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Samenvatting

Koolstofvezel versterkte kunststoffen (CFRPs) zijn composiet materialen bestaande
uit koolstofvezels in een polymere matrix. CFRPs worden in toenemende mate ge-
bruikt in lichtgewicht toepassingen vanwege hun hoge soortelijke sterkte en stijfheid.
Er is een breed scala aan configuraties mogelijk wat betreft de opbouw van de CFRPs.
In toenemende mate van complexiteit zijn er uni-directionele, twee dimensionaal gew-
even en drie dimensionaal geweven CFRPs. In dit proefschrift wordt de nadruk gelegd
op dikke twee dimensionaal geweven CFRPs en drie dimensionaal niet-gevlochten or-
thogonaal georiënteerde (3DNOOBED) CFRPs.

Een kenmerkende eigenschap van dikke composieten is dat falen veroorzaakt wordt
door materiaal falen, en niet door structureel falen zoals bijvoorbeeld knik. De vorming
van knik banen in de microstructuur wordt geacht het meest dominante faal mech-
anisme te zijn. Knik banen ontstaan bij compressieve belastingen, als de polymere
matrix tussen de vezels gaat vloeien. De vezels kunnen dan gaan roteren, waarna zij
uiteindelijk zullen breken.

Het voornaamste doel van dit proefschrift is de ontwikkeling van numerieke mod-
ellen die in staat zijn het compressieve falen van dikke composieten te voorspellen. Met
dit doel worden ten eerste 2D-geweven composieten gemodelleerd op de schaal waar
de knik banen ontstaan: de micro schaal. Een model op de micro schaal wordt gep-
resenteerd waarin individuele koolstofvezels worden gemodelleerd. Omdat het model
gebruik maakt van isotrope vezels en een elastisch-perfect-plastische polymere matrix,
is dit model in staat een gedetailleerd beeld te vormen van het ontstaan en de groei van
knik banen. Het model wordt vervolgens gebruikt om parameter studies uit te voeren
om zo doende de eigenschappen te identificeren die de grootste invloed hebben op de
sterkte en stijfheid van het composiet. Een voorbeeld van de bestudeerde parameters
is de fase verschuiving tussen lagen in het laminaat.

Een meso scopische homogenisatie aanpak, gebaseerd op Hill’s anisotropisch plas-
ticiteits model, is vervolgens ontwikkeld om de vezels en de polymere matrix te ho-
mogeniseren in een enkel constitutief model voor de vezel bundels. Als gevolg van de
homogenisatie, gaat de geometrie van de individuele vezels verloren, en daardoor de
buig effecten van de vezels. De grote van de knik baan, die nu afhangt van discreti-
satie gebruikt voor de eindige elementen methode, wordt gecalibreerd aan de hand van
een simulatie op de micro schaal. Aangezien de homogenisatie van de vezelbundels
impliceert dat het volstaat om individuele vezelbundels te modelleren, is de vereiste
rekenkracht aanzienlijk minder. De methode kan nu toegepast worden in drie dimen-
sionale simulaties op een coupon schaal. Hiervan gebruik makende, worden compressie
testen op doorboorde coupons van weefsels met een platbinding gesimuleerd. De sim-
ulaties geven aan dat twee dimensionaal geweven composieten relatief ongevoelig zijn
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voor de grootte van gaten in de coupon en dat de lengteschaal gëıntroduceerd door
de afmetingen van de vezelbundels geen invloed heeft op gevoeligheid van de sterkte
ten opzichte van het gat. De reden dat twee dimensionaal geweven composieten met
een platbinding relatief ongevoelig zijn voor de grootte van een gat, is dat er een plas-
tisch vervormde zone ontstaat aan de rand van het gat. De plastische zone heeft een
splijtende werking en verlicht de spannings concentratie.

De voor het compressieve falen ontwikkelde homogenisatie methode van vezelbun-
dels wordt ook getest voor andere belastingen. In tegenstelling tot compressieve be-
lastingen, waarbij de deformaties buten de geknikte zones klein blijven, kunnen de
deformaties en rotaties onder andere belastingen groot zijn.

Onder trekbelastingen hebben de vezelbundels de neiging om te strekken, wat
grote lokale rotaties in de vezelbundels ten gevolge heeft. Aangezien de homogenisatie
gebaseerd op Hill plasticiteit de structuur van de vezelbundels niet in acht neemt, wordt
deze rotatie niet goed beschreven en wordt de methode onnauwkeurig. Op eenzelfde
manier als de methode gebaseerd op Hill plasticiteit, worden de buig effecten van de
vezels verwaarloosd in model gebaseerd op kristal plasticiteit. Echter, in tegenstelling
totz de aanpak gebaseerd op Hill plasticiteit, is het in een model dat gebruikt maakt
van kristal plasticiteit wel mogelijk om de structuur van een vezelbundel te beschrijven.
De gepresenteerde homogenisatie van vezelbundels op basis van kristal plasticiteit is
wel in staat lokale rotaties van vezels te beschrijven.

In het tweede deel van het proefschrift wordt de homogenisatie aanpak gebaseerd
op kristal plasticiteit gebruikt om het falen van 3DNOOBED composieten onder af-
schuiving en compressie te simuleren. Vanwege de stuctuur van de vezelbundels in
de 3DNOOBED composieten, is het beschrijven van de structuur van de vezelbundels
van vitaal belang om de spanning-rek karakteristieken van het materiaal nauwkeurig
te bepalen en te vergelijken met experimenteel verkregen waardes. Het modelleren van
de structuur van de vezelbundels is nodig, aangezien deze strijdige faalmechanismes
veroorzaken die tot een opbouw van hydrostatische spanningen leiden.

Het faalgedrag van 3DNOOBED monsters belast onder afschuiving kan met een
grotere nauwkeurigheid worden voorspeld dan het faalgedrag van monsters die worden
gecomprimeerd. De compressieve sterkte en stijfheid van 3DNOOBED monsters is
sterk afhankelijk van imperfecties in de vezelbundels op de micro schaal. De golving
van de vezels in de bundels wordt niet gemodelleerd, terwijl deze een significante
invloed heeft op de sterkte en stijfheid van monsters.



Abstract

Carbon fiber reinforced plastics (CFRPs) are composite materials that consist of car-
bon fibers in a polymer matrix. CFRPs are increasingly used in light weight applica-
tions due to their high specific strength and stiffness. Many different configurations
of CFRPs are possible, ranging from uni-directional CFRPs, to 3D woven CFRPs.
In this work the emphasis is on the failure properties of thick, 2D woven and 3D
non-interlacing orthogonally orienting & binding (3DNOOBED) composites.

A characteristic of thick composites is that they fail due to material failure in stead
of structural failure, i.e. buckling. The most dominant failure mechanism in thick
composites is considered to be the formation of kink-bands. Kink-bands originate
under compressive loading when the polymer in between the fibers start to yield. The
fibers start to rotate and eventually they fracture.

The main goal of this thesis is to develop numerical models that are able to predict
the compressive failure behavior of thick composite materials. First, kink-bands in a
2D plain weave geometry are modeled at the scale where the kink-bands originate and
develop: the micro-scale. A micro-scale plane strain model is made where individual
fibers in the warp tow are modeled. Using isotropic fibers and an elastic perfectly-
plastic matrix, this type of model is capable of describing the formation and growth
of a kink-band in detail. The model is then used to perform parameter studies to
identify the properties that determine the compressive strength of a woven composite.
Among other parameters, the effect of phase shifts between the layers of a laminate
on the compressive strength and stiffness is studied.

A meso-scale homogenization scheme based on Hill anisotropic plasticity is devel-
oped to homogenize the fibers and the matrix into a single constitutive model for the
tows. As a result of the homogenization, the geometry and therefore bending effects
of individual fibers are lost. The mesh-dependent magnitude of the kink-bands is
calibrated using the micro-scale simulations. As the homogenization implies that indi-
vidual tows need to be modeled in stead of individual fibers, the computational costs
are reduced significantly. In fact, it allows to perform 3D simulations on a coupon
level. Open hole compression simulations are performed on a plain weave geometry.
The simulations indicate that 2D woven composites are relatively notch insensitive
and that the length scale introduced by the tow does not have an effect on the notch
sensitivity. The reason that 2D plain woven composites are relatively notch insensi-
tive, is that the plasticity that originates near the hole acts as a splitting mechanism,
alleviating the stress concentration.

The homogenization scheme developed for the simulation of the compressive failure
in 2D woven composites is also tested under other loading conditions. In contrast to
the compressive load case, where deformations outside of the kinked regions remain
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small, deformations and rotation may be large in other load cases. Under tensile
loading, tows in woven composites tend to stretch, causing large local rotations in the
tows. As the Hill plasticity based tow-level homogenization does not take into account
the texture of the fibers in a tow, this rotation is not well captured and the method
becomes inaccurate. Similar to the Hill plasticity based homogenization scheme, a
Crystal Plasticity model does not include fiber bending effects. However, in contrast
to the Hill plasticity based tow-level homogenization, a Crystal Plasticity model is
able to take a description into account of the texture of the fibers in the tows. The
Crystal Plasticity based tow-level homogenization describes the stretching of a tow in
tension, and the local material rotations accurately.

