It is desired to regulate the liquid levels h1 and h2 at a given setpoint. For this purpose,
the input flow u is available as a control input.
The dynamics of the system are described by the non-linear differential equations

ρS1 Ûh1 = −ρA1
√

2gh1 + u,

ρS2 Ûh2 = ρA1
√

2gh1 − ρA2
√

2gh2,
(8.28)
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Figure 8.4: Simulation result for the electrically driven inverted pendulum.
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Figure 8.5: The two-tank system.
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Description Symbol Value Unit
Tank 1 cross-sectional area S1 2500 cm2

Pipe 1 cross-sectional area A1 9 cm2

Tank 2 cross-sectional area S2 1600 cm2

Pipe 2 cross-sectional area A2 4 cm2

Standard gravity g 980 cms−2

Density of the liquid ρ 0.001 kg · cm−3

Table 8.3: Parameters of the two-tank system, the same as used in (Casavola et al. 2003).

Description Symbol Value Unit
Maximum input flow u 4 kgs−1

Tank 1 maximum level h1 35 cm
Tank 1 minimum level h1 1 cm
Tank 2 maximum level h2 200 cm
Tank 2 minimum level h2 10 cm

Table 8.4: Constraints of the two-tank system, the same as used in (Casavola et al. 2003).

with the parameters shown in Table 8.3. The input flow is subject to a constraint

U = {u | 0 ≤ u ≤ u}

and the liquid levels have to satisfy the bounds described by the state constraint set

X =

{
x =

[
h1
h2

] ���� [h1
h2

]
≤

[
h1
h2

]
≤

[
h1
h2

]}
,

where the values of the constraints are shown in Table 8.4.
In (Casavola et al. 2003), it is shown that the non-linear dynamics (8.28) can be embedded

in a (continuous-time) LPV state-space (LPV-SS) representation by introducing the scheduling
variables

θ1(h1) =
1/
√

h1 − 1/
√

h1

1/
√

h1 − 1/
√

h1

, θ2(h2) =
1/
√

h2 − 1/
√

h2

1/
√

h2 − 1/
√

h2

, (8.29)

where the scheduling set corresponding to (8.29) is

Θ =

{[
θ1(h1)
θ2(h2)

] ���� [h1
h2

]
∈ X

}
=

{
θ ∈ R2 �� 0 ≤ θ ≤ 1

}
. (8.30)

After discretizing the resulting continuous-time embedding using the Euler approach with a
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sampling time of τ = 0.9 seconds, the discrete-time LPV embedding

x(k + 1) =
( [

0.86 0
0.22 0.97

]
+

[
0.12 0
−0.19 0

]
θ1(k) +

[
0 0
0 0.02

]
θ2(k)

)
x(k) +

[
0.36

0

]
u(k),

θ(k) = T(x(k)),
(8.31)

is obtained where T(·) is the scheduling map corresponding to (8.29).
The goal in the simulation is to bring the level h2 of the second tank to a reference value of

115 cm. By solving (8.28), it is found that this corresponds to the equilibrium state and input
values

xss =

[
22.72
115

]
, uss = 1.90.

As was done in (Casavola et al. 2003), the problem of regulating the state to a non-zero
equilibrium is converted into a “stabilization” problem by introducing the translated state and
input variables

x̃ = x − xss, ũ = u − uss,

so that regulating x̃ to zero becomes equivalent to regulating x to the desired setpoint. In all of
the simulations, the following settings were used:

• The tuning parameters were set to Q = diag{0,2}, R = 0.1, and—for the center-based
stage cost (8.8)—P = 5;

• For the tube-based MPC, a controlled 0.995-contractive terminal set Xf with 6 vertices
was computed using the method in Appendix A with X̆ = X;

• The tube-based MPC was initialized according to the bounded ROV approach of
Section 8.3.1, with δ =

[
2 25

]>;
• With the scheduling map T(·) from (8.31), even though it is not an affine function,
the scheduling set sequence can be computed by evaluating T(·) at the vertices of the
constraints sets as done in Section 8.4.1.

For the two-tank system, a total of four different simulations was executed with the following
corresponding MPC designs:

Casavola The controller from (Casavola et al. 2003), with N = 2 and x0 =
[
15 40

]>.
TMPC 1 The tube-based MPC from this chapter with infinity-norm cost function (3.13), and

with N = 4 and x0 =
[
15 40

]>. This simulation allows to compare the behavior of
the TMPC with an infinity-norm cost function to (Casavola et al. 2003), which uses a
quadratic cost.

TMPC 2 The tube-based MPC from this chapter with infinity-norm cost function (3.13), and
with N = 4 and x0 =

[
8 40

]>. This represents an initial state for which (Casavola et al.
2003) is infeasible. For this initial state, the TMPC was also infeasible when an arbitrarily
fast scheduling ROV was assumed: thus, the initialization of the state constraint sets with
a bounded ROV δ was necessary in this case.
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TMPC 3 The tube-based MPC from this chapter with quadratic center-based cost function, and
with N = 10 and x0 =

[
15 40

]>. This compares the behavior of the TMPC with a
quadratic cost function and a longer horizon to (Casavola et al. 2003).

The suggested correction from (Ding and Huang 2007) to the algorithm (Casavola et al.
2003) was applied, requiring that the initial state is contained inside of an ellipsoidal invariant
set. This means that the length of the prediction horizon and the assumed scheduling ROV
do not influence the domain of attraction (DOA) of (Casavola et al. 2003). For this reason,
and because it does not provide a mechanism to ensure that the assumed scheduling ROV is
actually satisfied along realized closed-loop trajectories, the controller (Casavola et al. 2003) is
run with an assumed arbitrarily fast scheduling ROV.

The simulation results are depicted in Figure 8.6. All controllers eventually bring the system
to the desired set point, but in slightly different ways. In particular, it can be observed that the
TMPC with the infinity-norm based cost function pushes the system closer to its constraints
than the controllers with quadratic cost functions. The TMPC with quadratic cost and longer
prediction horizon achieves convergence a bit faster than (Casavola et al. 2003), which uses
a short horizon. Note that the computational complexity of (Casavola et al. 2003) grows
exponentially in the horizon length: therefore, its performance for longer horizons was not
investigated.
For the purpose of further illustration, the realized closed-loop trajectories are shown in a

phase plot in Figure 8.7. The initial tube for “TMPC 2” is shown in Figure 8.8, together with
the generated state constraint sets: as expected, every tube cross section Xi is contained inside
of the corresponding constraint set Xi .

8.6 Concluding remarks

This concluding section starts with Section 8.6.1, which contains a short discussion on the
possibility of including input non-linearities in the embedding (8.2). A summary of the chapter
and suggestions for future work are presented in Section 8.6.2.

8.6.1 Extension to input non-linearities

The extension of the approach presented in this chapter to more general embeddings described
by

x(k + 1) = A (θ(k)) x(k) + B (θ(k)) u(k),

θ(k) = T (x(k),u(k))

should be straightforward. The dependency of T(·, ·) on the control input can be dealt with by
introducing time-varying sequences of input constraints similar to the state constraint sequence
(8.3). With regards to the parameter dependency of the input matrix B, the discussion of
Section 4.6.1 applies.
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Figure 8.6: Closed-loop state and input trajectories in the two-tank example.
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Figure 8.7: Closed-loop state trajectories for the two-tank example in a phase plot.
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Figure 8.8: Tube T0 computed at k = 0 in the two-tank simulation “TMPC 2”.
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8.6.2 Summary
In this chapter, a tube-based MPC strategy applicable to the control of non-linear systems
embedded in an LPV-PSS representation was presented. The principal feature of the approach
is the bounding of predicted closed-loop state trajectories by a sequence of state constraints that
has to be chosen when initializing the controller. The bounding of state trajectories in this way
enables the computation of a corresponding sequence of scheduling sets that are valid along all
possible realized closed-loop trajectories, thus allowing the derivation of strong feasibility and
stability guarantees.

