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SUMMARY

The complexity of automated systems has grown considerably during the past decades.
This convolutes the observation of possible faults in these systems. If not being revealed
timely, such faults can lead to catastrophic failures. As a result, there is a continuous
interest in sophisticated fault diagnosis techniques. Since it is generally desired to diag-
nose faults in the earliest possible stages, computational challenges are imposed on the
algorithms. Whereas the field of fault diagnosis comprises of a large variety of techniques
in various categories, these computational challenges appear to emerge wide-ranging.

At the same time, convex optimization has developed as a valuable tool to solve a large
variety of mathematical problems with computational efficiency. This computational
efficiency is achieved by exploiting favorable structures of the problem. Depending on
the specific problem, these structures vary in difficulty to be recognized or arranged.
Moreover, some problems lead to a convex optimization problem naturally, while other
problems first need some kind of relaxation or sequential process in order to employ
convex optimization.

This thesis explores how convex optimization can be utilized in order to solve fault
diagnosis problems with computational efficiency. The state-of-the-art is studied for
multiple computationally challenging categories of fault diagnosis: online input design
approaches, diagnosis of many concurrent faults, and data-driven approaches. First, on-
line input design approaches facilitate fault diagnosis by computing discriminating in-
put sequences during system operation. Since the input is calculated in real-time those
approaches allow only limited computational effort, whereas adequate input determina-
tion typically appears to be nontrivial. In this contribution it is shown that an established
upper bound on the error probability for linear candidate models with Gaussian noise
is concave in the most challenging discrimination conditions. This finding allows to use
sequential convex programs for online determination of a discriminating input with low
computational effort.

The second contribution in this thesis regards the cantilever dynamics in high-speed
atomic force microscopy. Due to the oscillatory behavior above the scrutinized sample,
the cantilever typically has intermittent physical contact with the sample. This leads to
a large number of (dynamically dependent) impulsive faults. Instead of performing an
intractable explicit examination of all (combinations of) hypotheses, this contribution
applies sparse estimation as a convex optimization method in order to diagnose these
concurrent faults. In a simulation study, the resulting effect on the sample height recon-
struction is discernible both qualitatively and quantitatively with respect to the conven-
tional approach to sample height reconstruction in atomic force microscopy.

The third contribution introduces a novel problem formulation for model-free data-
driven fault diagnosis. Instead of separate time periods for system identification and
fault diagnosis in typical data-driven approaches, model-free data-driven fault diagnosis

IX
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aims for the simultaneous system identification and fault diagnosis from one single data
set. Whereas this is originally a non-convex bilinear problem, a proposed solution re-
formulates it as a convex optimization problem using a so-called lifting technique. Fur-
thermore, online evaluation of this optimization problem is facilitated by a developed
recursive implementation. The proposed methodology is tested both on simulation data
and real-life flight test data.

By demonstrating the potential of convex optimization to a deliberate selection of fault
diagnosis problems, this thesis serves as a source of inspiration for solving a wider va-
riety of fault diagnosis problems efficiently. Furthermore, various elements related to
convex optimization and its recursive implementation presented in this thesis have ad-
ditional relevance to the general field of control science beyond fault diagnosis. Future
applications of the presented methodology can arise for instance in the data-driven con-
trol in the presence of disturbances, or recursive blind deconvolution of real-time image
sequences.



SAMENVATTING

Gedurende de laatste decennia worden geautomatiseerde systemen aanzienlijk geavan-
ceerder. Dat bemoeilijkt het waarnemen van mogelijke fouten in deze systemen. Zulke
fouten kunnen op den duur catastrofale gevolgen hebben. Daarom is er een aanhou-
dende interesse in hoogstaande technieken voor foutdiagnose. Aangezien het over het
algemeen wenselijk is om fouten zo vroeg mogelijk te herkennen, zijn er rekenkundige
uitdagingen voor de algoritmen. Hoewel het veld van foutdiagnose een verscheidenheid
aan technieken in diverse categorieën kent, lijken de rekenkundige uitdagingen breed
voor te komen.

Tegelijkertijd heeft convexe optimalisatie zich ontwikkeld als een nuttige tool om een
breed scala aan wiskundige problemen op te lossen met rekenkundige efficiëntie. Deze
efficiëntie wordt behaald door middel van het benutten van gunstige probleemstructu-
ren. Afhankelijk per specifiek probleem is het meer of minder moeilijk om de structuur
te herkennen of te vormen. Sommige problemen leiden natuurlijkerwijs tot een convex
optimalisatieprobleem, terwijl andere problemen een vorm van relaxatie of sequentiële
werkwijze vereisen om te profiteren van convexe optimalisatie.

Dit proefschrift verkent hoe convexe optimalisatie toegepast kan worden om foutdia-
gnoseproblemen op te lossen met rekenkundige efficiëntie. De state-of-the-art is be-
studeerd voor meerdere rekenkundig uitdagende categorieën voor foutdiagnose: werk-
wijzen voor online bepaling van de systeeminput, diagnose van meerdere van elkaar af-
hankelijke fouten, en datagedreven methoden. Om te beginnen, werkwijzen voor online
bepaling van de systeeminput faciliteren foutdiagnose door middel van het berekenen
van uiteendrijvende inputreeksen tijdens de systeemoperatie. Omdat de input in real-
time berekend moet worden, is de toegestane rekenkundige inspanning begrensd, ter-
wijl adequate inputbepaling niet triviaal is. In deze bijdrage wordt aangetoond dat een
(al bestaande) bovengrens van de kans op onjuiste diagnose, voor lineaire kandidaat-
modellen met Gaussische ruis concaaf is in de meest uitdagende omstandigheden voor
discriminatie. Deze bevinding impliceert dat sequentiële convexe optimalisatie toege-
past kan worden voor online bepaling van uiteendrijvende inputs met lage rekenkundige
inspanning.