In the second part of the thesis, the tow-level homogenization based on Crystal
Plasticity is used to simulate shear and compressive failure experiments of 3DNOOBED
composites. Due to the way the tows are organized in a 3DNOOBED composite, cap-
turing the texture of individual tows is vital in accurately predicting the stress-strain
response as observed in experiments. The modeling of the texture of the fibers in the
tows is necessary as they cause incompatible failure modes which in turn lead to the
buildup of hydrostatic pressure in the material.

The failure of 3DNOOBED specimens loaded in shear is predicted with more ac-
curacy than the failure under compressive loading. The compressive strength and
stiffness of the 3DNOOBED samples is highly dependent on imperfections present in
the tows on the micro-scale. The waviness of the fibers is not modeled explicitly, whilst
it is a dominant parameter in determining the compressive strength and stiffness of a
sample.
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Chapter 1

Introduction

Structural carbon fibers were invented in the 1960s and are often used in combination
with a polymer matrix to form carbon fiber reinforced plastics (CFRPs). CFRPs are
increasingly used in engineering applications. Due to their high specific strength and
stiffness they are an excellent candidate for lightweight applications such as aerospace
and automotive components.

Traditionally, CFRP components are manufactured using a layered approach. Mul-
tiple layers, or plies, are stacked to optimize the mechanical properties of the compo-
nent. The carbon fibers can be placed in the ply in different configurations. The most
basic one is a uni-directional (UD) configuration as shown in Figure 1.1a. A UD is
a thin sheet, typically around 0.1mm thick, where all fibers are oriented in the same
direction. As a result, these plies offer extremely good mechanical properties such as
strength and stiffness in the fiber direction, but are relatively weak and compliant in
the direction transverse to the fiber orientation and in the in-plane shear direction.

(a) (b)

Figure 1.1: Examples of a UD and woven architectures. A tape of UD material can
be seen in (a) and a woven configuration can be seen in (b).

To increase these in-plane transverse mechanical properties, textile configurations
can be used. In textile configurations, fiber bundles, called tows, are woven in two
principal directions. The tows, often denoted as warp and weft tows, can contain
different numbers of of fibers in the different directions. In addition, different weave
patterns can be used to control the mechanical properties in both weave and weft
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Introduction

direction such as plain, twill and satin weaves. If an equal amount of fibers are placed
in each direction, the fabric is called a balanced weave. An example of a balanced
twill weave is shown in Figure 1.1b.

Obviously, the stiffness of CFRPs is largely determined by the number of fibers
in the two directions. A prediction of the strength of the ply under different loading
conditions is less straight forward. Failure in composite materials is a complex series
of different mechanisms on the microscale, such as fiber breakage, matrix cracking,
fiber debonding and fiber kinking. Depending on the properties of the fibers and the
matrix material, the fiber architecture and the stress state, a combination of these
mechanisms will ultimately lead to failure of the ply.

An additional failure mechanism is introduced by stacking several plies into a single
laminate. As the connection between the plies is the relatively weak matrix, it can
fail and cause the plies to delaminate. One way to prevent this delamination, is to
use a 3D weaving technique. In 3D weaving, tows are also applied in the out of plane
direction. Similar to the difference between UD and textile composites, 3D woven
CFRPs are more resistant to delamination, but the in plane mechanical properties are
lower as there are less fibers placed in the planes, as shown in Figure 1.2.

Due to a constant improvement of weave architectures, 3D composites are increas-
ingly used. A wide range of 3D architectures have been created, including braided
tubes and nozzles, multilayer woven sheets and beams and flanges with complex cross
sections. 3D composites have additionally been found to show novel mechanical prop-
erties, including enhanced damage tolerance, resistance to compressive micro-buckling
failure, and the capacity for large ductility and energy absorption.

Figure 1.2: Example of a thick 3D texture: a 3D Non-interlacing Orthogonally Ori-
enting & Binding (3DNOOBED) composite.

1.1 Design strategies

Designing efficient structural components made of CFRP is a difficult task as the
design limits are often not exactly known. In order to arrive at a lightweight, but
strong and stiff structure, the failure behavior must be known exactly. As a result, a
large experimental program, in combination with a numerical study is needed. Such
a program is often denoted as the Design Pyramid [1], as illustrated in Figure 1.3.
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Introduction

The design pyramid consists of several levels of testing. At the bottom, material sam-

Material Coupon

Structural detail

Small component

Large component

Full aircraft

Testing

C
om

p
le
x
it
y

Figure 1.3: A representation of the pyramid shaped design approach used in aerospace
engineering [1].

ples (coupons) are tested to obtain a material chart containing the elastic mechanical
properties as well as the failure behavior. One level higher, small geometric features
such as cut-outs and notches are introduced. The geometric features are more present
on higher levels and at the top of the pyramid, a complete airplane is tested.

Due to large number of combinations in layups, i.e. the number and order of
the stacked plies in a laminate, the number of experiments can become extremely
large. In order to prevent a costly and time consuming testing programs, a number of
experiments can be replaced by numerical tests. Obviously, this demands numerical
models with excellent predictive capabilities.

1.2 Goal of this research

The goal of this research is to develop numerical techniques that are able to accu-
rately predict the failure behavior of CFRP materials under complex stress states.
In particular, the emphasis is on the understanding and the prediction of the failure
mechanisms under a compressive load, as this is a mechanism that is less understood.
The numerical framework that will be developed is not restricted to the case of com-
pressive load or thick textile composites. It will be tailored to be used for shear failure
in 3D composites as well.

1.3 Approach and structure of the Thesis

To be able to accurately predict macroscopic failure of CFRPs, an understanding of
the mechanisms on the micro-scale is required. The dominant failure mechanism in
composites under compressive loading has been identified to be fiber kinking [2].

3
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In the Chapter 2, a micro-scale model for woven composites is presented in which
individual fibers are modeled. In this way, the exact fiber kinking mechanism is
captured accurately. A downside of this approach is that the model is restricted to two
dimensions. The model is used to perform parameter studies that help to understand
the formation of kink bands and parameters that affect the formation of kink bands.

In order to be able to analyze large structural components, a meso-scale model
is presented in Chapter 3, in which the fibers in the tows,are homogenized using a
volume averaging criterion [3]. The model, which now allows for large three dimen-
sional analyses, is used to study the effects of notches in the compressive strength of
woven layered composite materials. In Chapter 4 the models are used to study the
failure mechanisms under different loading conditions, which give rise to an alternative
homogenization strategy, based a on a crystal plasticity model.

In Chapters 5 and 6 the models are used to study shear and compressive failure
in a 3DNOOBED material [4, 5]. The performance of both the Hill and the crystal
plasticity model is compared with experiments. The Thesis is concluded in Chapter 7
with a summary of the conclusions. A list of recommendations for further research is
presented to finalize the thesis.

4



Chapter 2

A micro-scale model to study

the compressive strength of

woven carbon-fiber reinforced

plastics

The following chapter is based on the paper: ”A micro-scale model to study the
compressive strength of woven carbon-fiber reinforced plastics”. A micro-scale plane
strain model is presented that is used to simulate the formation of kink-bands in a
plain weave CFRP. The emphasis is put on establishing relations between constitutive
and geometric properties and the compressive strength of a laminate.

2.1 Introduction

Composite materials are increasingly being used in applications requiring thick com-
ponents, such as drag braces for landing gears. As opposed to thin-walled structures,
where structural buckling is the major failure mechanism under compressive and shear
loadings, thick composite structures suffer from material failure under these loading
conditions. The optimization of thick structural parts made out of woven carbon-
fiber-reinforced laminates therefore relies on the in depth knowledge of the failure
mechanisms of the material, for various loading states and combinations thereof: the
complex loading states.

Traditionally, much research has been focused on the prediction of failure of com-
posites loaded in tension [6, 7, 8]. The strength of the material under compression,
however, is investigated to a lesser extent. Here, three main failure mechanisms have
been identified: (i) kink-band formation, (ii) intra-ply cracking and (iii) inter-ply
cracking [9]. Generally, kink-band formation is considered the most dominant failure
mechanisms of thick walled carbon-fiber-reinforced structures under compression [2].
On the micro-scale, the formation of kink bands in unidirectional laminates has been
studied extensively [10, 11, 12, 13].

In an analytical study, Rosen [14] studied the compressive failure stress of a unidi-
rectional composite under the assumption that the material fails due to elastic buck-
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A micro-scale model to study the compressive strength of woven

carbon-fiber reinforced plastics

ling. In contrast to this, Argon [15] proposed that failure is a result of plastic mi-
crobuckling. Budiansky and Fleck [16, 17] extended the plastic mircobuckling analysis
for UD composites with the assumption of an elasto-perfectly plastic matrix and de-
rived the kinking stress:

σkink =
τy

τy
G

+ φ̄
, (2.1)

where τy is the composite shear strength, G is the effective laminate shear modulus
and φ̄ is the misalignment of the fiber with the loading direction.

In addition to the analytical modeling of kink bands, several numerical analyses
using finite element models have been performed on unidirectional composites. Kyri-
akides et al. [18] showed that the shear deformation of the matrix in between the fibers
allows the bending of the fibers and therefore the formation of a kink band. Pimenta
et al. [19] explored several constitutive laws for the matrix and stated that a elastic-
perfectly-plastic constitutive law proved to be sufficient for an accurate modeling of
kink bands. Vogler and Kyriakides [20] conducted an experimental study on unidirec-
tional plates of AS4/PEEK using a custom testing device. These experiments were
later analyzed using two- and three-dimensional micromechanical models by Vogler et
al. [21], who concluded that the predicted characteristics of the resulting kink bands
are similar. Recently, Altman et al. [22] used a continuum damage model to predict
the influence of ply waviness on stiffness and strength in ultra-thick uni-directional
composites.