The determination of a sequence of state constraints and corresponding scheduling sets adds a
degree of complexity in the initialization stage of the controller that is not present in approaches
such as (Casavola et al. 2003; Lu and Arkun 2002), where it is simply assumed that the
scheduling sets will be valid along realized closed-loop trajectories. This increased complexity
appears, however, to be a price that has to be paid for guaranteed recursive feasibility.
The development of this chapter has provided an answer to Research Question Q5. As

summarized in Section 1.2.1, the LPV concept was originally introduced to enable the
application of linear control design approaches to non-linear problems. In this chapter, this
reasoning was applied to MPC design. The proposed tube-based controller can be used to
control a non-linear system, but only requires the on-line solution of convex optimization
problems. Naturally, this comes at the cost of reduced achievable performance with respect to
NMPC.
A few relevant topics for future research are the following:

• To enlarge the applicability of the approach, the development of more different and
improved ways of selecting the initial state constraint sequences are of interest. Related to
this, improved and computationally efficient ways for generating the associated scheduling
sets should also be investigated.

• It could be investigated if recursive feasibility can still be established under the less-
restrictive state constraint condition of Definition 3.4 (see also the discussion below
Definition 8.1).

• Modify the method to use of the more advanced tubes of Chapters 4 and 5, as opposed to
just the simple homothetic tubes of Section 3.5.
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Chapter 9

Anticipative control of a thermal system

The development of the anticipative linear parameter-varying (LPV) model predictive
control (MPC) concept was partially motivated in Chapter 1 by a thermal control problem

from semiconductor lithography. To study if the proposed tube-based MPC solutions can indeed
be beneficial for this application, their performance is investigated in a simulation study on a
simplified version of this control problem. The effect of including knowledge on the possible
future immersion hood (IH) trajectories is investigated for different system configurations. It is
found that in certain cases, anticipative control can give some performance benefit as measured
in terms of the realized closed-loop cost. The initial results from this chapter can serve as a
basis for further research on the application of anticipative control techniques to related thermal
problems.

9.1 Introduction
The main steps in the production of integrated circuits (ICs) are depicted in Figure 9.1. In
the central “exposure” or “lithography” step, a pattern that corresponds to the IC that is being
manufactured is projected onto a silicon wafer that is coated with a layer of light-sensitive
material (photoresist) (Lawson and Robinson 2016; Moreau 1988; Singh et al. 2013). In
subsequent processing steps, the parts of the wafer that were not exposed to light are chemically
etched away, thus creating the structure of the IC 1. To manufacture an IC, this whole process
is repeated several times. Every time when the same wafer is exposed, the pattern has to be
projected precisely on top of the previously developed pattern with a maximum overlay error in
the nanometer range.
In immersion lithography, a thin layer of water is held in between the wafer being exposed

and the so-called immersion hood (IH) (Figure 9.2). Because water has a higher refractive index
than air, this allows the projection of smaller details for the same light wavelength (Lawson
and Robinson 2016, Chapter 1). During the exposure, the IH moves over the wafer according
to a prescribed trajectory. Whenever the IH crosses over the edge of the wafer, air bubbles
are formed in the water and these have to be removed. To achieve this, a so-called bubble
extraction system (BES) sucks away the air/water mixture along the wafer edge (Figure 9.3).
This process cools the wafer down locally (Kou 2013). The resulting non-uniform temperature
1Or vice-versa, depending on whether a “positive” or “negative” photoresist is used.
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Figure 9.1: Main steps of semiconductor manufacturing. (Figure from (Boef 2016))

Wafer

Immersion hood (IH) Exposure trajectory

Water

Illumination

Figure 9.2: Immersion lithography: side view.

distribution leads to mechanical deformations at the wafer surface, which can result in imaging
errors causing defects in the produced ICs.

It is therefore desired to control the thermally induced deformations in order to keep them as
small as possible. This can be accomplished by using heaters that are located around edges of
the wafer (Figure 9.4). These actuators are constrained, because they can only supply heat to
the system but not actively cool it down. For this application, this motivates the usage of MPC.
In this system, the position of the IH is an exogenous parameter that influences the thermal

behavior of the system. As will be shown in detail later in Section 9.2, this means that the
thermal dynamics can be described by an LPV model where the scheduling variable depends
on the position of the IH. When an IC is exposed, the IH is controlled to move with respect to

Wafer table Bubble extraction

Local cooling

Figure 9.3: Immersion lithography: idea of the bubble extraction system.
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Immersion hood (IH)
Wafer

Heaters

Exposure trajectory

Figure 9.4: Immersion lithography: top view with heaters.

Heaters

Ambient temperature

Figure 9.5: The simplified thermal system, a 1-D slice of wafer.

the wafer surface according to a prescribed reference trajectory. This implies that at each time
instant, the future position of the IH (i.e., the future scheduling trajectory) is approximately
known in advance. Therefore, an “anticipative” LPV MPC approach that can exploit this future
information could be an attractive control solution.

The purpose of this chapter is to present a preliminary study to investigate the possible utility
of anticipative LPV MPC for this thermal application, and to compare the resulting closed-loop
behavior to that obtained with “non-anticipative” control. In particular, the effect of the size
of the uncertainty on future IH trajectories is considered for different actuator configurations
(maximum heating power and placement).

The remainder of this chapter is structured as follows. A thermal model that will be used
for control and simulation is developed in Section 9.2. Next, in Section 9.3, the setup of the
simulation study is described. The obtained results are presented in Section 9.4, and some
concluding remarks with recommendations for future work are given in Section 9.5.

9.2 Thermal modeling

In this section, a highly simplified thermal model of the wafer is developed. A “slice” of the
wafer is modeled as a one-dimensional beam, and spatially discretized using a finite-difference
approach. This is illustrated in Figure 9.5. The beam has dimensions L × h × d (length ×
height × depth) and is split into M identical elements along the first dimension (length). The
volume of a single element is

V =
L
M

hd (9.1)

185



Chapter 9 Anticipative control of a thermal system

and the heat capacity of a single element is therefore

C = V ρCm (9.2)

where the density ρ (kgm−3) and the specific heat capacity per unit of mass Cm (J · kg−1 · K−1)
are material properties. Let Ti (K) denote the temperature of the i-th element. Its rate of change
ÛTi (Ks−1) is governed by the differential equation

C ÛTi = ÛQi (9.3)

where ÛQi (W) is the net flow of heat into the element. There are three sources that are
contributing to the heat flow ÛQi:

• Each element exchanges heat with its two neighbors (one neighbor in case of the first
and last elements). According to Fourier’s law (Hahn and Özisik 2012), the heat that
flows into the i-th element from its neighbor j is

ÛQi, j = κ
Mhd

L
(
Tj − Ti

)
(9.4)

where κ (Wm−1K−1) is the thermal conductivity, a material property.

• The contact of an element with the IH is the second contribution to the heat flow ÛQi . Let
w (m) denote the width of the IH. Also, the IH is considered to be an ideal heat sink,
i.e., a body of constant temperature Tamb. Without loss of generality, it is assumed that
Tamb = 0. Then, the heat flow between the i-th element and the IH is given by

ÛQi,ih = −θiκ
wd
h

Ti (9.5)

where θi is the ratio of the IH contact area wd that is in contact with element i. The
precise modeling of the scheduling variables θi is discussed later.

• The third and last contribution to the heat flow into an element, are heaters. A heater
can be attached to any element, providing an external heat flow ui (W) into that element.
These heaters are available as actuators for active control of the temperature distribution.

Note that heat exchange with the environment is not modeled separately, i.e., it is assumed
that all heat exchanged with the ambient environment goes through the IH. All of this leads to
the following differential equations governing the dynamics of the simplified thermal system:

C ÛT0 = κ
Mhd

L
(T1 − T0) − θ0κ

wd
h

T0 + u0,

∀i ∈ [1..M − 2] : C ÛTi = κ
Mhd

L
(Ti−1 + Ti+1 − 2Ti) − θiκ

wd
h

Ti + ui,

C ÛTM−1 = κ
Mhd

L
(TM−2 − TM−1) − θM−1κ

wd
h

TM−1 + uM−1.