De tweede bijdrage in dit proefschrift heeft te maken met de dynamica van de sonde
in hogesnelheids-atoomkrachtmicroscopie. Door het oscillerende gedrag van de sonde,
maakt het onderbroken contact met het specimen. Dit leidt tot een groot aantal (dyna-
misch afhankelijke) impulsieve fouten. In plaats van het uitvoeren van een rekenkundig
hardnekkige expliciete toetsing van alle (combinaties van) hypothesen, past deze bij-
drage sparse estimation toe als een convexe optimalisatiemethode om deze fouten te
diagnosticeren. In een simulatie is het resulterende effect op de hoogtereconstructie van
het specimen kwalitatief en kwantitatief waarneembaar ten opzichte van de conventio-
nele methode voor hoogtereconstructie in atoomkrachtmicroscopie.
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De derde bijdrage introduceert een nieuwe probleemformulering voor modelvrije da-
tagedreven foutdiagnose. In plaats van gescheiden tijdsperiodes voor systeemidentifi-
catie en foutdiagnose in conventionele datagedreven methoden, richt modelvrije data-
gedreven foutdiagnose zich op gelijktijdige systeemidentificatie en foutdiagnose uit één
dataset. Hoewel dit normaliter een niet-convex bilineair probleem is, wordt het met
behulp van een zogenoemde lifting-techniek geherformuleerd naar een convex optima-
lisatieprobleem. Verder wordt online evaluatie van dit optimalisatieprobleem gefacili-
teerd door een uitgewerkte recursieve implementatie. De voorgestelde methodologie is
getest op zowel simulatiedata als in de praktijk gemeten vluchttestgegevens.

Door middel van het demonstreren van de potentie van convexe optimalisatie op een
weloverwogen selectie van foutdiagnoseproblemen, dient dit proefschrift als inspiratie-
bron om een grotere variëteit van zulke problemen efficiënt op te lossen. Bovendien,
diverse elementen gerelateerd aan convexe optimalisatie en de recursieve implemen-
tatie gepresenteerd in dit proefschrift hebben aanvullende relevantie in het algemene
onderzoeksveld van regeltechniek dat verder gaat dan foutdiagnose. Toekomstige toe-
passingen van de gepresenteerde methodologie kunnen zich onder andere voordoen in
datagedreven regeltechniek in de aanwezigheid van verstoringen, of recursieve blinde
deconvolutie van realtime afbeeldingsequenties.



PREFACE

On this cold but sunny day I am in the stage of finalizing the dissertation. That is some-
thing I could not imagine a year ago. This achievement would not have been possible
without the substantial support of the people around me.

I would like to thank Michel Verhaegen for generously sharing his affinity with con-
trol science and providing plentiful valuable feedback to my work. I am thankful to Oleg
Soloviev for giving me the opportunity to do this research and for stimulating indepen-
dence. I thank Carlas Smith for providing valuable background knowledge and refer-
ences to the literature, as well as sharing his teaching experience. My appreciation also
goes to Gerard Verbiest for the fruitful collaboration and for his remarkable approacha-
bility. In addition to the members already mentioned, all other members of the doctoral
committee are commended for giving me the opportunity to defend my work.

The working days at the university were highly enjoyable with my office and floor
mates Edoardo, Pascal, Yu-Chen, Roger, Léonore, Paul-Louis, Meenakshi, Coen, Hamed,
Shahzeb, Maria, Sreeshma, Sander, Lars, Pieter, Shrinivas, Vinod and Thao. It has also
been a pleasure to have lunch, drink coffee, travel and do fun activities with the many
other colleagues and friends from DCSC (including the people from the second and third
floor!). My further gratitude goes to the support team Erica, Sandra, Francy, Heleen,
Marieke, Bo and Anna.

I profoundly thank Lynn, my parents and my sister for their invaluable support in the
past, present and future. I would like to thank Oma Gretha for her genuine warmth and
sincere interest. Furthermore, I am pleased to honor my late grandparents Oma Noom
and Opa Nic. Finally, thank you to all of my dear friends with whom I greatly enjoyed life
outside of the research environment, whether it was road cycling, playing music or just
hanging around.

Jacques Noom
Delft, December 2023

XIII





1
INTRODUCTION

This chapter introduces the reader to the general concepts and categories of fault
diagnosis. It also highlights the current challenges and the possible exploration
directions in order to overcome these challenges and to extend the state-of-the-art. The
final section identifies the directions that offer opportunities for a comprehensive study.
Hereby it outlines the contributions of the remaining chapters in this dissertation.

1
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2 1. INTRODUCTION

On October 29, 2018, the Lion Air Flight 610 (JT610) crashed shortly after departing
from Jakarta, Indonesia [1]. Only five months later, on March 10, 2019, a similar
accident happened to the Ethiopian Airlines Flight 302 (ET302) after taking-off in
Addis Ababa, Ethiopia. The tragedies, both involving Boeing 737 MAX aircraft, have
claimed the lives of 346 people [1]. Journalists speculate as to whether the cause
is incompetence of the engineers involved in the design of the aircraft, or ethical
shortcomings of these engineers [2]. Moreover, the competition with Airbus raised
financial pressure on Boeing to rapidly introduce a new aircraft with a competitive
performance, but also a low price and minimal additional training requirements
for pilots [3]. The competitive performance – in terms of fuel consumption and
flight range – was achieved by introducing a larger engine in the design. The
time for development, price and training requirements for pilots were minimized
by making slight modifications to the existing frame design of the well-established
Boeing 737, rather than designing an entirely new frame in order to fit the larger
engines. As a side-effect of these slight modifications, the aircraft tended to pitch
upwards under certain flying conditions [3]. A new software system was intended
to prevent the aircraft from pitching upwards with an excessive angle of attack.
However, the software was unable to automatically diagnose a fault in the sensor it
was relying on, in order to avoid the failures of JT610 and ET302. The pilots were
not informed about the existence of the new software system, hindering them from
taking appropriate corrective actions in order to prevent the subsequent crashes.