Although the evolution of kink bands in unidirectional composites has been studied
widely, research on the compressive failure due to the evolution of kink bands in com-
posites where the fiber bundles are undulated, such as in woven or textile composites,
is less abundant. Experiments visualizing kink-band formation in textile composites
have been performed by e.g. Reifsnider et al. [23] and Karayaka et al. [24]. As textile
composites have a more complex structure than unidirectional composites, the effect
of the tow-scale structure on the mechanical properties is an ongoing topic of research.
An example of an mechanism introduced by the tow-scale structure of textiles is layer
nesting, which has been studied by Breiling and Adams [25] and Hale and Villa [26].
Furthermore, De Carvalho et al. [27] conducted an experimental investigation into the
compressive failure of orthogonal two-dimensional woven composites and showed that
the phase differences between layers in the laminate can have a significant effect on
the damage mechanisms.

Within the literature, several analytical models can be found which take into ac-
count the meso-scale structure of textile composites. Ishhikawa and Chou [28] used
models based on classical laminate theory to study different types of weaves. Tan et
al. [29] modeled plain weave composites using a sinusoidal beam model and more re-
cently, De Carvalho et al. [30] used a model based on a beam supported by an elastic
foundation to study the tensile and compressive response of woven composites up to
failure.

When modeling textile composites using finite elements, meso-scale unit cells are
often used to describe the composite on a tow-scale. A road map to create such unit
cells was presented by Lomov et al.[31]. Whitcomb and Tang [32, 33] used a unit
cell finite element model to study different variation of weaves to identify dominant
characteristics of the weaves. Kollegal and Sridharan [34] used a finite element analysis
in conjunction with a micro-mechanical model to study dominate modes of failure
under in-plane tension, compression and shear and Zako et al. [35] used unit-cell
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model in cooperation with an anisotropic damage model based on damage mechanics
to study tensile failure in plain weaves. The effect of phase shifts between layers in a
laminate was also studied numerically using unit cells by Huang [36].

A downside of modeling on the meso-scale with homogenized tow models is that
the geometry of the individual fibers is lost and therefore the formation of kink bands
is difficult to study. The goal of this Chapter is to determine which weave properties,
and under what circumstances, influence the development of kink bands and therefore
have the most significant effect on the compressive strength and stiffness of a laminate.
To do so, we present a micro-mechanical finite element model of a woven carbon-fiber
laminate that can be used to simulate kink-band formation in woven composites. The
model is used to investigate the effect of phase differences between layers as well as
several laminate properties such as the fiber-volume fraction of the laminate.

The Chapter starts with a presentation of the micro-scale model in Section 2.
The compressive failure mechanism is shown in Section 2.3.1 . The model is used to
investigate the effect of phase shifts in Section 2.3.2 and several laminate properties
in Section 2.3.3. The results of these simulations are discussed in Section 2.4.

2.2 Method

In the spirit of the simulations performed by Kyriakides et al. [18], a micro-scale
model has been created where every fiber is modeled individually. In order to keep
the computational costs at an acceptable level, a two-dimensional model of the warp
direction is developed. For a unidirectional compression test, plane strain conditions
are assumed in the weft direction. The main features of the model are explained
in the next Section. First, the geometry of the model is presented along with its
modifiable parameters after which the constitutive modeling of the fibers and the
matrix is addressed.

2.2.1 Geometry and boundary conditions

Consider the two-dimensional representation of a woven composite as shown in Fig-
ure 2.1. The undulating warp tows are in-plane and are depicted with the dark gray
color. The weft tows undulate in the out-of-plane direction and are colored white.
The space in between the warp and weft tows is filled with matrix which is colored
light grey in Figure 2.1. The warp fiber bundles are assumed to undulate periodically.
As a result, the model can be divided into a number of similar unit cells. Such a unit
cell is indicated with the red square in Figure 2.1. The parameters that define the

Warp tow

Weft tow

Matrix

Figure 2.1: Two dimensional representation of a woven composite under a compressive
loading indicated by the arrows. The red rectangle marks the unit cell chosen for this
laminate. A detailed geometry is shown in Figure. 2.2
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geometry of the unit cell are indicated in Figure 2.2. The unit cell consists of half
a wavelength λ in the warp direction. Each fiber in the tow, with a thickness tf , is
modeled separately. The tow consists of n uniformly spaced fibers. The fiber spacing
tm is filled with the pure matrix material. The thickness of the matrix layer tm is
related to the fiber thickness tf through the volume fraction Vft in the tow:

tm =
tf
Vft

− tf . (2.2)

The area of the warp tow Awarp is determined by taking the area of n fibers and
matrix layers. The warp tow undulates over weft tows with an angle θ. The fibers
in the weft tows do not play a role in the kinking behavior. Therefore, in order to
reduce the complexity of the model, the fibers in the weft tows (hashed) of thickness
tw and surface area Aweft are modeled as an isotropic elasto-plastic continuum with
homogenized properties. The pocket of matrix between the tows of different layers

tlam

tf

tm

tw

tp
1
2λ

θ

Figure 2.2: Overview of key parameters in the woven unit cell consisting of weft tows
(hashed), n = 5 fibers (dark grey) and matrix (grey). For illustration purposes, the
fibers and the matrix layers in between the fibers have not been drawn to scale with
respect to the rest of the model.

has thickness tp and surface area Apocket. The total height tlam of the model unit cell
is then equal to:

tlam = tw + 2tp + n(tf + tm) . (2.3)

With the areas of the warp tow, weft tow and matrix pockets determined, the laminate
fiber volume fraction Vfl can be related to the tow volume fraction Vf :

Vfl =
Vf(Awarp +Aweft)

Awarp +Aweft +Apocket
. (2.4)

The entire model is meshed with 8-node quadratic hexagonal generalized plane strain
elements in the commercial software package ABAQUS ➤. In order to accurately
capture the bending of the fibers, each fiber is modeled with three elements in the
fiber thickness direction.
Cross-sections of multi-layer composites can be modeled by stacking and mirroring this
unit cell. Additionally, the phase between the stacked layers can be varied proportion-
ally to the wavelength λ. Let k be the number of unit cells in the warp direction and
l the number of stacked layers. The model in Figure 2.3 can then be identified as a
k × l model where k = 2 and l = 3.
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Warp fibers

Homogenized weft tow

Matrix
A

Figure 2.3: Overview of a k × l model with k = 2 and l = 3 along with the applied
boundary conditions. Note that only a few warp fibers have been drawn for illustrative
purposes.

In all simulations presented in this work the left edge of the model is constrained in
the warp direction and the displacement of the right edge is prescribed. The bottom
left node of the model located at point A in Figure 2.3 is constrained in the stacking
direction to prevent rigid body motion. The top and the bottom edges of the laminate
are not constrained.

2.2.2 Constitutive modeling

The mechanical properties of the carbon fibers and the matrix are similar to those
used by Kyriakides et al. [18]. The carbon fibers are isotropic-elastic with a Young’s
modulus Ef = 214 · 103 MPa and a Poisson’s ratio of νf = 0.263. The matrix is
considered to be an isotropic elasto-plastic medium having an Young’s modulus of
Em = 6140MPa, a Poisson’s ratio of νm = 0.356. A perfect plastic material behavior
with a yield stress of σy0

m = 82.1MPa is assumed. In order to increase the stability of
the simulations, a small isotropic hardening is added, according to the following strain
hardening relation:

σy
m = σy0

m +Hǫp , (2.5)

where σy is the current yield stress, ǫp is the accumulated plastic strain. The hardening
modulus H has been set to 10MPa in order to avoid numerical instabilities.

The homogenized elastic properties of the weft tow are calculated using the Reuss
bound:

1

Ew
=

Vf

Ef
+

1− Vf

Em
, (2.6)

where Vf is the fiber volume fraction in the weft tow, which is taken to be 67%. The
Poisson ratio and the elasto-plastic properties of the weft tow are assumed to be equal
to the matrix properties:

νwe = νm , (2.7)

σy
we = σy0

we +Hǫp , (2.8)

respectively. The yield stress of the weft tow σy0
we is updated in the same way as the

yield stress of the matrix. The initial yield stress of the weft tow σy0
we is equal to the

initial yield stress of the matrix σy0
m .

The models are created using ABAQUS ➤ Standard. Large strain kinematics are
assumed and the model the system of equations is solved using the Riks arc length
solver.
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2.3 Results

The results of uni-axial compression tests are presented in this section. First, the com-
pressive failure mechanism is identified and the dependency of the peak compressive
strength and the stiffness on the size of the model is investigated. Secondly, simu-
lations with shifted phases are presented. The section is concluded by means of a
number of parameter studies.

2.3.1 Compressive failure mechanism

In order to have a baseline result, the model is used to analyze a laminate with k = 2,
in which all the warp tows undulate in phase. In order to reduce the boundary effects
to a minimum, the number of layers stacked on top of each other is set to l = 3
as shown in Figure 2.4a. The load displacement curve of this analysis is shown in
Figure 2.4b.