(9.6)
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Besides the simplification of modeling a one-dimensional slice instead of the full three-
dimensional wafer structure, another major simplification in the model is the absence of additive
disturbance terms. In reality, such terms appear when considering the local cooling effect due
to the BES, see Figure 9.3. Because the asymptotic stability results developed in this thesis
are applicable only to the case when no persistent additive disturbances are present, these are
omitted from the model in this case study. Simulations are instead performed for non-uniform
initial temperature distributions, which could represent the distribution that results after a
BES-induced disturbance has acted on the system.
For MPC, the continuous-time model (9.6) must be temporally discretized. In this chapter,

the first-order Euler approximation is used, which leads to the discrete-time model

T0(k + 1) = τ
κMhd

CL
(T1(k) − T0(k)) +

(
1 − τθ0

κwd
Ch

)
T0(k)

+ τ
1
C

u0(k),

∀i ∈ [1..M − 2] : Ti(k + 1) = τ
κMhd

CL
(Ti−1(k) + Ti+1(k) − 2Ti(k))

+

(
1 − τθi

κwd
Ch

)
Ti(k) + τ

1
C

ui(k),

TM−1(k + 1) = τ
κMhd

CL
(TM−2(k) − TM−1(k))

+

(
1 − τθM−1

κwd
Ch

)
TM−1(k) + τ

1
C

uM−1(k),

(9.7)

where τ is the sampling time in seconds. The above discrete-time model can be written in the
standard LPV state-space (LPV-SS) form

x(k + 1) = A (θ(k)) x(k) + Bu(k).

In this particular model, A(·) is a tridiagonal matrix and for every frozen scheduling value
θ̄ its eigenvalues are distinct, real, and have a magnitude strictly less than one. Because the
scheduling variables θ0, . . . , θM−1 are used to model the effect of the IH touching the wafer,
they are functions of its position. This functional dependence is omitted from the notation in
(9.7) for simplicity.

As stated before below (9.5), the value of θi is defined as the ratio of the area of the IH that is
in contact with the i-th element. A similar definition of the scheduling variable was considered
before in the 2D-case in (Kou 2013). Let

p ∈ [
w

2
, L −

w

2
] = Π (9.8)

denote the position of the center of the IH with respect to the beam. An expression for the
relationship p 7→ (θ0, . . . , θM−1) will now be derived. For simplicity, the following assumption
is made.

Assumption 9.1. The width w of the IH is less than or equal to the width of a single element,
i.e., w ≤ L

M .
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Based on Assumption 9.1, to model the dependency of the vector of scheduling variables on
the IH position, introduce a, b ∈ R as[

a
b

]
=

[
L

2M 1
L

2M −
w
2 1

]−1 [ 1
2
1

]
and define

θ̄(q) =

{
max {min {−aq + b,1} ,0} , q < 0,
max {min {aq + b,1} ,0} , q ≥ 0.

The desired functions θi(·) are then constructed as

∀i ∈ [0..M − 1] : θi(p) = θ̄
(
p − i

L
M
−

L
2M

)
.

These functions are also referred to as “activation functions”. An illustrative plot of their values
for the case that M = 4 and w = L

2M is provided in Figure 9.6.
Denote

θ(p) =
[
θ0(p) θ1(p) · · · θM−1(p)

]> (9.9)

and observe that

∀p ∈ Π :
M−1∑
i=0

θi(p) = 1,

where Π is the interval defined in (9.8). This implies that

∀p ∈ Π : θ(p) ∈ Θ

with Θ ⊆ RM being the M-dimensional standard simplex, i.e.,

Θ = convh



1
0
...
0


,


0
1
...
0


, . . . ,


0
0
...
1



. (9.10)

The scheduling set Θ in (9.10) has M vertices.
The IH is controlled to follow a known reference exposure trajectory. Therefore, at any time

instant, the future trajectory for the position p can be predicted up to a small uncertainty. In
the sequel, it is assumed that at each time instant k ∈ N, the current position p(k) is measured
exactly. Furthermore, it is assumed for its future trajectories that it is known that

∀i ∈ [1..N − 1] : p(k + i) ∈
(
p̄(k + i) ⊕ ∆

)
∩ Π (9.11)

where p̄ : N→ Π is a known reference signal, and the uncertainty interval is

∆ = [−δ, δ]
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Figure 9.6: Illustration of activation function values as a function of p for the case that M = 4
and w = L

2M .
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Description Symbol Value Unit
Sampling time τ 50 ms
Prediction horizon N 20 samples
State weight Q I
Input weight R 0.01I

Table 9.1: Model settings and controller tuning.

with δ ∈ R+. This description of uncertain future IH positions is like the description of
uncertain future scheduling trajectories of Equation 3.4. The difference is that in the current
model, an extra step has to be performed in order to translate the sets of future positions into
corresponding M-dimensional sets of scheduling values Θi ⊆ Θ ⊂ R

M . These sets are defined
for all k ∈ N as

∀i ∈ [0..N − 1] : Θi =

{
{θ (p (k))} , i = 0,
convh {θ(p) | p ∈ p̄(k + i) ⊕ ∆} , i > 0,

(9.12)

where p(k) is the current IH position that is measured exactly, and θ(·) is the function defined
in (9.9). The computation of the sets Θi , i ∈ [1..N − 1] is difficult in principle, because θ(·) is
a non-convex piecewise affine (PWA) function. However, because the position p is scalar, good
approximations can be obtained relatively efficiently by gridding over p and eliminating the
redundant points to obtain vertex representations of the convex hulls of Θi .

9.3 Experiment description
The purpose of the experiment proposed in this section is to investigate the effect of including
the “anticipative” knowledge about possible future scheduling trajectories in the thermal control
problem. It is not the intention to present a realistic simulation study, but instead to gain
some insight in the circumstances under which anticipative control can lead to differences and
improvements in the achieved control performance. For this purpose, the simplified thermal
model developed previously in Section 9.2 is employed. The considered control problem
is regulation of the temperature to the origin, while the IH is moving according to a given
trajectory. The system (9.7) is open-loop asymptotically stable, so even when applying no
control inputs the temperature will converge to zero eventually. However, through the use of
heaters, this convergence can possibly be achieved faster.

Because the main purpose of the simulations presented here is to study the effect of including
“anticipative” knowledge on achievable control performance, the influence of other design
variables (such as the tube parameterization) is not considered. For this reason, the used
controller is the most simple one from this thesis, namely the homothetic TMPC of Section 3.5.
The controller tuning and sampling time are set to the values displayed in Table 9.1. Observe
that with the given settings, the prediction horizon of N = 20 samples corresponds to 1 second.
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Description Symbol Value Unit
Thermal conductivity κ 150 Wm−1K−1

Density ρ 2330 kg ·m−3

Specific heat Cm 710 J · kg−1 · K−1

Table 9.2: Material properties of silicon.

Description Symbol Value Unit
Beam length L 10 cm
Beam height h 1.0 mm
Beam depth d 2.0 mm
IH width w 1.0 cm
Number of elements M 4

Table 9.3: Dimensions.

In the simulations, the material properties that appear in (9.6) are taken to be those of
silicon. These properties are summarized in Table 9.2. The assumed physical dimensions of
the components are given in Table 9.3. The small number of elements M = 4 means that the
model (9.7) can only provide a crude approximation of the true thermal dynamics of the beam.
This choice is unfortunately necessary due to computational complexity considerations related
to the representation of the terminal set (which corresponds also to the shape of the tube cross
sections).
For the model (9.7), it is found that the M-dimensional hypercube

Xf = αf
{

x ∈ RM
�� ‖x‖∞ ≤ 1

}
(9.13)

is controlled invariant (i.e., λ = 1) in the sense of Definition 2.13, where αf is a scaling such
that Xf ⊆ X. Physically, this follows from the fact that the temperature of an element can
never exceed the maximum of the initial temperatures, even if no control inputs are applied. It
was unfortunately found that computing controlled contractive sets (i.e., λ < 1) was difficult2.
Therefore, the invariant set (9.13) was used as a terminal and cross section shape set. Strictly
speaking this is a violation of the developed stability conditions, but as will be seen later, no
particular problems were observed in the simulations. The value of the terminal cost (3.19)
was computed using a hypothetical value of λ = 0.99 to avoid a division by zero.

In the sequel, the state constraints are chosen to be

X =
{

x ∈ RM
�� ‖x‖∞ ≤ 15

}
and the scaling αf in (9.13) is set to αf = 5.

Remark 9.1. The control approach of Section 3.5 relies, like the other approaches from this
thesis, on the availability of the vertex representation of (9.13). Because the number of vertices
2For λ < 1, Algorithm 2.1 did not converge before memory was exhausted.
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of the M-dimensional hypercube is 2M , this automatically leads to a restriction to small values
of M .