A study on the ethical aspects related to the accidents concludes there “seem to
be clear violations of engineering codes of ethics” [4]. Even though the engineers
at Boeing were constrained by the financial concerns of their employer, they should
have prioritized public safety and welfare. Besides the engineers, also the managers
violated the generally accepted ethical standard of informed consent. Boeing had at
least “an obligation to inform airlines and pilots of the significant design changes” [4],
so that for instance the pilots would have been able to recognize malfunctioning of
the software system.

Contemporary codes of ethics state (among other things) that engineers should be
truthful about and critical toward their own and other’s technical work. For example,
the American Institute of Aeronautics and Astronautics (AIAA) prescribes engineers
to “issue statements or present information in an objective and truthful manner,
based on available data" [5]. The Institute of Electrical and Electronics Engineers
(IEEE) further specifies the instruction by writing “to seek, accept, and offer honest
criticism of technical work, to acknowledge and correct errors, to be honest and
realistic in stating claims or estimates based on available data" [6]. In order to be
able to be objective, to acknowledge errors and to correct those, engineers may opt
to include automatic fault diagnosis algorithms in the design of a dynamical system.
In the first place, a system should be designed such that the probability of (critical)
faults is minimized. But whenever a fault occurs, it should be diagnosed in time
in order to minimize the potentially disastrous consequences. Depending on the
type of system and possible faults, the diagnostic results can be communicated to
the system operators and/or to the engineers themselves. For example, if the pilots
of the Boeing 737 MAX aircraft were properly informed about the new software
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system, an error message to them during the flight could possibly have prevented
the crashes. From a higher perspective, the data of preceding 737 MAX flights
(e.g. [7]) may have contained information that could have increased the engineer’s
awareness of the vulnerabilities of the software system. A fault diagnosis algorithm
can assist engineers and system operators in providing crucial information timely
and accurately.

1.1. FAULT DIAGNOSIS
Fault diagnosis is a well-established field within the science of control engineering. In
the early survey from 1976, Willsky [8] mentioned that sophisticated computational
approaches may be a good alternative to high levels of hardware redundancy, without
substantially losing system reliability. Since then, the following key definitions in the
field are developed. An overview of more definitions can be found in [9].

Definition 1.1 (Fault). An unpermitted deviation of at least one characteristic property
or parameter of the system from the acceptable/usual/standard condition.

Definition 1.2 (Failure). A permanent interruption of a system’s ability to perform a
required function under specified operating conditions.

Definition 1.3 (Fault detection). Determination of the faults present in a system and
the time of detection.

Definition 1.4 (Fault diagnosis). Determination of the kind, size, location and time
of detection of a fault. Follows fault detection.

One or multiple faults can lead to a failure of the system. It is therefore important
that the faults are detected and diagnosed correctly in time. The aim of fault
detection is only to notice abnormal input/output behavior timely. Afterwards, the
objective of fault diagnosis is to gain more information of the specific fault, so that
appropriate action can be taken subsequently.

1.1.1. MODEL-BASED

More recent surveys [10, 11] categorize fault diagnosis approaches as model-based,
signal-based or knowledge-based. These approaches use different sources of
information, as illustrated in Figure 1.1. Model-based approaches utilize candidate
models from physical principles composed by an expert. Such a candidate model
can generally describe the system characteristics as

M [i ] : y = g [i ](x,u, w) (1.1)

with the candidate model g [i ](x,u, w) with state x, input u and noise w
corresponding to hypothesis M [i ], and output y . From these candidate models, the
algorithm for fault diagnosis should select the correct model under which the system
is operating.

One way to accomplish this is to use a deterministic method, in which the system
output trajectory y can ultimately be linked to a single hypothesis M [i ]. This



1

4 1. INTRODUCTION

Figure 1.1: Model-based, signal-based and knowledge-based approaches use different
sources of information in order to diagnose the fault(s).

generally requires the assumption that the noise contribution w is bounded, that is
to say the limits of the model uncertainties are known. Accordingly, a deterministic
approach to fault diagnosis accounts for the worst-case scenario and can usually
only select a hypothesis when an output sequence is measured that is uniquely
linked to that hypothesis.

Alternatively, a probabilistic method employs probabilities of the hypotheses in
order to make a decision. A decision threshold can be set manually (e.g. [12, 13]) to
compromise on the expected number of correct and incorrect decisions. In contrast
to deterministic methods, probabilistic methods require knowledge of the probability
distributions of the noise w rather than its limits. Moreover, the uncertainties may
be unbounded if using a probabilistic approach. It is in general less conservative
than a deterministic approach, since it regards the probabilities instead of unique
system behavior.

1.1.2. SIGNAL-BASED

Signal-based approaches use only measured (output) signals to diagnose faults. A
diagnostic decision is made based on the symptom analysis of these signals and prior
knowledge of the normal system behavior [10]. These symptoms can for instance be
observed in the time domain or in the frequency spectrum. A signal-based approach
is specifically applicable to systems of which the input is unknown and unavailable
for measurement. This dissertation however focuses on systems of which the input
and output signals are accessible.