The compressive stresses are calculated by dividing the reaction forces of the nodes
on the right boundary by the surface of the right boundary. As the model has unit
thickness in the out of plane direction, the surface of the boundary is equal to the total
thickness of the laminate tlam defined in (2.3). For the configuration presented, the
failure load is equal to F/A0 = 263MPa, which is the peak in the load displacement
curve. The compressive stiffness is evaluated in the linear regime and has a value of
E = 7872MPa.

When looking at the micro-scale failure mechanism in the model, it can be con-
cluded that these mechanisms are similar to the mechanism presented by Kyriakides
et al. [18] and Pimenta et al. [37]. The matrix yields and the plasticity of the matrix
allows the fibers to bend. This process is illustrated in Figure 2.4. The plastic defor-
mation originates in the matrix material between the fibers inside a tow, see Figure
2.4c. At this point, the laminate is still capable of sustaining additional load. The
amount of matrix material undergoing plastic deformation increases until the maxi-
mum load is reached. The plastic deformation at the maximum load can be seen in
Figure 2.4d. A further increase of the compressive strain results in a larger rotation
of the fibers and an increase in plastic deformation of the matrix material, which can
be seen in Figure 2.4e.

In order to investigate the effect the model size has on the resulting stiffness and
strength, a number of simulations are performed with various model sizes. Figure 2.5
shows the compressive stiffness and compressive strength calculated using models with
different number of cells in the warp and thickness directions. The size of the model
is indicated on the horizontal axis with k × l cells. The baseline simulation shows
the kinking mechanism and the evolution of a kink band. Increasing the number of
cells in the warp direction, k, does not affect the peak compressive strength of the
composite. Increasing the number of stacked layers, l,does influence the strength of
the laminate slightly. The strength converges to a single value if the number of stacked
layers is increased. As the difference in peak strength is relatively small, the remainder
of the simulations in this Chapter will be simulated with a model with k = 2 cells in
the warp direction and l = 5 layers stacked on top of each other in order to reduce
computational costs.
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warp tow

weft tow

matrix
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Figure 2.4: An overview of the compressive failure mechanism. 2.4a shows a legend
with the positions of the warp tow, weft tow and matrix. 2.4b shows the stress-
strain curve generated using a model with two cells and three layers. The points C,D
and E illustrate the points in the stress-strain curve where snapshots are taken. The
snapshots of the contours of plastic strain show the areas where at least 1% plastic
strain has occured in dark grey. A snapshot of the plastic strain has been made at the
first occurence of plastic strain in 2.4c, at the peak load in 2.4d and post-peak in 2.4e.
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Figure 2.5: Dependency of the stress-strain response on the size of the model. A k× l
model implies that a model has been simulated with k cells in the warp direction and
l layers in the stacking direction. The results have been normalized with the results
of a 2× 3 model.

2.3.2 Influence of phase shifts

To investigate the effect of phase shifts between layers in the stacking direction, the
undulations are shifted in the warp direction. All results are normalized with the
results of an in-phase stacked model.

0

λ
2

0

λ
2

0

layer 1

layer 2

layer 3

layer 4

layer 5

Figure 2.6: Overview of a 2x5 model where the second and the fourth layer are shifted
with one wavelength λ.

Two sets of simulations are performed: a set of simulations with regular variations
of the shifts of layers and a set of simulations with a random variation in the shifts of
all of the layers. Within the first set of simulations, the second and the fourth layer
in the model are shifted with a shift factor α of the wavelength λ. An example can be
seen in Figure 2.6, where a model with shift factor α = 1

2 is presented. The apparent
stiffness E and the compressive strength σc of this first set of simulations can be seen
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in Figure 2.7.

0
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1.5
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0 0.1 0.2 0.3 0.4 0.5

[−]

α

E/Eref

σc/σc,ref

Figure 2.7: The normalised elastic modulus E/Eref and the compressive strength
σc/σc,ref of the simulated laminate as a function of the shift factor α. The reference
values σc,ref and Eref are taken at α = 0.

In the second set of simulations, the layers are shifted in a random order. The
stacking sequence can be identified by listing the shifts of each layer, starting from
the bottom. In this way, the stacking sequence in Figure 2.6 can be identified by: [0
λ
2 0 λ

2 0]. Figure 2.8 shows the apparent stiffness E and the compressive strength σc

of several randomly chosen laminates. Both sets of simulations indicate that there is
a strong influence of the phase shifts om the compressive strength of the laminate.
Stacking the layers of the laminate in phase provides a lower bound for the strength
while stacking the layers out of phase provides an upper bound for the strength. The
kink band patterns of three simulations will be discussed in more detail in Figure
2.9 to examine this spread in the strength of the laminates. The stacking sequences
of these three simulations are identified in a similar way as with the random stacked
simulations. The three stacking sequences are: an in-phase stacked [0 0 0 0 0] laminate;
an out-of-phase [0 λ

2 0 λ
2 0] laminate and a random stacked laminate with stacking

sequence [0 0 λ
4

λ
2

λ
2 ]. Figure 2.9 shows the stress strain curves and contours of the

plasticity. The contour plots are taken at the peak of the stress strain curves and the
dark-grey areas in the contour plots indicate the regions where there is at least 1%
equivalent plastic strain.

2.3.3 Weave properties

To investigate the influence of changes in the geometry of the laminate on the compres-
sive strength σc and the stiffness E of the laminate, a parameter study is performed.
Four parameters are varied: the laminate fiber-volume-fraction Vfl; the fiber-volume-
fraction in the tow Vft; number of fibers stacked in the tow n and the undulation
angle of the weft tow θ. The variation in the laminate-volume-fraction is caused by
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Figure 2.8: The elastic modulus E and the compressive strength σc of the simulated
laminate using random stacking sequences.

a variation in the matrix pocket thickness tp, all other parameters are kept constant.
An indication of the knockdown factor in stiffness due to the waviness of the laminate
is made by comparing the stiffness calculated using simulations Esim with the Voigt
and Reuss averages EVoigt and EReuss:

EVoigt = Ef Vfl + Em (1− Vfl), (2.9)

1

EReuss
= 1

Ef
Vfl + 1

Em
(1− Vfl). (2.10)

Another comparison which can be made is the comparison between the simulated
compressive strength and the kinking stress determined by (2.1). If a Reuss bound is
assumed for the composite shear modulus:

1

G
=

2(1 + νf)Vfl

Ef
+

2(1 + νm)(1− Vfl)

Em
, (2.11)

the kinking stress σkink can be determined using (2.1). The effect of a variation in the
laminate fiber-volume-fraction on the compressive strength and modulus can be seen
in Figure 2.10.

To study the effect of the tow fiber-volume-fraction, the thickness of the matrix
layer in between the fibers tm is varied. With a fixed number of fibers and a fixed
fiber thickness this would increase the total thickness of the model tlam. The number
of fibers in the tow n is therefore adjusted in such a way that the total thickness of
the model tlam is constant. The effect of changing the tow fiber-volume-fraction Vft

on the compressive stiffness and strength can be seen in Figure 2.11.
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Figure 2.9: Stress strain curves and snapshots of the regions of plasticity for an in
phase stacking (a and b), an out of phase stacking (c and d) and a random stacking
(e and f). The snapshots of the plasticity are taken at the peak stress, indicated by
the cross in the force displacement graphs. The dark-grey areas in the contour plots
indicate the regions where there is at least 1% equivalent plastic strain.
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Figure 2.10: The elastic modulus E and the compressive strength σc of the simulated
laminate as a function of the laminate fiber-volume-fraction Vfl.
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Figure 2.11: The elastic modulus E and the compressive strength σc of the simulated
laminate as a function of tow fiber-volume-fraction Vft.

The effect of the length scale introduced by using a thicker or thinner tow in the
weave can be investigated by varying the number of fibers n. A side effect of increasing
the tow thickness is that the laminate fiber volume fraction increases as well. All other
parameters are kept constant. The effect of the number of fibers in the tow n on the
stiffness and strength of a laminate can be seen in Figure 2.12. The change in laminate
volume fraction Vfl has been plotted as well.

The last parameter that is investigated is the looseness of the weave. If the weave
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Figure 2.12: The elastic modulus E and the compressive strength σc of the simulated
laminate as a function of the number of fibers in the tow n. The change in laminate
volume fraction Vfl is shown as well. Note that the reference values have been taken
at the lowest number of fibers in the tow.

is tightly woven and the weft tows are placed close to one another, the matrix pockets
will be smaller and therefore the fiber-volume fraction of the laminate will increase
while the undulation angle of the warp tow has to increase. To investigate this trade
off, the unit cell is slightly modified to the unit cell depicted in Figure 2.13. Whilst
in the geometry depicted in Figure 2.2 the weft tow geometry would change with
the undulation angle, the weft tows in Figure 2.13 are converted to rectangles with
constant area to keep the same fiber volume fraction in the weft tow. The distance
between the weft tows is now d. The ratio d/λ now indicates the looseness of the weave
and can be varied by changing d. Varying the ratio d/λ will show the trade of between

0.5λ

d

Figure 2.13: Overview of the modified unit cell. The weft tows are made rectangular
and the distance between the weft cells is defined by d. Note that only 5 individual
warp fibers are drawn for illustrative purpose.

a smaller undulation angle and increasing the size of matrix pockets between the tows
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and thus decreasing the laminate volume fraction Vfl. The compressive stiffness and
strength of laminates as a function of d/λ can be seen in Figure 2.14. Again, the
change in laminate volume fraction Vfl has been plotted as well.