The movement of the IH is modeled as follows. The reference position p̄(·) in (9.11) is
generated according to

p̄(0) =
w

2
, (9.14a)

v(0) = v̄, (9.14b)

v(k) =

{
v(k), w

2 < p(k) < L − w
2 ,

−v(k), otherwise,
(9.14c)

p̄(k + 1) = p(k) + v(k)τ, (9.14d)

i.e., the IH is controlled to move back-and-forth with a constant speed v̄ (m/s), starting from the
initial position p̄(0). In particular, (9.14c) means that the IH reverses direction when it reaches
the edge of the wafer. In the presented simulations, the value v̄ = 3.0 cm/s is used.
The value of δ in the description of possible future IH positions in (9.11) represents the

uncertainty in its future trajectory. In the simulations, this parameter is going to be varied
to study its effect on the achieved control performance. The true realized IH trajectories are
generated according to

p(k) = (p̄(k) + n(k)) ∩ Π (9.15)

where n : N→ N is a random signal with values drawn uniformly from the interval

N =
[
−
w

10
,
w

10

]
.

In order to be consistent with (9.15), the minimum value of δ in the description (9.11) is
therefore δ = min{|δ | | δ ∈ N} = w

10 .
The heaters are subject to an input constraint of the form

U = {u ∈ Rnu | 0 ≤ u ≤ ū}

where ū ∈ R+ represents the maximal heating power. The dimension nu depends on the number
of elements in (9.7) to which a heater is attached. In everything that follows, the following two
cases will be considered:

Endpoint actuation In the endpoint actuation case, there is a heater connected to the first and
last element, so there are nu = 2 control inputs.

Full actuation In this case, there is a heater connected to every element, so there are nu = M
control inputs.

All the simulations are performed for an initial state of the form

x0 = −x̃0

[
−1 −1 + 1 4

3(M−1) −1 + 2 4
3(M−1) · · · −1 + (M − 1) 4

3(M−1)

]>
(9.16)
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Figure 9.7: Initial temperature distribution according to (9.16), for the case that x̃0 = 1 K and
M = 4.

with x̃0 ∈ R+. This corresponds to a linear temperature distribution in the beam. Such a
distribution could result after a BES disturbance (Figure 9.3) has acted on the system, and has
cooled down the beam at one side. This initial distribution for x̃0 = 1 and M = 4 is illustrated
in Figure 9.7.
The purpose of the simulations that follow is to compare the obtained control performance

between anticipative and non-anticipative control. To reiterate, the difference between
anticipative and non-anticipative control is as follows:

Anticipative control In the “anticipative” case, the description (9.11) of future IH trajectories
is used. The value of δ can be changed according to the level of knowledge on future IH
positions that is assumed to be available.

Non-anticipative or “classical” control In this case, no use is made of the description (9.11)
of future IH trajectories. Instead, the only assumption that is made is that p(k + i) ∈ Π
(see Equation 9.8) for all future time instances k + i with i ∈ [1..∞).

In all other respects, the two controllers are the same. The stage cost is of the max-type
from Section 3.4.5 with the infinity norm and c = 1. Hence, the criterion that will be used to
compare the control performance is the simulated closed-loop cost

Jsim =

Nsim∑
k=0
‖Qx(k)‖∞ + ‖Ru(k)‖∞ (9.17)

where Nsim > 0 is the length of one simulation in samples. For every simulation scenario, the
relative difference

η =
Jc

sim − Ja
sim

Jc
sim

(9.18)

in the achieved cost for an anticipative (Ja
sim) and a non-anticipative (J

c
sim) controller is computed.

A positive value of η indicates that the anticipative controller, i.e., the controller using the
description (9.11) of possible future IH trajectories, outperforms the non-anticipative controller.
Because the anticipative controller exploits more detailed information about what is going to
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happen in the system, it is expected that η ≥ 0 in all cases (i.e., it is expected that using the
description (9.11) does not deteriorate performance).
In the next section, some simulation results showing the realized differences between

anticipative and non-anticipative control are presented.

9.4 Simulation results
This section presents the results of the simulations carried out in accordance with the experiment
description of the previous section. In Section 9.4.1, the endpoint actuation case is considered.
The effect of the values ū and δ on the relative cost difference η are investigated. In Section 9.4.2,
the same thing is done, but for the full actuation case. The computational properties of the
approaches and the difference between linear time-varying (LTV) and LPV control is highlighted
in Section 9.4.3. Finally, in Section 9.4.4, the effect of increasing the IH heat transfer coefficient
on the relative cost difference η is considered.

9.4.1 Endpoint actuation case
As a first step, the effect of the size of the input constraint ū and the uncertainty δ in future
IH positions on the relative cost difference (9.18) is investigated. This is done for an endpoint
actuator configuration, where a heater is connected to the first and last element of the beam.
The used simulation length is Nsim = 100 samples, corresponding to 5 seconds.

The results, for different initial state magnitudes x̃0, are illustrated graphically in Figure 9.8
(see Equation 9.16 for the definition of initial state). In these plots, each square corresponds to
a particular combination of values (ū, δ). The color of the square indicates the corresponding
value of η. A white square indicates that at least one of the tube synthesis problems was
infeasible for the given initial state and corresponding combination of (ū, δ), so that no η-value
could be determined.

From Figure 9.8, it can be observed that there is a region of values of ū for which anticipative
control provides the highest relative improvements. This region approximately covers the range
ū ∈ [0.07,0.32]. If ū becomes too large or too small, however, the relative benefit decreases.
The maximum relative improvement η for any constraint size is about 10%.

It appears that for small values of ū (relative to the magnitude of the initial condition), the
achievable control performance is limited by the input constraints, and it is almost impossible
to attain improvements by means of better control. Likewise, for large ū, the system seems
easy to control, and any controller is able to achieve good performance. Only somewhere in
between these two extremes there is a “sweet spot” where an anticipative controller can provide
some benefit.

A representative scheduling trajectory that was used for these computations, corresponding
to the disturbed IH position (9.15), is shown in Figure 9.9. Recall that the scheduling signal
θ(·) is generated from the IH position p(·) according to (9.9), and that p(·) behaves as described
by (9.15).
From Figure 9.8, it also appears that the relative improvements increase with improved

knowledge (i.e., smaller δ) of the future IH positions. The relationship between δ and η, for one
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Figure 9.8: Relative differences η between realized closed-loop costs in the “classical” and
“anticipative” cases with endpoint actuation, for various combinations of input
constraint size ū and size of uncertainty δ in the future IH positions, and for different
initial states x̃0. A white square indicates that at least one of the tube synthesis
problems was infeasible for the given combination (x̃0, ū), so that the corresponding
η value could not be computed.

particular choice of the input constraint, is shown in Figure 9.10. It is confirmed that smaller δ
lead to improved η, which is in agreement with the expectations.
In these simulations, the case that δ = 0 represents an “oracle”-approach in which it was

assumed that the uncertain future scheduling trajectory generated by (9.15) is known exactly in
advance. Equivalently, this means that the future behavior of the noise signal n(·) is known. This
is unrealistic, but represents the best possible closed-loop performance that can be achieved.

For the cases that δ > 0, the value of δ represents the uncertainty in future IH trajectories in
terms of a maximum deviation around a nominal trajectory according to (9.11). In Figure 9.10,
it can be seen that for small δ the performance of anticipative control is quite close to this
theoretical maximum. All considered values δ > 0 are such that δ ≥ δ, i.e., are consistent with
the true realized IH trajectories (9.15).
The realized closed-loop state and input trajectories for the configuration from Figure 9.10

where a relative improvement of almost 10% is attained, are depicted in Figure 9.11. It is
observed that the anticipative controller keeps the first, second, and fourth state variables closer
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Figure 9.9: Representative scheduling trajectory corresponding to (9.15). The IH speed is
v = 3.0 m/s.
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Figure 9.10: Relative difference η in closed-loop cost as function of δ, for fixed initial state x̃0
and input constraint ū. (Endpoint actuation)

196



9.4 Simulation results

to zero and thereby achieves an improved closed-loop cost (9.17).