1.1.3. KNOWLEDGE-BASED

A knowledge-based approach to fault diagnosis does not use an explicit model
composed by an expert. It rather uses past input/output data in order to predict
future outputs corresponding to hypothesized fault conditions. If the measured
output sequence correlates sufficiently to one of the predicted output sequences,
then the corresponding fault is diagnosed. A knowledge-based approach typically
requires large amounts of historical data for a training phase. That is why it is often
referred to as data-driven [11, 14–17]. It is in general however not model-free, since
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a model is implicitly built (or: identified) during the training phase.

1.1.4. ACTIVE METHODS

Whereas signal-based and knowledge-based approaches are generally passive,
model-based approaches support active techniques [18, 19]. Active fault diagnosis
applies an auxiliary input to the system in order to improve the discrimination
performance. This auxiliary input may be designed either offline before executing
the discrimination experiment, or online while taking into account the real-time
measurements of the system. This is illustrated in Figure 1.2. Although online
input design leads to better discrimination performance by using all possible
real-time information, it is limited by its computational complexity. Nevertheless,
the increasing capability of digital computers motivates contemporary research to
enhance exploration of these online input design methods and how they can be
conducted with computational efficiency.

Figure 1.2: Active fault diagnosis. Offline approaches design a complete auxiliary
input sequence before executing the discrimination experiment. Online
approaches take into account real-time measurements while designing
the auxiliary input.

1.2. CURRENT CHALLENGES FOR FAULT DIAGNOSIS
As automated systems continually increase in complexity, approaches to fault
diagnosis for these systems become more sophisticated. At the same time, it remains
to be desired to diagnose faults in their earliest possible stages. Especially if the
diagnosis should be performed during system operation, this imposes computational
challenges on the fault diagnosis algorithms. The current main challenges are
outlined as follows.

1.2.1. COMPUTATIONAL COMPLEXITY OF ONLINE INPUT DESIGN

The design of an input for diagnosing faults online involves a trade-off of three
factors. First, the accuracy of diagnosis should be maximized while adhering to the
imposed limits on the system input and output. That is to say, the ratio of correct
diagnoses versus incorrect diagnoses should be maximized in order to establish a
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reliable fault diagnosis procedure. Second, the fault should be diagnosed within a
minimized number of measurements. This demand encourages diagnosis of the fault
in the earliest possible stage. Since the auxiliary input should be calculated online,
the third trade-off factor is fast computation, such that it can be applied to the
system without delay. Regarding the first two trade-off factors imposing nonlinear
optimization problem formulations, fast computation is currently a major challenge.

Both deterministic and probabilistic approaches to active fault diagnosis suffer
from their computational complexities. Moreover, a deterministic problem setting
imposes nonconvex constraints on the system input in order to induce a unique
output sequence [20]. A probabilistic problem setting for active fault diagnosis
computes an input sequence such that the probability of misdiagnosis is minimized.
That involves the burdensome evaluation of multidimensional probability integrals,
which becomes particularly problematic for real-time applications and/or large-scale
systems.

1.2.2. CURSE OF DIMENSIONALITY FOR FAULT DIAGNOSIS

A curse of dimensionality generally refers to loss of computational tractability when
the dimensions of the problem are increased. This applies to fault diagnosis in
the case that faults can be active simultaneously. This is often the case, regarding
dependence of faults in typical practical applications [21]. Suppose there are 30
possible faults of which up to three may be active simultaneously, then there are
4525 possible fault combinations [21]. Using a conventional fault diagnosis approach,
for each individual fault combination a separate hypothesis is defined explicitly. In
general, the number of hypotheses will grow with

NH =
na∑

i=1

n f !

(n f −na)!na !
,

where n f is the number of possible faults, and na the number of faults which can
be active simultaneously. The explicit examination of each possible hypothesis will
be intractable for moderate values of n f and na already.

1.2.3. DATA AVAILABILITY FOR KNOWLEDGE-BASED APPROACHES

Knowledge-based approaches to fault diagnosis overcome the challenges of expert
modeling of the system with possible faults. They are however known to require
large amounts of historical data for a training phase. Moreover, it is preferred to
obtain data for every (faulty) operating condition, of which this condition is exactly
known. In practical applications these labeled data are not always available. For
example, complex industrial systems typically involve substantial (financial) stakes,
implying that it could be very expensive to run the system intentionally under faulty
conditions solely for data acquisition. In addition, the exact condition of a complex
system is often difficult (or even impossible) to examine a priori, complicating
labeling of the data. Lastly, the system characteristics typically change slowly over
time, for example due to wear (which is not necessarily a fault). With changed
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system characteristics, the historical data may lose its relevance over time, so the
expensive data acquisition needs to be carried out again.

1.3. POSSIBLE EXPLORATION DIRECTIONS
The current challenges for fault diagnosis outlined in previous section mainly involve
high computational complexity and expensive data acquisition. The strategies
presented in Sections 1.3.1 to 1.3.3 are possible solutions to the computational
issues, whereas that in Section 1.3.4 is intended to relieve the data requirements.

1.3.1. LINEARIZATION

A well-known technique to facilitate computational tractability is to linearize a
nonlinear problem around an operating point. A convenient representation is
so-called continuous-time state-space [22]:

ẋ(t ) = Ax(t )+Bu(t )+w(t )

y(t ) =C x(t )+Du(t )+ v(t )
(1.2)

with (A,B ,C ,D) the state-space matrices, (u(t ), x(t ), y(t )) the system input, state
and output as function of time t , and (w(t ), v(t )) the process and measurement
noise. For example, continuous-time state-space models of various aircraft around
various operating points are provided in [23]. To further increase the computational
efficiency when implementing in a digital computer, it is straightforward to transform
a continuous-time state-space model (1.2) to discrete-time [24]:

x(k +1) =Φx(k)+Γu(k)+w(k)

y(k) =C x(k)+Du(k)+ v(k)
(1.3)

where the matrices Φ and Γ are functions of the matrices A and B and of the sampling
time1. Many fault diagnosis approaches in literature use linear(-ized) models [10, 18]
in order to show the proof-of-principles of new developments. Nevertheless, active
approaches are still a computational burden [18] and fault diagnosis approaches
using linearized models still suffer from the curse of dimensionality explained in
Section 1.2.2.