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

[−]

d/λ

E
Eref

σc

σc,ref

Vfl

Vfl,ref

Figure 2.14: The elastic modulus E and the compressive strength σc of the simulated
laminate as a function of the looseness of the weave d/λ. The change in laminate
volume fraction Vfl is shown as well. The reference values are taken at the lowest value
for d/λ.

2.4 Discussion

The goal of this research was to study the formation of kink-bands in woven carbon-
fiber reinforced plastics. A micro-scale model was introduced which is able to char-
acterize parameters of influence on the formation of these kink-bands. The benefit
of the presented model is that there is no need for constitutive relations which de-
scribe the process of kink-band formation. Instead, the formation of the kink-bands
is a direct result of the used geometry and basic constitutive properties of the matrix
and the individual fibers. Although the geometry and the constitutive relations are
a simplification of the reality, the model presented in this Chapter is able to describe
the generation of kink bands in a plain woven composite. Figure 2.5 indicates that the
number of cells used to describe the laminate does not have a significant influence on
the response under compression if more than three layers are stacked on top of each
other.

Due to the absence of periodic boundary conditions, kink-bands can form under
an arbitrary angle and the model is not limited to an in-phase of out-of-phase stacking
sequence. The presented model allows the investigation of the compressive response
of a number of regular and irregular stacking sequences, as well as an investigation of
the effect of several characteristic parameters of a weave.
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2.4.1 Stacking sequences

De Carvalho et al. [27] suggested that the role of the support of the surrounding layers
in the laminate is not negligible. The presented model is able to quantify the role of
the support and the influence of the the phase difference is significant. If all cells are
stacked in phase, such as displayed in Figure 2.9b, the part of the fiber-tows where the
undulation angle θ is the largest are located directly above each other. If all stacked
tows have the same local undulation angle, all of the tows will deform in a similar
direction forming one big kink, making the stress-strain response relatively weak. If
the undulation angles are opposing as displayed in Figure 2.9f, the deformation of the
stacked tows is canceled out. The stress-strain response of this stacking sequence is
relatively strong.

The results presented in Figures 2.7 and2.8 are in agreement with the results of De
Carvalho et al. [27] in the sense that the in-phase and out-of-phase stacking provide
an upper and lower bound for the strength respectively. Although not as substantial
as presented in this chapter, the physically based model of De Carvalho et al. [6] also
predicts a significant difference in the compressive strength of plain weave composites.

It should be noted that the current constitutive model only includes plasticity of
the matrix. Kink-bands formation is the only failure mechanism described by the
model. Local concentrations of plasticity such as in Figure 2.9d indicate that other
failure mechanisms such as delamination might occur. Another remark which can be
made is that the strength for the out-of-phase stacking is in some cased overestimated
due to the idealized geometry. In a real composite, such a perfect in-phase or out-
of-phase configuration is likely to never exist, as is indicated by the small spread in
experimentally determined compressive strengths presented by De Carvalho et al.[6].

2.4.2 Weave properties

Four characteristic parameters are varied: the laminate volume fraction Vfl, the tow
volume fraction Vft; the number of fibers n which determines the thickness of the tow
and the undulation angle θ through the looseness ratio d/L.

Figures 2.10 and 2.11 show that the change in the stiffness and compressive strength
is approximately linear for both of the volume fractions over the ranges simulated.
The comparison of the modulus with the Voigt and Reuss bound indicates that the
undulation of the fibers causes a significant decrease in the stiffness of the laminate. A
slight increase in compressive strength with increasing volume fractions can be seen as
well in Figures 2.10 and 2.11. This increase in strength agrees well with the increase
in strength predicted by the plastic-microbuckling solution proposed by Budiansky et.
al. in (2.1). An increase in fiber volume fraction causes an increase in the composite
shear modulus and therefore the kinking strength increases.

When investigating the effect of using a thicker tow, a similar trend can be seen.
The laminate stiffness increases significantly with an increasing number of fibers n in
the tow. The increasing number of fibers in the tow causes an increase in the fiber
volume fraction and therefore the compressive strength increases slightly.

Another parameter which is also present in the elasto plastic-microbuckling solution
is the looseness ratio d/λ. Increasing d/λ decreases the undulation angle θ which can
be seen as the imperfection angle φ̄ in the elasto plastic-microbuckling solution 2.1.
Although the laminate fiber volume fraction is decreased by increasing the size of the
matrix pockets (distance d), the strength of the laminate increases as the undulation
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angle decreases.
An important note that has to be made is that these four parameter studies were

done using an in-phase stacked geometry. Therefore only a single kink, comparable
to a kink in a unidirectional composite, is formed as can be seen in Figure 2.9b. The
variation of the four weave properties only indicate the change in the lower bound for
the strength. As the simulations with various stacking sequences indicated, the phase
shifts have a considerable effect on the compressive strength. As the elasto plastic-
microbucking solution was intended for unidirectional composites, it does not take into
account the kinematic effects of the tows and therefore cannot take into account the
strengthening effect of phase shifts in textile composites.

2.5 Conclusion

This Chapter presented a micro-scale model which is able to describe the formation
of kink-bands in woven composites. Several stacking sequences were simulated and a
parameter study was performed to investigate the effect of several characteristics of a
woven laminate.

The several stacking sequences simulated confirmed that an in-phase stacking is
the weakest configuration and that an out-of-phase stacking is the strongest configu-
ration. Moreover, the effect of differences in stacking sequences was characterized by
simulating a number of regular and irregular varied stacking sequences.

The laminate stiffness is mainly determined by the fiber volume fraction and the
undulation angle of the warp tow. Finally, the strength of the laminate is determined
by the undulation angle of the warp tow and the phase difference between the layers
rather than the fiber volume fraction.

The micro-scale model as developed in this Chapter will be used as a starting point
of the derivation of a meso-scale model that can be used to study CFRP materials on
a coupon level in 3 dimensions. This model and its implications will be discussed in
the next Chapter.
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Chapter 3

Notch sensitivity in woven

carbon-fiber reinforced

plastics

In this chapter, the micro-scale model of the previous chapter is used to help construct
a three dimensional meso-scale model that is used to study the formation of kink-bands
around holes in coupons. The model is used to study the formation of kink-bands near
holes and to investigate the influence of several length scales on the notch sensitivity
of plain weave composites under compressive loadings.

3.1 Introduction

When designing components and structures, the notch sensitivity of the used material
is an important design parameter. For fiber reinforced plastics, the notch sensitivity
is complicated by the existence of multiple length scales such as fiber diameters, ply
thicknesses, and sample dimensions.

For uni-directional (UD) laminates, the mechanical response of notched samples
is studied widely. A summary of the early work was presented by Awerbuch and
Madhukar [38]. A large part of the literature is focused on predicting failure and its
accompanying failure mechanisms under tensile loading. Analytical calculations using
linear elastic fracture mechanics were performed by Sutcliffe and Fleck [39]. Differences
between ply-level and sub-laminate level scaling were investigated experimentally by
Wisnom et al. [40], numerically by Xu et al. [41] and Hallet et al. elegantly combined
numerical and experimental techniques in [42]. Numerically, van der Meer et al. [43]
used an approach based on the phantom node method and captured the influence of
ply thickness on the delamination pattern of a notched cross-ply composite. Camanho
et al. [44] used a continuum damage mechanics approach to characterize scaling effects
under tensile loading in uni-directional composites.

Other loading types are less abundant in the literature. Chang et al. [45] studied
the difference between molded in and drilled holes in woven composites using a pin-
loaded experimental setup. They concluded that the failure strengths of woven com-
posites with molded in holes are mostly higher than those of composites with drilled
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holes. Within an experimental study, Tan et al. [46] used an modified Arcan rig to
determine a failure envelope of a uni-directional laminate under multi-axial loading.
In a following numerical study, Tan et al. [47] used a finite element model to repro-
duce this failure envelope. Sutcliffe and Fleck [39] did an experimental and theoretical
investigation into composite panels with edge notches, center notches and centered
holes under compressive loadings. They modeled the kink using cohesive zones and
predicted the critical length of a kink. Soutis et al. [48] developed a cohesive zone
approach where fiber-kinking, delamination and plastic deformation are bundled in a
single crack and used their model to predict the effects of hole-size and lay-up on the
compressive strength of a laminate. More recently, Su et al. [49] used a progressive
damage model to investigate ply-level scaling and sub-laminate level scaling.

In contrast to the amount of literature reporting on uni-directional composites,
studies focused on notched woven composites are limited. Reifsnider and Mirzadeh
[23] performed an experimental study on notched and un-notched eight-harness satin
weaves and reported that kinks not necessarily occur at the location of the maximum
stress peak, but may also form at areas with the highest crimp factor. Fleck et al.
[50] applied the cohesive zone model of Soutis [48] to uni-directional, two-dimensional
woven and 3D woven materials to study their notch sensitivity and found that the
strength of woven composites is relatively notch-insensitive when subjected to com-
pressive loading.