9.4.2 Full actuation case

To show what happens with a different actuator configuration, the simulations of Section 9.4.1
are repeated for the full actuation case. As previously, the used simulation length is Nsim = 100
samples, corresponding to 5 seconds. The obtained relative differences η between anticipative
and non-anticipative control for different values of ū, δ, and x̃0 are shown in Figure 9.12. As in
the previous section, each square corresponds to a particular combination of values (ū, δ) and
the color of the square indicates the corresponding measured value of η.
As in the endpoint actuation case, there is a region of values of ū for which anticipative

control is able to provide some performance benefit when compared to non-anticipative control.
The principal difference with respect to endpoint actuation is that this region is much narrower.
The maximum relative improvement η for any initial state magnitude x̃0 and for any constraint
size is about 9.5%.

The relationship between δ and η, for one particular choice of the input constraint, is shown
in Figure 9.13. Like in the endpoint actuation case considered previously, the measured value
of η is increasing as δ becomes smaller. A representative closed-loop trajectory, showing the
difference between non-anticipative and anticipative control, is provided in Figure 9.14.

9.4.3 Computational load and LTV control

A box plot summarizing the computation times necessary to solve the on-line tube synthesis
problems for the endpoint actuation case is shown in Figure 9.15. In these plots, the bottom and
top of the box respectively indicate the 25th and 75th percentiles of the measured computation
times (i.e., 25% of the measured times are below the lower edge of the box, and 75% of the
measured times are below the top edge of the box). A line inside of each box indicates the
median. The lines that extend from the bottom and top of the boxes indicate the full range of the
measured computation times, but excluding times that are considered to be outliers. Outliers
(i.e., unusually high or low computation times) are depicted by the “+”-symbol.

It is observed that the anticipative controller is on average somewhat faster than the non-
anticipative one: this is because for small δ, the scheduling sets Θi generated according to
(9.12) have less vertices than the full set Θ. It is emphasized that, due to the exponential
complexity in M of representation of the used invariant set, the computation times grow rapidly
with M (see Remark 9.1). The computations were carried out on the same computer as the
other simulations in this thesis, and its specifications can be found in, e.g., Table 6.1.

One way of significantly decreasing the computational load is to consider an LTV controller,
in which it is assumed that the full future scheduling trajectory (9.15) is known exactly in
advance. This is called an “oracle LTV” approach and corresponds to the situation with δ = 0
in Section 9.4.1 and Section 9.4.2. The assumption that the future IH trajectory (9.15) is known
exactly in advance is, however, unrealistic.

It is also possible to consider an LTV controller based only on the nominal IH position p̄(·).
In the sequel, this will be referred to as a “nominal LTV” approach. In this approach, the
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Figure 9.11: Closed-loop state and input trajectories for one particular setting of (x̃0, ū, δ), with
endpoint actuation.
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Figure 9.12: Relative differences η between realized closed-loop costs in the “classical” and
“anticipative” cases with full actuation, for various combinations of input constraint
size ū and size of uncertainty δ in the future IH positions, and for different initial
states x̃0. A white square indicates that at least one of the tube synthesis problems
was infeasible for the given combination (x̃0, ū), so that the corresponding η value
could not be computed.
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Figure 9.13: Relative difference η in closed-loop cost as function of δ, for fixed initial state x̃0
and input constraint ū. (Full actuation)

controller ignores any uncertainty in the future IH trajectory, and assumes at every sampling
instant k that

∀i ∈ [1..N − 1] : p(k + i) = p̄(k + i)

where p̄(·) is the nominal trajectory generated by (9.14). This leads to the loss of theoretical
guarantees on recursive feasibility and stability because the actual IH trajectory is generated by
(9.15), but can still be attractive for a practical application due to the reduced computational
load.
Simulated closed-loop trajectories, including the non-anticipative (“classical”) LPV, an-

ticipative LPV, oracle LTV, and nominal LTV controllers, are shown in Figure 9.16. Only
the trajectories for the first state variable and first control input are shown, because these are
the signals where the difference between the four approaches is most clearly seen. Because
the oracle LTV controller exploits the availability of the exact future IH positions (9.15), this
represents the best possible achievable closed-loop performance. The trajectory with the
nominal LTV controller is almost indistinguishable from this best possible trajectory, and in fact
leads to the same realized closed-loop simulated cost over a simulation length of Nsim = 120
samples. The obtained simulated cost values and the corresponding η-values are presented in
Table 9.4.

The solver run times for both LPV and LTV control are summarized in the box plot of
Figure 9.17, showing the dramatic difference in complexity. It is, however, again emphasized
that the much lower complexity of nominal LTV control comes at the price of losing theoretical
guarantees on recursive feasibility and closed-loop stability—even though in this specific
example, it performs very well.
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Figure 9.14: Closed-loop state and input trajectories for one particular setting of (x̃0, ū, δ), with
full actuation.

201



Chapter 9 Anticipative control of a thermal system

LPV Cls LPV Ant

50

100

150

200

Figure 9.15: Illustration of solver run times per sample: comparison of non-anticipative LPV
and anticipative LPV control. (Endpoint actuation)
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Figure 9.16: Closed-loop state and input trajectories for one particular setting of (x̃0, ū, δ),
including LTV control. The trajectories obtained with the “oracle LTV” and
“nominal LTV” controllers are virtually identical. (Endpoint actuation)
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9.4 Simulation results

Controller Jsim η

LPV Classical 320 0
LPV Anticipative (δ = 5 mm) 299 0.066
LTV Oracle 288 0.100
LTV Nominal 288 0.100

Table 9.4: Simulated cost values for different controllers. (Endpoint actuation)
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Figure 9.17: Illustration of solver run times per sample: comparison of LPV and LTV control.
(Endpoint actuation)
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Figure 9.18: Relative difference η in closed-loop cost as function of δ, for fixed initial state x̃0
and input constraint ū. (Endpoint actuation with kih multiplied by ακ = 5)

9.4.4 Effect of the IH heat transfer coefficient
The heat exchange between the wafer and the IH is modeled in (9.5). This heat flow is
proportional to the constant κ (Wm−1K−1), which is the thermal conductivity of the wafer
material. To study what is the effect of increasing the rate of heat transfer between the wafer
and the IH, relation (9.5) is replaced by

ÛQi,ih = −θiακ κ
wd
h

Ti

where ακ > 1 is a scaling factor. A higher value of α means that the effect of scheduling
variations on the system dynamics is increased.

It can be expected that the relative performance improvement of anticipative over non-
anticipative control will increase as the influence of the scheduling variable on the system
becomes more significant. To see if this is indeed the case, the values of η are computed as a
function of δ for one choice of input constraint and initial state, and for ακ = 5. A simulation
length of Nsim = 100 samples is used.
The result is shown in Figure 9.18. The realized values of η are higher than those obtained

in Section 9.4.1 and Section 9.4.2. It can therefore be concluded that the relative benefit of
anticipative control indeed becomes greater whenever the influence of the scheduling variable
on the system dynamics is more severe.

9.5 Concluding remarks
In this chapter, the application of tube-based anticipative LPV MPC to a simplified thermal
control problem was considered. It was found that, for the particular model parameters used,
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anticipative control could achieve a modest improvement in the realized closed-loop cost when
considering a linear initial temperature distribution. For both the endpoint and full actuation
cases, the magnitude of this improvement was found to be dependent on the size of the heater
input constraint in relation to the initial state. This preliminary result indicates that, for the
considered system, there exist some situations in which an anticipative MPC strategy can be
beneficial with respect to a non-anticipative MPC strategy.
The principal limitation for applying the proposed anticipative control methods to a more

accurate thermal model with a large number of elements M , is computational. In the tube-based
MPC approach, a contractive terminal set is necessary to guarantee recursive feasibility and
closed-loop stability. This same set has to be used as the tube cross section shape set. For
this particular system, it was found that the M-dimensional hypercube is a suitable set for this
purpose. Unfortunately, the complexity of the required vertex representation of this set grows
as 2M , limiting application of the approach to small values of M .

To overcome this computational challenge, for a practical thermal control application where
the size of δ in (9.11) is small, it is suggested to consider LTV MPC based on the nominal
trajectory p̄(k) instead of LPVMPC. By employing such an LTV strategy, theoretical guarantees
on recursive feasibility and stability in the presence of uncertain future scheduling trajectories
can not be given. Nonetheless, if the uncertainty is small, good performance can be achieved at
a computational cost that is very much reduced with respect to “theoretically correct” LPV
MPC.
Finally, it was illustrated that artificially increasing the effect of the scheduling variable

on the system dynamics by scaling the IH heat transfer coefficient leads to greater relative
differences between anticipative and non-anticipative control.
The results from this chapter are of a preliminary character and are meant to provide a

basis for further work on the application of anticipative techniques to related thermal control
problems. Some possible future research directions are suggested as follows:

• It could be possible that there exist (polytopic) contractive sets for a thermal system of
the form (9.7) with a lower representation complexity in terms of the number of vertices.
Finding such sets can be an objective of further applied research.