1.3.2. PROBABILISTIC DIVERGENCE MEASURES

When using a probabilistic approach, one typically runs into computationally
demanding evaluation of multidimensional integrals. Especially when using an
active fault diagnosis approach, it pays off to use a divergence measure instead.
A divergence measure compares two probability distributions in such a way that
it outputs a positive scalar indicating how similar (or: different) these are. By
exploiting noise characteristics of the system, it is often straightforward to compute

1Note that throughout literature and also this thesis, the discrete-time state transition matrix Φ and
input matrix Γ are also indicated with A and B , despite the differences with their continuous-time
counterparts.
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the divergence of two distributions. Examples of divergence measures include the
Kullback-Leibler divergence, the J-divergence and the Bhattacharyya coefficient [25,
26].

Whereas conventional divergence measures typically only consider two hypotheses,
it appears to be easily extendable to multiple hypotheses using the sum of pairwise
divergences [27]. Care should be taken not to oversimplify the problem and to lose
a connection with the actual error probability. That could lead to unpredictable
behavior of the fault diagnosis approach. For some divergence measures, such as the
Bhattacharyya coefficient, a theoretical upper bound on the error probability does
exist [27].

Even though divergence measures reduce the computational complexity consid-
erably, it leads in general still to nonconvex problems for active approaches to
fault diagnosis [18]. Further simplifications could decrease the computational effort
to acceptable levels. However, such simplifications may degrade the diagnosis
performance substantially. The trade-off between these aspects is currently still
intractable.

1.3.3. SPARSE ESTIMATION METHODS

Recent stochastic methods use sparse regression in order to diagnose faults [21].
Sparse regression aims to estimate the few nonzero entries of an optimization
variable [28]. Convex techniques (e.g. lasso [29]) facilitate computational efficiency.
Particularly in the case of large numbers of possible (combinations of) active faults,
sparse regression is suitable for diagnosis. Explicit hypothesis testing for each
possible fault combination is circumvented, which would be a computational burden
using conventional approaches.

1.3.4. UNSUPERVISED KNOWLEDGE-BASED APPROACHES

Knowledge-based approaches to fault diagnosis usually require labeled data to train
on. Contrarily, unsupervised approaches are able to separate data autonomously
without requiring labels to the training data. Often unsupervised knowledge-based
approaches only train on nominal data [11], after which a fault is detected as being
a deviation from the nominal data. It is however also possible to train on unlabeled
data from multiple (possibly faulty) operating conditions [30].

Even though unsupervised approaches to knowledge-based fault diagnosis alleviate
the requirement of labels, these retain the demand for large amounts of historical
data. These data are utilized at least to build knowledge on the nominal operating
conditions. In other words, a certain model of the system is identified prior
to executing the diagnosis experiment. Collecting sufficient data for identifying
this model may not always be feasible, for example due to unforeseen (possibly
catastrophic) faults occurring in the initial operating period already. This enhances
the interest for approaches in which the required amounts of historical data are
reduced or even circumvented.
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1.4. DISSERTATION CONTRIBUTIONS
The main challenges suppressing the development of fault diagnosis algorithms
remain to be captured by their computational complexity. In order to reduce this
computational complexity, this dissertation focuses on finding solutions based on
convex optimization. With this in consideration, (most of) the methods presented in
this thesis are developed for linear(-ized) discrete-time models. More specifically, the
remaining chapters of the dissertation have the following contributions. These can
be read independently of each other with the corresponding references listed after
each respective chapter. This also entails the variables to be defined in each chapter
separately. The interested reader can find the corresponding code in [31–34].

CHAPTER 2: ONLINE INPUT DESIGN FOR FAULT DIAGNOSIS

In this chapter we will develop a computationally attractive approach to design
auxiliary inputs online in order to improve the discrimination performance.
The Bhattacharyya coefficient is utilized as a probabilistic divergence measure
preserving a theoretical upper bound on the error probability. As a result of its
favorable properties especially in the most challenging discrimination conditions, the
computational effort for optimizing the error bound remains low. The methodology
is validated on both open-loop and feedback controlled systems. Besides, it is
demonstrated on an object recognition application in which the input illumination
pattern is controllable.

This chapter is based on the following publications:

• J. Noom, O. Soloviev, C. Smith, and M. Verhaegen. Online input design for
discrimination of linear models using concave minimization. 2024. arXiv:
2401.05782 [eess.SY]

• J. Noom, O. Soloviev, C. Smith, and M. Verhaegen. “Closed-loop active
object recognition with constrained illumination power”. In: Real-Time Image
Processing and Deep Learning 2022. Ed. by N. Kehtarnavaz and M. F. Carlsohn.
Vol. 12102. International Society for Optics and Photonics. SPIE, 2022, pp. 9–14.
DOI: 10.1117/12.2618750

CHAPTER 3: SPARSE FAULT DIAGNOSIS FOR HIGH-SPEED ATOMIC FORCE MICROSCOPY

High-speed atomic force microscopy typically employs an oscillating cantilever in
order to determine the sample height over a certain area. The oscillating cantilever
behavior results in intermittent contact with the sample, which can be regarded
as faults with respect to the nominal free oscillation. Because of the typical high
cantilever oscillation frequencies, large numbers of faults can occur. In this chapter
we will study the implementation of a sparse estimation method for diagnosing
these faults. Simulation experiments demonstrate the resulting effect on the sample
height reconstruction.