In general, the compressive failure of thick composites, composites that fail due
to material failure rather than structural buckling, is governed by the formation of
kink bands. Kink-bands have been widely studied in the literature. Analytically,
Rosen [14] proposed an elastic buckling solution to describe kinking. Argon [15] later
suggested that kinking was due to plastic micro-buckling and Budiansky [17] provided
an approximation of the kinking stress based on an elasto-perfectly plastic material.

Numerical study on kink-band formation was performed first by Kyriakides et al.
[18] who modeled a uni-directional composite on the micro-scale under the assump-
tion of linear elastic fibers and an elasto-perfectly-plastic matrix. On the same scale,
Pimenta et al. [19] modeled the matrix using several constitutive models and claimed
that an elasto-perfectly-plastic matrix was sufficient to model kink-bands. The micro-
mechanical approach used by Kyriakides, where every fiber is modeled individually,
was applied to woven composites in Chapter 2, where a two-dimensional plain strain
model a plain weave composite laminate is constructed. Modeling on the micro-scale
ensures that the kink width is correctly captured due to the presence of bending effects
introduced by individual fibers.

When making finite element models of woven composites, it is a challenge to pro-
duce a representative geometry of a weave. As the weaving patterns of woven laminates
are periodic, the micro structure can be represented by unit cells. An overview of mod-
eling strategies can be found in the work of Lomov et al. [51] and an example of the
construction of such unit cells was published by Verpoest and Lomov [52]. There are
several papers that demonstrate the effective use of unit cells. Ivanov et al. [53], used a
single unit cell in combination with novel boundary conditions to study the interaction
of plies, local stresses and displacements in plain woven composites. De Carvalho et
al. [6] used a reduced unit cell to study a twill woven composite under biaxial loading
and Tang et al. [54] studied the progressive failure of several weave architectures.

Fleck et al. suggested that the strength of plain weave composites is relatively
notch insensitive when compared to an uni-directional composite. However, as the
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cohesive zone model used to make this claim does not take into account the meso-
scale structure and lumped several failure mechanisms into one single crack, there was
no insight given as to why the strength of plain weave composites is relatively notch
insensitive. Therefore, the goal of this chapter is to investigate the interaction between
several meso-scopic length scales such as the tow size, hole size and sample width in
notched plain weave composites under compressive loading.

First, a 3D meso-scopic modeling strategy is presented in Section 3.2. This strategy
is then applied to simulate the notch sensitivity of plain weave composites. The effect
of several length scales such as the diameter of a center hole, the width of a tow and
the width of a sample on the notch sensitivity is investigated in Section 3.3 along with
the compressive failure mechanism.

3.2 Methods

Within the following section, a 3D finite element model of a balanced plain weave is
presented. The constitutive modeling of the tows and the matrix is discussed first,
followed by the geometry and boundary conditions of the model. All of the models
presented within this study were made using the finite element package ABAQUS➤

[55].

3.2.1 Constitutive modelling

The constitutive properties of the fibers and the matrix in the textile composite are
similar to those of the AS4 fibers and PEEK matrix used in the paper of Kyriakides et
al [18]. The fibers are assumed to be isotropic elastic and have a Young’s modulus of
Ef = 214GPa and a Poisson’s ratio of νf = 0.263 . The matrix is modeled as an elasto-
plastic material with Young’s modulus Em = 6140MPa, Poisson’s ratio of νm = 0.356
and an initial yield stress σy0

m = 82.1MPa. The plastic hardening is described by:

σy
m = σy0

m +Hǫp, (3.1)

where H = 10MPa is the hardening modulus and ǫp is the plastic strain. In order to
include the effect of potentially delaminating layers in the weave, the matrix is set to
fail after 15% plastic strain. It is assumed that the point of initiation of damage is in-
dependent of the stress triaxiallity, therefore the Johnson-Cook criterion implemented
in ABAQUS ➤ is used with only the first term. The fracture toughness of the matrix
is assumed to be Gc = 1.69 mJ/mm2, as was measured by Wang et al. [56].

To reduce the computational cost of the meso-scale model, a homogenized consti-
tutive model is used for the tows. The elastic properties of the fibers and the matrix
are used to calculate the properties of a transverse isotropic medium using Voigt and
Reuss averages:

E1 = Ef Vf + Em (1− Vf) (3.2)

1

E2
= Vf

Ef
+ 1−Vf

Em
(3.3)

1

G12
= 2(1+νf )Vf

Ef
+ 2(1+νm)(1−Vf )

Em
(3.4)

where Vf is the fiber volume fraction in the tow, E1 is the stiffness of the tow in the
fiber direction, E2 is the transverse stiffness of the tow and GT

12 is the shear modulus in
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Table 3.1: Tow constitutive parameters

E1 E2 = E3 G12 νTft = νTft = νTft σy H

145406MPa 17582MPa 6508MPa 0.356 82.1MPa 10.0MPa

the 12 plane. It is assumed that E3 = E2 and that the Poisson’s ratios of the transverse
isotropic tow are equal to the Poisson’s ratio of the matrix: νTft = νTtf = νTt = νm.
An overview of the constitutive parameters used for the tows can be seen in Table
3.1.The local element orientations are rotated to indicate the direction of the fibers as
illustrated in Figure 3.1

(a)

12

3

(b)

Figure 3.1: A tow where 4 individual fibers (blue) are surrounded by matrix (green)
is shown in (a). A homogenized to (brown) is shown in (b). The arrows indicate the
directions of the local element coordinates for the homogenized material.

As the homogenized tows are transversely isotropic, Hill’s quadratic failure cri-
terium [57] as implemented in ABAQUS ➤ is used to model the behavior of the tow
in the nonlinear regime. A similar approach had been been used before by Lemansky
et al. [58], who modeled individual uni-directional plies as orthotropic-elastic mate-
rials in combination with Hill’s quadratic failure criterium. Within Hill plasticity, an
anisotropic yield potential is defined as:

f(σ) =
(

F (σ22 − σ33)
2 +G(σ33 − σ11)

2+

H(σ11 − σ22)
2 + 2Lσ2

23 + 2Mσ2
31 + 2Nσ2

12

)
1
2 .

(3.5)

If the yield stress values σ̄ij are the yield stress values of the material under a loading
state where σij is the only non-zero stress, the ratios F ,G,H,L,M and N can be
determined using:

F =
σ0

2

(

1

σ̄2
2

+
1

σ̄2
2

− 1

σ̄2
1

)

(3.6)

G =
σ0

2

(

1

σ̄2
2

+
1

σ̄2
1

− 1

σ̄2
2

)

(3.7)

H =
σ0

2

(

1

σ̄2
1

+
1

σ̄2
2

− 1

σ̄2
2

)

(3.8)

L =
3

2

(

τ0

σ̄23

)2

(3.9)
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M =
3

2

(

τ0

σ̄13

)2

(3.10)

N =
3

2

(

τ0

σ̄12

)2

(3.11)

where σ0 is a reference yield stress and τ0 = σ0/
√
3 is a the corresponding reference

shear yield stress. The yield stress in the fiber direction is set to a high value such that
the tow will not yield in that direction. For all other directions, the yield stress ratios
are set to 1 and the tow yields at the same stress as the matrix. The shear strengths
were all set to be equal to the shear strength of the matrix τy.

σ̄1 = σfVf + σm(1− Vf) , (3.12)

σ̄2 =

(

Vf

σf
+

1− Vf

σm

)−1

, (3.13)

σ̄12 = σ̄13 = σ̄23 =
√
3τy . (3.14)

The plastic strain evolves according to the flow rule:

dǫpl = dλ
∂f

∂σ
(3.15)

2D plain weave models

A downside of homogenizing the tows, is that the individual fibers and therefore the
bending stiffness of the fibers is lost. The loss of this bending stiffness results in
mesh sensitivity of the homogenized tows. To account for this mesh sensitivity, two-
dimensional plane strain models are made which are compared to micro-models, based
on the models presented in Chapter 2. The mesh size of the homogenized models is
then chosen such that the peak strength of the laminate and the kink width are similar
to those of the micro model.

A cross-section along the middle of the unit cell parallel to the warp fibers has been
chosen as the geometry of the 2D plane strain models. A total of 5 layers have been
stacked on top of each other to prevent global buckling. The model with homogenized
tows can be seen in Figure 3.2a, along with the boundary conditions of the model. A
comparison between the stress strain curves of a plane-strain model with homogenized
tows and plane-strain model where all of the fibers in the warp tow are modeled
individually can be seen in Figure 3.2b. The resulting kink widths for a homogenized
model and a micro model are compared in Figures 3.2c and 3.2d respectively.

3.2.2 3D plain weave model

The geometries of the three-dimensional simulations presented in this study are all
built up out of the same unit cell, which can be seen in Figure 3.3. The plain weave
unit cell is constructed using tows that are t = 2.5mm wide and have a wavelength
of 5mm. At the thickest point, the tow is 0.2mm thick. A minimum resin pocket
thickness of 0.05mm has been chosen such that the total height of the unit cell is
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Figure 3.2: An overview of the plane strain homogenized model an the boundary
conditions of the model can be seen in Figure (a). Figure (b) shows a comparison of
the stress strain curves of a model with homogenized warp tows and a model where
all of the fibers in the warp tows are modeled individualy. Figure (c) and (d) show
contour plots of the plastic strain for the homogenized model and the micro model
respectively. The dark grey areas are the areas where there is a plastic strain of at
least 10%.