• The complexity-reduction approach of Chapter 6 could be considered to reduce the
on-line computational complexity of the controller.

• In this chapter, an infinity-norm based cost function was used. For the thermal system,
the effect of using a cost function based on a different norm (e.g., the one-norm) should
be investigated.

• It is emphasized that the results presented in this chapter are valid for one particular
set of parameters (number of elements, material properties, dimensions, controller
tuning, IH trajectory, ...) and the results can be different for other values of these
parameters. Therefore, it is recommended to study if comparable results are achieved
when considering different and perhaps more realistic model parameters.
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Chapter 10

Conclusion

This final chapter presents an overview of the research that was reported in this thesis. Its
main contributions are highlighted, and based on these results some possible directions

for future work are suggested.

10.1 Overview
The principal goal of the research presented in this thesis was to provide an answer to the
following main research question:

Q0. How to design a stable and tractable LPV MPC strategy for regulation and
tracking that can exploit knowledge about the possible future evolution of the
scheduling variable?

In order to come to a satisfactory answer to Question Q0, and based on the overview
of the current literature in Section 1.3, several subquestions were proposed in Section 1.4.
These were addressed separately in order to formulate a solution that addresses Question Q0.
These subquestions are now recalled and the developed answers—which together make up the
contributions of the thesis—are summarized.

How to construct a practically useful description of the uncertain future
evolution of the scheduling variable?
Question Q1 was addressed in Chapter 3. It was proposed to describe possible future scheduling
trajectories in terms of a sequence of sets. The notion of “anticipative” control was introduced
to describe a predictive controller that can exploit this future information to possibly improve
its achievable control performance. It was shown that the paradigm of tube-based model
predictive control (MPC) offers the potential to construct anticipative controllers for linear
parameter-varying (LPV) systems. As the main contribution of this chapter, this has led to
the development of a framework for anticipative predictive control of LPV systems with a
computational complexity that scales linearly in N .
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How to use the model developed as the answer to Question Q1 in a
stable LPV MPC strategy for stabilization?

Question Q2 was considered in Chapter 3 and, in a more general fashion, in Chapter 4.
In Chapter 3, a tube-based MPC algorithm for LPV systems was presented based on the
construction of so-called homothetic tubes. To guarantee recursive feasibility and closed-loop
stability, a controlled λ-contractive set was employed.
In Chapter 4, it was proposed to relax the requirement that the terminal set must be λ-

contractive by considering finite-step contractive sets instead. Thus, the main contribution of
Chapter 4 has been the development of more general stability conditions for tube-based MPC
for LPV systems based on the notion of finite-step contraction. The development of efficient
methods for constructing finite-step contractive sets for LPV systems is a possible topic of
future research.

Also, in Chapter 9, it was shown how the developed description of possible future scheduling
trajectories can be used in an MPC to stabilize a thermal system. Under some circumstances,
the use of “anticipative” control can improve the realized closed-loop performance. Although
the results were obtained on a highly simplified model, the presented work could serve as
a basis for further research on the application of anticipative control techniques to thermal
problems.

Is it possible to introduce an extra degree-of-freedom in the design of
the tube parameterization?

One answer to Question Q3 was proposed in Chapter 5. The main contribution of this chapter
has been the development of a heterogeneously parameterized tube (HpT) framework that
allows the combination of different cross-section parameterization in a single tube. The choice
of parameterizations can be considered as an additional degree of freedom (DOF) in the
overall tube design. It was shown that this extra design DOF has the potential to improve the
trade-off between computational complexity and size of the domain of attraction (DOA) of the
resulting controllers. Topics for future research include the optimal design of heterogeneous
parameterization structures, the implementation of different cross sections parameterizations,
and further improvements to computational efficiency.
An alternative answer to Question Q3 was presented in Chapter 6. The contribution of this

chapter has been the development of a computational method that allows for an off-line design
of the tube parameterization, such that the resulting controller is guaranteed to be feasible on a
pre-specified set of initial conditions. An open problem that can be addressed in the future is
the elimination of redundant constraints in addition to decision variables. Further, the effect of
the used linear program (LP) optimization algorithm on the computational performance of the
proposed method should be studied in more detail, and the effect of the parameterization on the
realized closed-loop cost should be considered.
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How can the developed strategies for “stabilization” be adapted to the
“tracking” case?
Question Q4 was considered in Chapter 7. The contribution of this chapter was the development
of a tube-based MPC strategy for tracking constant references based on so-called bounded-error
invariant sets. The proposed method guarantees an a-priori specified bound on the tracking error
in the face of all possible variations of the scheduling signal. Topics for future work include
studying the possibility of guaranteeing offset-free tracking if the scheduling variable stops
varying, enlarging the DOA, and extending the method to handle a larger class of references
such as those generated by so-called reference governors.

How to apply the developed LPV MPC approaches to the control of LPV
embeddings?
Research Question Q5 was the last one to be addressed in Chapter 8. The feature of the approach
is the bounding of predicted closed-loop state trajectories by a sequence of state constraints.
This enables the computation of a corresponding sequence of scheduling sets that are valid
along all possible realized closed-loop trajectories, which can be used in an anticipative LPV
MPC approach. As the contribution of this chapter, this gives a predictive control approach
for non-linear systems described in terms of an LPV embedding with guaranteed recursive
feasibility and closed-loop stability. The main questions that should be addressed in the future
are how to systematically select the initial state constraint sequence and how to efficiently
compute the corresponding scheduling sets. Studying the possibility of proving recursive
feasibility under less restrictive state constraint conditions is also of interest.

10.2 Main contributions and future work
Based on the overview given in Section 10.1, the main contributions of this thesis can be
succinctly listed as follows:

• Introduced a framework for “anticipative” control for LPV systems with a complexity
that scales linearly in the prediction horizon N (Chapter 3).

• Developed new stability conditions for LPV tube MPC based on finite-step contraction
(Chapter 4). This presents a relaxation of the usual stability conditions in tube-based
MPC based on “normal” controlled contractive sets.

• Proposed new “heterogeneous” and “sparse” tube parameterizations (Chapter 5 and
Chapter 6). Both of these approaches provide new freedoms in the design of tube
parameterizations, which can be exploited to achieve different and more favorable trade-
offs between computational complexity and achieved control performance as measured
in terms of the size of the DOA.

• Created an opening towards the development of a constrained LPV reference tracking
approach (Chapter 7). In contrast to previously considered approaches, the proposed
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method guarantees an a-priori specified bound on the tracking error for all possible
variations of the scheduling signal.

• Presented a new approach for the constrained control of non-linear systems represented by
an LPV embedding (Chapter 8). The main novel feature of the method is the integration of
sequences of constraint sets that are used to bound possible future scheduling trajectories
by means of a scheduling map: in this way, it becomes possible to guarantee closed-loop
stability with the LPV MPC controller and the original non-linear system.

Together, these contributions form the elements of an answer to Research Question Q0.
Naturally, this answer is not final or even complete, and there is ample opportunity for extension
and improvement. Specific suggestions for future work relating to the individual research
questions were already provided at the ends the corresponding chapters, and these were also
summarized in the overview of Section 10.1. Some more general pointers for future research
are given below:

• Several chapters in this thesis have introduced new design DOFs in tube parameterizations.
However, it was not always completely explored how this new freedom can be exploited
to the fullest possible advantage. This holds true particularly for the developments
of Chapter 4 (how to compute S0), Chapter 5 (how to choose the heterogeneous
parameterization structure), and Chapter 8 (how to pick the initial state constraint sets).
Hence, it is suggested to develop procedures that can systematically exploit the new
design freedoms to obtain controllers with favorable complexity/performance trade-offs.
A first idea for this is to consider evolutionary optimization methods (such as PSO, which
is employed in Appendix A) to design heterogeneous tube parameterizations.