This chapter is based on the following publication:

https://arxiv.org/abs/2401.05782
https://doi.org/10.1117/12.2618750
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• J. Noom, C. Smith, G. J. Verbiest, A. J. Katan, O. Soloviev, and M. Verhaegen.
“High-Speed Tapping Mode AFM Utilizing Recovery of Tip-Sample Interaction”.
In: IEEE Transactions on Nanotechnology 22 (2023), pp. 273–279. DOI:
10.1109/TNANO.2023.3284654

CHAPTER 4: ONLINE MODEL-FREE DATA-DRIVEN FAULT DIAGNOSIS

This chapter introduces a novel problem formulation for model-free data-driven
fault diagnosis. Instead of dividing the training (or: identification) and diagnosis
experiment in two separate steps, model-free data-driven fault diagnosis aims to
both identify the system and diagnose the faults simultaneously. This circumvents
the requirement of large amounts of historical data in state-of-the-art approaches
to data-driven fault diagnosis. The proposed solution to the novel problem
formulation uses convex optimization. The resulting optimization problem can be
solved online using the introduced recursive implementation of a proximal algorithm.

This chapter is based on the following publications:

• J. Noom, O. Soloviev, and M. Verhaegen. “Proximal-based recursive
implementation for model-free data-driven fault diagnosis”. Accepted for
publication in Automatica.

• J. Noom, O. Soloviev, and M. Verhaegen. “Data-driven fault diagnosis under
sparseness assumption for LTI systems”. In: IFAC-PapersOnLine 56.2 (2023),
pp. 7722–7727. DOI: 10.1016/j.ifacol.2023.10.1176

CHAPTER 5: MODEL-FREE DATA-DRIVEN APPROACH TO DIAGNOSIS OF AIR DATA

SENSOR FAULTS

The model-free data-driven fault diagnosis approach introduced in Chapter 4 is
useful in situations where the system dynamics are unknown (precisely). This is a
typical situation in the control of aircraft, in which the specific flight conditions alter
the aircraft dynamics. The correct operation of air data sensors is critical to a safe
flight. These sensors are however sensitive to faults due to icing, for instance. This
chapter applies a novel model-free data-driven approach to diagnose these air data
sensor faults without requiring knowledge of a model.

This chapter is based on the following publication:

• J. Noom, C. C. de Visser, N. S. Ramesh, and M. Verhaegen. “Simultaneously
identifying the system dynamics and fault isolation for air data sensor failures:
a convex approach”. Accepted for presentation at IFAC Safe Process 2024.

https://doi.org/10.1109/TNANO.2023.3284654
https://doi.org/10.1016/j.ifacol.2023.10.1176
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2
ONLINE INPUT DESIGN FOR FAULT

DIAGNOSIS

Stochastic Closed-Loop Active Fault Diagnosis (CLAFD) aims to select the input
sequentially in order to improve the discrimination of different models by minimizing
the predicted error probability. As computation of these error probabilities encompasses
the evaluation of multidimensional probability integrals, relaxation methods are of
interest. This chapter presents a new method that allows to make an improved
trade-off between three factors – namely maximized accuracy of diagnosis, minimized
number of consecutive measurements to achieve that accuracy, and minimized
computational effort per time step – with respect to the state-of-the-art. It relies
on minimizing an upper bound on the error probability, which is in the case of
linear models with Gaussian noise proven to be concave in the most challenging
discrimination conditions. A simulation study is conducted both for open-loop and
feedback controlled candidate models. The results demonstrate the favorable trade-off
using the new contributions in this chapter.

The contents of this chapter are submitted as or have been published in:
J. Noom, O. Soloviev, C. Smith, and M. Verhaegen. Online input design for discrimination of linear
models using concave minimization. 2024. arXiv: 2401.05782 [eess.SY]
J. Noom, O. Soloviev, C. Smith, and M. Verhaegen. “Closed-loop active object recognition with
constrained illumination power”. In: Real-Time Image Processing and Deep Learning 2022. Ed. by
N. Kehtarnavaz and M. F. Carlsohn. Vol. 12102. International Society for Optics and Photonics. SPIE,
2022, pp. 9–14. DOI: 10.1117/12.2618750

The corresponding code is available in:
J. Noom. Matlab code for online input design for discrimination of linear models using concave
minimisation. 2024. DOI: 10.5281/zenodo.6642321

15



2

16 2. ONLINE INPUT DESIGN FOR FAULT DIAGNOSIS

2.1. INTRODUCTION

Fault diagnosis is crucial for automation. Widespread applications rise from
recognizing faults in dynamical systems [4] to automatic classification of images [2,
5]. Moreover, Industry 4.0 aims at fully automated, smart factories where (among
other things) ample data are turned into automatic actions and decisions. The
motivation of such actions and decisions lies in model diagnosis. It is therefore
critical that the diagnosis is efficient and reliable.

Passive approaches of fault diagnosis have the potential to overlook faults, as
complex or feedback-controlled systems may generate nominal input-output data
while not being fault-free [6]. Active fault diagnosis overcomes the shortcomings
of passive diagnosis by applying an input designed such that complex models can
still be discriminated. Online computation of the discriminating inputs further
increases the efficiency by considering most recent measurements. Such closed-loop
implementations receive increased interest for their decreased conservatism and
accelerated diagnosis, yet are not widespread use in automation [6].