0.5mm. As the unit cell is modeled as one solid with different regions, no contact
algorithms or cohesive zones are used to connect the constituents. The unit cells can

(a) (b)

Figure 3.3: An overview of the used unit cell. The complete unit cell is shown in
Figure (a) and the weaving pattern is shown in Figure (b). The matrix material is
colored green, the warp tows are colored red and the weft tows are brown.

be stacked in phase to form plates. Holes are constructed by cutting a cylinder from the
geometry. An example of such a plate with dimension w×L and hole diameter d can
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be seen in Figure 3.4. The plates are loaded parallel to L by applying a displacement

t

d

w

L

(a)

L

(b)

Figure 3.4: An overview of a plate with a hole. The dimensions of the plate are
introduced in Figure (a) and the loading conditions can be seen in Figure (b).

on the left egde and fixing the displacements in the loading direction on the right edge
as can be seen in 3.4b. The models are made using ABAQUS ® explicit. The load is
applied in 1 s. To reduce computational time, mass scaling is applied by specifying a
stable time increment of 1 ·10−5 s, keeping the kinetic energy below 5% of the internal
energy. Large strain kinematics are assumed and a unit cell is meshed using an element
size of 0.2mm, resulting approximately 22.000 10-node modified quadratic tetrahedral
C3D10M elements being placed in a unit cell.

3.3 Results

Within this section the 3D meso scale model is used to study the interaction of several
length scales on the meso scale. Due to the detailed weave architecture, comparing
plates of different sizes is not trivial. The fiber-volume fraction is e.g. different for a
plate with a full tow at the edges and plate with a quarter of a tow at the edges. To
make an equal comparison between different plate sizes and to cancel out edge effects,
two simulations are used for each data point. The peak far field applied stress of a
plate with a hole is compared to the peak far field applied stress of a similar sized
plate without a hole σun. Two layups are investigated: a [0 0 0 0 0] layup and a [0
45 0 45 0] layup, where the angle is the angle between the warp tow and the loading
direction. Note that as the weave is balanced, the warp and weft tow are similar.

3.3.1 Tow width

The interaction between the tow width t and the hole size d is investigated first. In
this case, the net peak stress σnet is analysed. The net peak stress is determined by
summing the reaction forces on the loaded side and dividing them by the minimum
cross-section of the plate, perpendicular to the loading direction near the hole. The
tow size t is constant at 2.5mm and the ratio d/t is varied such that the hole diameter
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Figure 3.8: The ratios of notched remote peak stresses σno and un-notched remote
peak stresses σun as a function of d/w.

3.4 Discussion

The goal of this research is to study the notch sensitivity of plain weave carbon fiber
reinforced plastic plates under compressive loadings and the interaction of several
length scales on the meso-scale. To do so, an idealized representation of a plain woven
composite was made used to construct finite element models.

A comparison between the homogenized 2D plane-strain model and the 2D plane
strain micro model showed that a kink-band can be simulated using an transversely
isotropic tow in combination with Hill’s quadratic failure criterion. Although this
approach is mesh-sensitive, calibrating the mesh size using an equivalent micro-model
yields a model that can simulate an equivalent kink-band with a similar stress-strain
response. The reduction in the amount of degrees of freedom allows to produce 3D
models of woven composites.

As can be seen from Figure 3.5, the strength of a woven composite is relatively
insensitive to the size of the tows. There seems to be little difference between the [0
0 0 0 0] layup and the [0 45 0 45 0] layup. This would suggest that the length scale
introduced by the width of the tow does not have to be included in a macroscopic
constitutive model for woven plies. Figure 3.7 shows that the relation between the
hole size and the width of the plate corresponds well to the cohesive zone model
predictions of Fleck et al. [50] which are based on model of Soutis et al. [48].

The presentation of the failure mechanisms in the [0 0 0 0 0] and [0 45 0 45
0] layups in Figures 3.9 and 3.10 demonstrate that plastic zones start at the edge
of the hole, and grows parallel to the loading direction. This plasticity acts as a
splitting mechanism which reduces the stress concentration at the hole, similar to the
mechanism commonly observed in uni-directional composites. In the paper of Fleck et
al. [50], no such splits were observed. This lacking observation can be explained by the
findings of Chan et al. [61]. In their paper they examined ceramic layered composites
and assumed the interface between layers to be elastic-perfectly plastic with shear flow
stress τ or slipping with constant friction stress τ . They determined that the length
of a split increases as a function of the ratio σ/τ , where σ is the applied remote stress.
Uni-directional composites usually have a higher compressive failure stress than 2D
woven composites due to the lack of undulating tows. Assuming a similar matrix and

30







Notch sensitivity in woven carbon-fiber reinforced plastics

therefore τ , more remote stress can be applied and therefore the splits are longer and
easier to observe.

In the woven composite, the split needs to grows until the highest undulating sec-
tion of the warp tow is reached as can be seen in Figure 3.9c. From this point onwards,
a kink forms in the warp tow (Figure 3.9d). This mechanism is in accordance with
the observation of Reifsnider et al. [23], who reported that kinks do not necessarily
occur at the location of the maximum stress peak, but may also form at areas with
the largest undulation angle.

The simulations predict slightly increased notch sensitive behavior if the edge of the
hole is placed at a point where the undulation is the highest, which is shown in Figure
3.8. This configuration can be considered an upper-bound of the notch-sensitivity as
the initiation of plasticity in this case coincides with the formation of a kink band. In
a similar way the situation where the edge of the hole is placed where the undulation is
the lowest, can be seen as an lower-bound for the notch-sensitivity as this case requires
the longest split to form.

3.5 Conclusion

This chapter presented a meso-scale model of plain weave composites. The model
was used to investigate the interaction between several meso-scopic length scales in
notched plain weave composites under compressive loading.

It is found that notch-sensitivity of the strength corresponds well with the notch-
sensitivity of the strength reported in the literature. A closer inspection of the failure
mechanism shows that the notch sensitivity arises from the fact that the weakest
section of the composite, the section with the highest undulation, is not always located
at the edge of the hole where the stress concentration is the highest. When the section
of the composite with the highest undulation does not coincide with the edge of the
hole, a region of plasticity forms, causing a splitting mechanism.

In the next chapter, the performance of the Hill plasticity based homogenization
for tows is evaluated under tensile loading.
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Chapter 4

Application of the meso-scale

model to tensile failure

It was shown in the previous chapter, that a transverse isotropic constitutive model
for a tow in combination with Hill plasticity is a suitable way to model a thick plain
woven composite under compressive loading on a meso-scopic scale. In this chapter,
the performance of the model under a tensile loading state is examined. To do so,
a two layered plain weave composite sample is modeled using the homogenized Hill
plasticity approach presented in Chapter 3 and the micro modeling approach presented
in Chapter 2.

4.1 Plain weave model

The geometry of the balanced plain weave textile modeled in this chapter is similar to
the plain weave case that is modeled in the previous chapter. The model is reduced
to two layers in the thickness direction as global buckling is not an issue under tensile
loading. To be able to evaluate the homogenization strategy, the micro scale modeling
approach, where individual fibers in the warp tows are modeled from Chapter 2 is
used as a benchmark. The plain strain models are based on the balanced plain weave
model presented in the previous chapter. The modeled plane is a cross section trough
the thickest point of the warp tows. The geometry and boundary conditions of these
models can be seen in Figure 4.1.

The models are 5mm long and the tows are 0.2 thick at the thickest point of the
cross section. The maximum undulation angle is 10 degrees and the resin pockets in
between the tows have a minimal thickness of 0.05mm. The fiber volume fraction of
the tows has been set to Vf = 0.67. The micro consists of 20 fibers across the thickness
of the warp tow.

4.2 Tensile loading with Hill plasticity

In the first analysis, the micro model is loaded in tension and compared to a tensile
simulation using the Hill plasticity constitutive model as used in Chapter 3. The re-
sulting stress strain curves of these two simulations are compared in Figure 4.2. The
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4.3 Crystal plasticity

A different approach that does have a description of the micro-structure and its ori-
entation is Crystal Plasticity [62]. Originally intended for crystallographic materials,
Crystal Plasticity uses slip planes and slip directions to describe the internal micro-
structure of materials. In the context of fiber reinforced materials, the Crystal Plastic-
ity framework can be used to describe UD materials or tows as they can be considered
to be 2D cylindrical close packings.

In Crystal Plasticity, the deformation gradient Fij is considered to be a multiplica-
tive decomposition of the elastic deformation gradient F e

ij and the plastic deformation
gradient F p

ij [62]:

Fij = F e
ikF

p
kj (4.1)

The slip systems β are specified by two vectors: the slip direction s
(β)
i and the slip

plane in the undeformed configuration m
(β)
i . Multiple slip systems are needed to

describe the deformation of a UD ply or a tow in 3D analysis. It is assumed that the
fibers are arranged in a close packing and the slip systems are constructed accordingly.
A schematic of the slip systems in a tow can be seen in Figure 4.4 and their respective
slip directions and slip plane normals are listed in Table 4.1.

x

y

z

Figure 4.4: A close packing of fibers and the used slip systems indicated in red.