• With respect to cross section parameterizations, only the homothetic case was considered
for implementation, even though the developed theoretical results allow for other
possibilities. These include elastic tubes, and perhaps novel parameterizations yet to be
invented. It is therefore suggested to pursue the implementation of different cross section
parameterizations in the tube-based anticipative LPV MPC setting.

• In Chapter 9, the anticipative control approach based on homothetic tubes was used
on a simple thermal model. To study further the applicability and limitations of the
proposed methods, it is suggested to implement them on more case studies. Besides the
homothetic tube-based approach of Section 3.5, these studies should include the periodic,
heterogeneous, and sparse tubes as well.

• A disadvantage of the developed approaches is that the focus on theoretical correctness
(guaranteed recursive feasibility and closed-loop stability) leads to high computational
burdens. In particular, the complexity of the developed algorithms scales badly in the
state dimension. For systems with more than three states, the overall computational
load is high despite the formulation as an LP with linear scaling in N . Computational
complexity has been a longstanding issue in robust and LPV MPC that has not yet been
resolved in a completely satisfactory manner. Therefore, any new research in the broad
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area of MPC for LPV systems—not necessarily restricted to tube-based methods—is
always to be encouraged.

It is hoped that this thesis will inspire more research on anticipative model predictive
control for linear parameter-varying systems, either following the above suggestions or along
novel—“unanticipated”—lines.
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Appendix A

Synthesizing finite-step contractive sets
with PSO

This appendix describes a method, based on particle swarm optimization (PSO), for the
computation of (polytopic and symmetric) finite-step contractive sets. The complexity of

the first set in the sequence is fixed by specifying its number of vertices. The computed sets can
be used in the tube model predictive control (TMPC) approach of Chapter 4. The method from
this appendix has also been used in various other locations in the thesis to compute “normal”
controlled λ-contractive sets with pre-specified complexity.

A.1 Problem setting
Consider a polytopic LPV state-space (LPV-PSS) representation of the form

x(k + 1) = A(θ(k))x(k) + Bu(k). (A.1)

Furthermore let (M, λ) ∈ [1,∞) × [0,1) be given. The problem addressed in this appendix is to
find a set, with the largest possible volume, that is controlled (M, λ)-contractive with respect to
the system (A.1) (see Definition 4.1). This objective corresponds to

S? = arg max
S∈2Rnx

volume (S)

subject to S satisfies Def. 4.1 w.r.t. (A.1) for the given (M, λ).
(A.2)

This problem is intractable, as the optimization is over arbitrary PC-sets in Rnx . Therefore,
in this appendix, an approximate solution to (A.2) is proposed where the optimization is over
symmetric polytopes. Even with this restriction, the problem (A.2) is difficult to solve because
it involves the maximization of the volume of a polytope.
For this reason, it is proposed to employ a non-linear optimization method called particle

swarm optimization (PSO) in order to find (approximate) solutions to (A.2). PSO is an
unconstrained evolutionary optimization method that aims to find a local minimum of a problem
of the form minx f (x) (Kennedy and Eberhart 1995; Poli et al. 2007; Sandou 2009).
PSO was used previously for the computation of “normal” controlled contractive sets in

(Munir et al. 2016). In this appendix, the more general case of controlled (M, λ)-contraction
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is considered. Furthermore, in (Munir et al. 2016) the polytopic sets are described by an
H-representation, whereas the method from this appendix uses V-representations. This allows
the computation of sets that are controlled contractive under a vertex control policy, whereas
the H-representation used by (Munir et al. 2016) necessarily restricts attention to linear state
feedback policies.

A.2 The algorithm

In this section, the proposed algorithm for computing finite-step contractive sets is presented.
First, Section A.2.1 gives a more tractable approximation of (A.2) by restricting the class of
considered sets to symmetric polytopes. Next, in Section A.2.2, an approach for quantifying
“how close” a given set of the form (A.3) is to being controlled (M, λ)-contractive is developed
in terms of an elastic linear program (LP). This LP is subsequently used as a constraint test in
the overall optimization algorithm, which is presented in Section A.2.3. A few remarks on the
required polytope volume computations are provided in Section A.2.4.

A.2.1 Set parameterization

To render the problem (A.2) tractable, the optimization is restricted to symmetric polytopes of
the form

S(v) = convh
{
v1, . . . , v 1

2 nv
,−v1, . . . ,−v 1

2 nv

}
(A.3)

where 1
2 nv is a design parameter fixing the number of vertices of S(v). The decision variable v

is therefore
v =

(
v1, v2, . . . , v 1

2 nv

)
∈ V = R

1
2 nvnx .

By restricting the sets S(v) to be symmetric, it is ensured that they contain the origin and are
therefore PC-sets by construction.
Conceptually it is also possible to consider a simpler parameterization of S(v) leading to a

lower-dimensional decision variable v. For instance, the set S(v) can be parameterized as being
a linearly transformed version of some given polytope.

Given the parameterization (A.3), the following optimization problem can be formulated as
a more tractable approximation of (A.2):

v? = arg max
v∈V

volume (S(v))

subject to S(v) satisfies Def. 4.1 w.r.t. (A.1) for the given (M, λ).
(A.4)

This optimization problem is still not convex because it involves maximization of the volume
of a polytope. In the sequel, it is shown how (A.4) can be formulated in a way such that PSO
can be used to find approximate solutions (i.e., local maxima).
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A.2.2 Verifying finite-step contraction

In this subsection, the question of deciding if a given PC-set S is controlled (M, λ)-contractive is
formulated in terms of an elastic LP. Verifying if a set S(v) of the form (A.3) is (M, λ)-contractive
can be done by checking the conditions of the following lemma, which is a straightforward
consequence of Definition 4.1:

Lemma A.1. Let S(v) be given as in (A.3). Define S0 = S(v), and for i ∈ [0..M − 2] let
Si+1 = I(Si,Θ|Ki) where Ki : Si × Θ → U are control laws. The set S(v) is controlled
(M, λ)-contractive if there exists Ki : Si × Θ→ U such that ∀i ∈ [0..M − 1] : {0} ⊆ Si ⊆ X
and SM−1 ⊆ λS0.

By parameterizing the controllers Ki(·, ·) as vertex controllers corresponding to the sets Si ,
the conditions of Lemma A.1 can be verified by solving a single large LP. Equivalently, the
conditions can be verified by solving nv smaller LPs: one for each vertex of S(v). In what
follows, the latter approach is chosen, i.e., Lemma A.1 is verified by solving nv LPs of the
general form

λ?(v) = min
d,λ̃

λ̃,

subject to Aeq(v)d = beq(v),

Aineq(v)d ≤ bineq(v),

(A.5)

where v ∈ X is a vertex of S(v), while d ∈ Rnd and λ̃ ∈ R+ are decision variables. The precise
construction of the LP (A.5) is straightforward and is not discussed here in detail: it is done
along the same line as constructing the LP for the “scenario tube” from Chapter 5 or for the
scenario trees in (Muñoz de la Peña et al. 2005; Scokaert and Mayne 1998). The complexity of
the LP (A.5) is exponential in M. If for every vertex v of S(v) it is true that λ?(v) ≤ λ, then
S(v) is controlled (M, λ)-contractive. Else, if λ?(v) > λ for some v, the value of λ?(v) can
provide a measure of how close S(v) is to being controlled finite-step contractive.
However, if for the given initial set S(v) it is not possible to satisfy all of the constraints
{0} ⊆ Si ⊆ X, or if the input constraints can not be satisfied by the controllers Ki(·, ·), then no
useful information can be extracted from the infeasibility of (A.5). To remedy this situation, an
elasticized version of (A.5) can be used (Chinneck 2008, Chapter 6). Introduce a vector of
non-negative slack variables [ s> t ]

> and consider the elasticized LP

ε(v) = min
d,λ̃,s,t

1>
[
s
t

]
,

subject to Aeq(v)d = beq(v),

Aineq(v)d − s ≤ bineq(v),

λ − t < 1,
s ≥ 0, t ≥ 0,

(A.6)

where again v ∈ X is a vertex of S(v). The equality constraints describe the system dynamics,

215



Appendix A Synthesizing finite-step contractive sets with PSO

and therefore must not be elasticized. Next, define

ε̄(v) =

1
2 nv∑
i=1

ε(vi) + ε(−vi),

i.e., the sum of all ε(v) for every vertex of S(v). If ε̄(v) = 0, it is known that S(v) is (M, λ̃)-
contractive for some λ̃ ∈ [0, λ). Otherwise, the magnitude of ε̄(v) provides a measure of “how
close” S(v) is to being at least (M, λ)-contractive in the sense of Definition 4.1. The problem
(A.4) is now equivalent to

v? = arg max
v∈V

volume (S(v))

subject to ε̄(v) = 0.
(A.7)

The introduction of the quantity ε̄(v) allows (A.7) to be approximately solved using PSO, as
will be shown next.