Although the idea of Closed-Loop Active Fault Diagnosis (CLAFD) exists for several
decades in static [7, 8] and dynamical systems [9], the developments were held back
due to its computational challenges [6]. Moreover, the trade-off consists of three
factors. First, the accuracy of diagnosis should be maximized. Second, the system
should be diagnosed within a minimized number of consecutive measurements.
Third, the inputs should be calculated fast enough so they can be applied to the
system without delay. This implication between performance (first two factors) and
computational efficiency (third factor) is still a major bottleneck.

Existing efforts can be separated in deterministic and stochastic approaches [10],
which are both computationally challenging. Assuming bounded uncertainties, a
deterministic approach facilitates guaranteed diagnosis of the correct model [e.g.
11]. This problem is computationally challenging due to the nonconvex constraints
on the input such that the system output is exclusive [12]. Alternatively, stochastic
approaches assume known Probability Density Functions (PDFs) for unbounded
uncertainties. Instead of anticipating the worst-case scenario for guaranteed
diagnosis, the goal of stochastic approaches is to minimize the probability of
misdiagnosis. This is computationally challenging because of the (online) evaluation
of multidimensional probability integrals to determine the error probability. An
illustration of the enormous computational challenge here is reported in [13], where
even when restricting the input to a small discrete set of three elements and three
second order candidate models, the computational time for determining the input
policy was 7.5 hours [13]. Yet, stochastic approaches are generally less intrusive
than deterministic approaches [14]. Besides, it is in practice often difficult to define
explicit bounds on signals, which makes it more natural to formulate CLAFD as a
stochastic optimization problem [15, 16].

To overcome the tremendous computational burden of stochastic approaches,
a widely accepted solution is to optimize an upper bound, such as the sum of
weighted Bhattacharyya coefficients [17]. Using sequential quadratic programming
and restricting to open-loop (batch-wise) input determination, this has been
studied in [18]. Due to the remaining high computational complexity, closed-loop
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(receding-horizon) implementation is still unattractive. [16] restricted to polytopic
constraints on the input in an attempt to implement it efficiently in closed-loop.
This approach however could not guarantee a solution that is optimal with respect
to the upper bound.

As an alternative for overcoming the real-time bottleneck, a further simplification
is proposed in [15], where just the convex part of the Bhattacharyya coefficient is
employed. The so-called Bhattacharyya distance was maximized in an attempt to
discriminate the candidate models. Although this resulted in a fast computational
solution, serious drawbacks are introduced. First, the function used in [15] is by no
means an approximation to the upper bound on the error probability. Consequently,
there exist conditions where the performance degrades substantially, such as the
case of multiple groups of close candidate models. Second, [15] only considered
polytopic constraints on the input in order to determine the maximum of the
simplified function.

The main contribution of this chapter is as follows. First, for linear systems with
Gaussian disturbances it is shown that the upper bound on the error probability is
concave in a subdomain of the input space. That subdomain is characterized by
the interesting case when discrimination between candidate models is challenging
in terms of noise and proximity of the candidate models. Second, a real-time online
check for being in this subdomain is formulated both for the case of a polytopic
and quadratic constraint set. Third, we propose to solve the minimization problem
using Disciplined Convex-Concave Programming (DCCP) [19], extending the ability
to implement the closed-loop diagnosis procedure to a broad spectrum of convex
constraints on the input. Altogether, this overcomes the two main drawbacks of the
approach in [15]. For further speedup of the computations without unnecessarily
sacrificing the performance, a quadratic Taylor approximation of the upper bound
on the error probability is proposed. The differences of the proposed approaches
with that in [15] are verified in a first Monte-Carlo simulation, after which a second
Monte-Carlo simulation aims at comparing the performances of the approaches
extended by DCCP. The final simulation shows the applicability of the proposed
approaches to feedback controlled systems.

The chapter is organized as follows. First, the stochastic diagnosis problem is
defined in Sect. 2.2. Then, the practical implementation is presented in Sect.
2.3, together with the derivation of domain of concavity and the quadratic Taylor
approximation. Sect. 2.4 presents simulation results for the proposed closed-loop
methods, along with the state-of-the-art closed-loop method based on Bhattacharyya
distances and an open-loop approach. Lastly, Sect. 2.6 states the conclusions.

2.2. PROBLEM FORMULATION

2.2.1. NOTATION

In consistency with [15, 16], we will use the following notation. The expression x|y
denotes the random variable x conditioned on y , x̂k|k−n is the estimate of xk based

on knowledge up until time step k−n, the notation xk:k+n = [
x⊤

k x⊤
k+1 . . . x⊤

k+n

]⊤
,

and we define boldface xk = xk+1:k+N with N the horizon length. The notation
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Pk (event) = P(event at time step k) with P the probability operator, and the
expectation operator E[·] works on the stochastic output data yk .

2.2.2. BAYESIAN FORMULATION

Regard the linear candidate models of a system:

M [i ] :

{
xk+1 = A[i ]xk +B [i ]uk +wk

yk =C [i ]xk + vk
(2.1)

with i = {0,1, . . . ,nm −1} the model indicator, A[i ],B [i ],C [i ] the state space matrices
and xk ∈ Rnx , uk ∈ Rnu , yk ∈ Rny the state, input and output. Given the joint
covariance matrix of the process noise wk and measurement noise vk

E

[[
vk

wk

][
v⊤
ℓ

w⊤
ℓ

]]=


[
R S⊤
S Q

]
if k = ℓ,

0 otherwise,
(2.2)

the optimal state prediction x̂[i ]
k+1|k can be obtained together with its corresponding

covariance matrix Ξ[i ]
k+1|k using the Kalman filter as described in for instance [20].