Table 4.1: Slip directions and slip plane normals for a UD ply or tow.

slip direction slip plane normal

s(1) (1,0,0) m(1) (0,0,1)

s(2) (1,0,0) m(2) (0,
√
3
2 , 12 )

s(3) (1,0,0) m(3) (0,
√
3
2 ,− 1

2 )

s(4) (0,1,0) m(4) (0,0,1)

s(5) (0, 12 ,
√
3
2 ) m(5) (0,

√
3
2 , 12 )

s(6) (0,- 12 ,
√
3
2 ) m(6) (0,

√
3
2 ,- 12 )

For the 2D case presented in this chapter, only one slip system is active in the warp
tow. This slip system ensures that the homogenized fiber direction does not rotate
with shear deformation. During deformation, the rotation of the slip direction and the
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slip plane normal is dictated by the elastic deformation gradient:

s
∗(β)
i = F e

ijs
(β)
j , m

∗(β)
i = m

(β)
j (F e

ji)
−1. (4.2)

The plastic component of the deformation can be calculated using:

Ḟ p
ik(F

p
kj)

−1 =

N
∑

β=1

γ̇(β)s
(β)
i m

(β)
j , (4.3)

where γ̇(β) is the shear rate on slip system β. The plastic deformation, per slip system
is determined by the resolved shear stress τ (β):

τ (β) = s
∗(β)
i σijm

∗(β)
j . (4.4)

Most polymers have a yield stress that is dependent on the amount of hydrostatic
pressure present. This pressure dependence is incorporated in the material model by
taking the shear strength g(β) of slip system β a linear function of the pressure:

g(β) =

{

τy + µp p ≥ 0
τy p < 0

. (4.5)

In this equation, µ is the pressure sensitivity coefficient and p is a measure of the
pressure transverse to the fiber direction. The pressure is calculated using terms of
the 2nd Piola-Kirchhoff stress. For a tow with fibers placed in the local 11 direction,
this pressure would be:

p = −1

2
(S22 + S33). (4.6)

The S11 component is in this case not taken into account, as it is assumed that the
stresses in this direction are dominated by the elastic fibers instead of the matrix. As
a shear formulation, a rate dependent model similar to the one proposed by Asaro [62]
is used:

γ̇(β) = γ̇0sign(τ
(β)

(

τ (β)

g(β)

)n

(4.7)

As within this Thesis, the rate dependent response of the fibrous composite materials
is considered outside the scope of the research, the reference strain rate γ̇0 was set to
be equal to the loading rate. Furthermore, the rate sensitivity exponent was set to
n = 5 to approach the rate insensitive limit as much as possible without introducing
numerical instabilities. The Crystal Plasticity model is implemented as a VUMAT
subroutine in ABAQUS ® explicit [55].

4.4 Tensile loading with Crystal Plasticity

The Crystal Plasticity based tow homogenization strategy is applied to the homoge-
nized tows in the 2-layered homogenized plain weave specimen discussed at the be-
ginning of this chapter. The elastic properties of the tows are taken the same as in
the Hill plasticity simulations. The shear strength of the slip systems is set to be
τy = σy0

m /
√
3, where σy0

m is the initial yield stress of the matrix. As the yield stress
of the matrix is insensitive to the hydrostatic pressure in the micro model and the
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Figure 4.5: A comparison between simulations of a plain weave composites under
tensile loading modeled with Hill plasticity and Crystal Plasticity. Both results are
compared with the result obtained from a micro model where individual fibers were
modeled.

Hill plasticity based model, the pressure sensitivity coefficient is set to µ = 0 for the
Crystal Plasticity simulation. The resulting stress strain curves are compared to those
of the micro-model and the Hill plasticity based homogenization scheme in Figure 4.5.

Figure 4.5 shows that the stress-strain response of the Crystal Plasticity approach
is similar to that of the micro model and the Hill plasticity approach. As the strains
increase, the Crystal Plasticity model can be seen to display a similar nearly linear
response as the micro model in stead of the highly non-linear response predicted when
using the Hill plasticity approach. The local element orientations in the deformed
warp tows of the plain weave simulation can be seen in Figure 4.6c. As the local
element orientations do not change with plastic shear deformation, which is illustrated
in Figure 4.6b, the stiff local element orientation remains aligned with the tow enabling
a comparable stress strain response with respect to the micro model.

4.5 Conclusion

Within this chapter, two models with different homogenization strategies were com-
pared to a micro model where individual fibers were modeled.

The accuracy of homogenization using Hill plasticity depends on the type of loading
and the extent of the loading. The comparison between the stress-strain response
showed that the Hill plasticity approach is accurate in the elastic regime. If the model
undergoes plastic deformation in tension, the tows are stretched such that they align
with the loading axis. The large deformations, and especially the rotations needed to
stretch the tows, cause the Hill plasticity based model to be inaccurate.

If the model is loaded in compression, plastic deformation triggers the formation
of kink-bands. The deformation localizes in the kink-bands and the regions outside of
the kink-band do not undergo large deformations and rotations.
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Chapter 5

Shear failure in 3D non-woven

carbon fibre composites

In this chapter, meso-scale models as derived in Chapter 3 are made using the Crystal
Plasticity based tow-level homogenization method introduced in the previous chap-
ter. The models are used to analyze the failure behavior of 3DNOOBED composites
under shear loading. The accuracy of models using homogenization based on Hill
plasticity and models using homogenization based on Crystal Plasticity is evaluated
by comparing the simulations with experiments.

5.1 Introduction

The remarkable strength-to-weight performance of fiber composites, in particular car-
bon fiber reinforced polymer composites (CFRPs), has led to their extensive appli-
cation in the fields of aerospace, automotive, and maritime engineering [63, 64, 65].
A vast majority of these fiber composites have a 2D architecture, and are fabricated
as unidirectional, woven, or random sheets that are laminated with other sheets in a
given preform. 2D laminated composites have many mechanical drawbacks, includ-
ing poor interlaminar strength, buckling sensitivity, and a tendency for catastrophic
failure [66, 67, 68, 69, 70].

Fiber composites can be designed with a 3D architecture in an attempt to over-
come some of these limitations [71, 72, 73]. A wide range of 3D architectures have
been created, including braided tubes and nozzles, multilayer woven sheets and beams
and flanges with complex cross sections [74, 75, 76, 77]. These developments have
successfully enabled 3D composites to overcome many of the vulnerabilities of lami-
nated composites. Additionally, 3D composites have been found to exhibit many novel
mechanical properties, including enhanced damage tolerance, resistance to compres-
sive micro-buckling failure, and the capacity for large ductility and energy absorption
[78, 79, 80, 81, 82]. These properties make 3D composites attractive for mechanical
design purposes, but understanding the micro-mechanical origins of these attributes
and reproducing them numerically has proven difficult.

Numerical models for the failure behavior of 3D composites generally incorporate
either a maximum stress or a J2 plasticity criterion to determine the onset of failure
[83]. These are often used in conjunction with continuum damage models that capture
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comprised of crimpless tows. It is also known as orthogonal nonwoven fabric, polar
fabric, and xyz fabric [97]. The simplicity of 3DNOOBED composites makes them
excellent model systems for studying fundamental mechanical phenomena that arise
in 3D composite architectures.

5.2 Experiments

5.2.1 Materials and manufacturing

3DNOOBED composites were fabricated by weaving T700S carbon fiber tows (Toray
composite Materials America Inc., USA) into a 3D fabric block that was then infused
with NM FW 3070 epoxy [99] as the binder. The weaving method produced a non-
crimp fabric that had tows oriented orthogonally in the x-, y-, and z-direction. After
the woven pre-form was filled, solid matrix pockets formed in the overlapping regions
between the tows. A unit cell of the 3NOOBED material can be seen on the right
in Figure 5.1. The tows in a given direction were initially connected by loops on the
outer edges of the block, but these were cut off in the sample preparation process.
For samples tested in this work, the x- and y-direction tows were ≈12k fiber bundles
with an average fiber volume fraction of 62.2%. The z-direction tows were ≈24k fiber-
bundles with an average fiber volume fraction of 40.1%. Samples were provided in the
form of large blocks (≈ 200× 125× 50mm) by Biteam (Biteam AB). More details on
the fabrication process can be found in [100].

Noobed Dogbone Sample Noobed Unit Cell

1.73
1.54

1.54
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Figure 5.1: 3DNOOBED composite microstructure. A full scale CAD model of a
3DNOOBED dogbone specimen with a cut-out illustrating the internal structure on te
left and on the right a 3DNOOBED unit cell showing the architecture and dimensions
of the constituent tows. All dimensions are in mm.

Dogbone samples were prepared from the bulk 3DNOOBED block in two steps:
first, a diamond cutting disk was used to cut ≈10mm slices from the larger block,
and second, a waterjet was used to cut dogbone samples from the slice. Some minor
post-cut sanding was done with 120-grit SiC sandpaper to ensure the sample was the
proper thickness and that there were good quality edge finishes. The total length
and width of the dogbone samples was 45mm and 30mm respectively, and the gauge
section was set to be roughly 10 × 10 × 10mm. Two orientations of composite were
used. In orientation the z-tows were oriented perpendicular to the shearing axis. This
orientation is refered to as the xz orientation. In the other orientation the the z-
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