A.2.3 Main result
The problem (A.7) is subject to an equality constraint. In PSO, constraints need to be dealt with
by augmenting the cost function (Sedlaczek and Eberhard 2006). The idea is to construct the
cost in such a way that constraint violations are heavily penalized, such that minimizing it tends
to result in feasible solutions. In this appendix, for this purpose, a discontinuous cost function

J(v) =

{
−volume (S(v)) , ε̄(v) = 0,
ε̄(v), otherwise,

(A.8)

is employed. This leads to the final optimization problem

v? = arg min
v∈V

J(v) (A.9)

to be solved using PSO. The cost function (A.8) is always positive when the constraint ε̄(v) is
violated, and negative otherwise. Therefore, by minimizing J(v) the PSO algorithm tends to
produce feasible solutions while maximizing the volume of S(v) at the same time. If the PSO
algorithm terminates with a negative objective function value, then it is guaranteed that the set
S(v?) is controlled (M, λ)-contractive.
In PSO, more sophisticated ways of constructing a cost function that penalizes constraint

violations are available, e.g., the augmented Lagrangian method of (Sedlaczek and Eberhard
2006). However, in numerical trials the performance of the simple cost function (A.8) was
found to be satisfactory.
Lastly, it is interesting to note that evaluating the objective function (A.8) involves solving

nv LPs and computing the volume of a polytope. One of the attractive features of PSO for
this application is that it can deal with this type of complex (no closed expression available,
non-differentiable, discontinuous) cost and constraint functions without particular challenges.
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It is however not a-priori guaranteed that a feasible solution to (A.9) will be found, and in
general the returned solutions will not be globally optimal.

Once a set S0 = S(v?) that is (M, λ)-contractive is found, the rest of the sets in the sequence
{S0, . . . ,SM−1} (see Lemma A.1 and Definition 4.1) can be extracted from the solution of (A.6)
or (A.5). The number of vertices of the other sets in the sequence grows exponentially in
principle, but in practice it is often found that many of the generated candidate vertices are
redundant and can be eliminated; compare the similar situation in (Athanasopoulos and Lazar
2014).

A.2.4 Note on volume computation
The exact volume of a polytope represented by its vertices can be computed, e.g., using a
triangulation-based algorithm (Bueler et al. 2000). Such a method is implemented in MPT
(Herceg et al. 2013) and works well in relatively low dimensions.

In higher dimensions, it is proposed to replace the exact computation of volume(·) by a
function �volume(·), such that maximizing �volume(·) approximately maximizes volume(·) as
well. A common approximation employed for this purpose involves computing the maximum
inscribed ellipsoid (Boyd and Vandenberghe 2004, Section 8.4.2). Unfortunately, this is a
non-convex problem if the polytope is described by its V-representation, as is the case in this
appendix. This can be overcome by computing the equivalent H-representation first, but in
higher dimensions this is a hard problem by itself (Fukuda 2004).

An alternative approximation that can be used to maximize volume(S(v)) that does lead to a
convex problem is �volume (S(v)) = arg max

α∈R+
α subject to αX ⊆ S(v),

where X = conv{ x̄1, . . . , x̄qx } is a pre-designed polytope: X could be selected as, e.g., a norm
ball in the one- or infinity-norms.
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Estimating domains of attraction

The purpose of this appendix is to explain the methods that were used throughout this
thesis to estimate domains of attraction (DOAs) of the developed tube-based predictive

controllers.

B.1 Problem setting

Recall from (3.11) that the DOA corresponding to a tube-based controller is defined as

XN (Θ) = {x ∈ X |TN (x,Θ) , ∅} (B.1)

where Θ ⊆ ΘN is a sequence of scheduling sets. An exact representation of the DOA can,
in principle, be found by solving a multi-parametric linear program (MPLP) (Herceg et al.
2013; Pistikopoulos et al. 2011). However, the linear programs (LPs) encountered in tube
model predictive control (TMPC) are typically too large for this to be computationally feasible.
Therefore, computing an exact representation of the DOA is usually not possible, and it must
be approximated instead.

This appendix presents two approaches that have been used to compute inner approximations
of the domains of attraction for the controllers described in this thesis. One approach is based
on gridding and a search procedure (Section B.2), whereas the other directly scales the vertices
of a given set to approximate the DOA (Section B.3).

In this appendix, attention is focused on approximation of the worst-case domain of attraction
(WC-DOA), defined as

Xwc
N =XN

(
Θ

N
)
. (B.2)

Further, define
Θ(θ) = {{θ},Θ, . . . ,Θ} ⊆ ΘN ,

and assume that, as usual, the scheduling set Θ ⊆ Rnθ is given by

Θ = convh
{
θ̄1, . . . , θ̄qθ

}
.
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B.2 Approach 1: gridding and testing

The method is described in Algorithm B.1. The idea of the algorithm is simple: starting with
an initial grid of points in the state space, scale each point such that a feasible tube can be
found when the scaled point is used as the initial state. Its main advantage is that to apply it, no
changes have to be made to the underlying tube synthesis problem (see Equation (3.8)).
Increasing the density of the initial grid Linit can lead to tighter estimates of the true

WC-DOA, at the cost of a longer computation time.

Algorithm B.1 The WC-DOA approximation algorithm based on gridding.
Require: A discrete set of M points Linit = {x0, . . . , xM−1} ⊆ X
Require: A step size δ ∈ (0,1]
1: X̂wc

N ← X
2: for all i ∈ [1..qθ ] do
3: X̂i

N ← doa-single-theta(θ̄i) . See Line 6
4: X̂wc

N ← X̂wc
N ∩ X̂

i
N

5: end for
6: function doa-single-theta(θ)
7: Linfeas ← Linit
8: Lfeas ← {}
9: while Linfeas , ∅ do
10: x ← last element from Linfeas
11: for all j ∈ [0..d 1

δ e] do
12: α← max {1 − jδ,0}
13: if TN (αx,Θ(θ)) , ∅ then
14: Lfeas ← Lfeas ∪ {αx}
15: Linfeas ← Linfeas \ {x}
16: break . From the for all-loop on Line 11
17: end if
18: end for
19: end while
20: return convh {Lfeas}
21: end function

Note that Algorithm B.1 is guaranteed to terminate, because the tube synthesis problem is
always feasible for the initial state x = 0 (i.e., TN (0,Θ) , ∅ for any Θ ⊆ ΘN ).

B.3 Approach 2: scaling

Consider a point set X̂init
N ⊆ Rnx represented as

X̂init
N =

{
x̄1, . . . , x̄qx

}
.
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B.3 Approach 2: scaling

It is assumed that convh{X̂init
N } is a PC-set. Then, for each i ∈ [1..qx], compute the scalings

αi = max
α∈R+

α subject to TN
(
α x̄i,ΘN

)
, ∅ (B.3)

and construct the inner approximation of the WC-DOA as

X̂wc
N = convh

{
α1 x̄1, . . . , αqx x̄qx

}
. (B.4)

It is noted that the problems (B.3) are equivalent to

αi = max
α∈R+

α subject to ∀ j ∈ [1..qθ ] : TN
(
α x̄i,Θ(θ̄ j)

)
, ∅

= min
j∈[1..qθ ]

(
max
α∈R+

α subject to TN

(
α x̄i,Θ(θ̄ j)

)
, ∅

)
.

In other words, for each i ∈ [1..qx], a solution to (B.3) can be found by solving qθ LPs.
Therefore, constructing the approximation (B.4) requires the solution of qxqθ LPs.

To apply this method, the tube synthesis problem needs to be changed in order to maximize
the objective function (B.3). This is in contrast to the “gridding” method from Section B.2,
which can be applied without any modifications to the tube synthesis problem (but may require
more computational effort).
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