Stability of the candidate models is not required. Nevertheless, feedback controlled
systems can be captured in (2.1) and (2.2) as described in Appendix 2.A.

The hypothesis probabilities evolve according to the Bayesian update rule

Pk+N

(
M [i ]∣∣Pk (M [i ]), x̂[0:nm−1]

k+1|k ,yk ,uk

)
=

p
(
yk

∣∣M [i ], x̂[i ]
k+1|k ,uk

)
Pk (M [i ])

p
(
yk

∣∣x̂[0:nm−1]
k+1|k ,uk

) ,
(2.3)

where p
(
yk

∣∣M [i ], x̂[i ]
k+1|k ,uk

)
∈R+ is the probability density function (PDF) of output

yk , conditioned on hypothesis M [i ], state estimate x̂[i ]
k+1|k and input uk . The initial

conditions P0(M [i ]) can be set to any prior probabilities. Observe that in this
notation the left-hand side of (2.3) is conditioned on another probability, which
is convenient for the reason that the model probabilities Pk (M [0:nm−1]) combined
with system state estimates x̂[0:nm−1]

k+1|k fully describe the so-called belief state of the
partially observable Markov decision process.

If one chooses the most likely model

M [i ] : i = argmax
i

(
Pk (M [i ])

)
(2.4)

based on all knowledge up until time step k, then the probability of misdiagnosis
would be

Pk

(
error

∣∣Pk (M [0:nm−1])
)
= 1−max

i

(
Pk (M [i ])

)
. (2.5)
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The future (unknown) probability of misdiagnosis after next measurements yk also
depends on future inputs and outputs:

Pk+N
(
error

∣∣Pk+N (M [0:nm−1])
)

= Pk+N

(
error

∣∣Pk (M [0:nm−1]), x̂[0:nm−1]
k+1|k ,yk ,uk

)
= 1−max

i

(
Pk+N

(
M [i ]∣∣Pk (M [i ]), x̂[0:nm−1]

k+1|k ,yk ,uk

))
.

(2.6)

Obviously, it is desirable to minimize this future error probability. For that
purpose, the stochastic problem of CLAFD is based on the expected value of the
error probability. Besides, one could imagine that the optimal input sequence
for minimizing the error probability changes when more measurements become
available. This is covered in the general stochastic formulation of the CLAFD
problem, as presented in next section.

2.2.3. INFINITE HORIZON STOCHASTIC CONTROL PROBLEM

In accordance with [21], the stochastic control problem of CLAFD is generally
formulated as

min
π

lim
N→∞

N−1∑
k=0

E
[

Pk

(
error

∣∣sk

)∣∣∣s0

]
s.t. π ∈Π

sk+1 = f [sk ,µk (sk ),wk ].

(2.7)

Here, the input policy π= (µ0, . . . ,µN−1) defines the input with the functions

uk =µk (sk ),

constrained to the set Π. The function f [sk ,µk (sk ),wk ] describes the system
dynamics as function of state sk , input function µk (sk ) and wk the stochastic
disturbance. Similarly to [13], the hyperstate sk should consist of the state estimates
for each candidate model x̂[i ]

k+1|k and the model probabilities Pk (M [i ]). The variable
wk consists of the noise contributions wk and vk .

The expected value of the error probability in (2.7) is also known as the risk in a
Bayes classifier [see e.g. 22]. When considering for the case in this chapter that the
estimated states and covariance matrices are available from (2.1), the expected value
acts as a predictor of the error probability in (2.6). In other words,

P̂k+N |k
(
error

∣∣uk
)

= E
[

Pk+N

(
error

∣∣Pk (M [0:nm−1]), x̂[0:nm−1]
k+1|k ,yk ,uk

)]
= Pk+N

(
error

∣∣Pk (M [0:nm−1]), x̂[0:nm−1]
k+1|k ,uk

)
.

(2.8)

Note that all sides of this equation are independent of the future system outputs yk ,
and therefore it is a deterministic function of uk only.
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2.3. METHODOLOGY

2.3.1. MODEL PREDICTIVE CONTROL

A generally accepted strategy for solving an infinite horizon stochastic control
problem is to make use of a receding horizon approach, most commonly known as
Model Predictive Control (MPC) [23]. This technique solves a finite horizon control
problem each time step, and applies only the first input to the system. The N -step
receding-horizon approximation of (2.7) is

u∗
k = arg min

uk∈U

k+N∑
ℓ=k+2

P̂ℓ|k
(
error

∣∣uk+1:ℓ−1
)

(2.9)

with U the constraint set on vectorised inputs uk .

2.3.2. BOUND ON PREDICTED ERROR PROBABILITY

Since the prediction of the error probability requires large computational effort,
a divergence measure will be used instead. The Bhattacharyya coefficient is
a symmetric measure which provides an upper bound on the predicted error
probability [17]:

P̂k+N |k
(
error

∣∣uk
)≤∑

i

∑
j>i

√
Pk (M [i ])Pk (M [ j ])B[i j ](uk ) (2.10)

with the Bhattacharyya coefficient in case of Gaussian process and measurement
noise

B[i j ](uk ) = exp(−d [i j ](uk )). (2.11)

The Bhattacharyya distance

d [i j ](uk ) = u⊤
k H [i j ]uk +u⊤

k c [i j ] +h[i j ] (2.12)

is a convex quadratic function where [15]:

H [i j ] = 1

4
(Γ[i j ])⊤(Ω[i j ])−1Γ[i j ]

c [i j ] = 1

2
(Γ[i j ])⊤(Ω[i j ])−1ζ[i j ]

(2.13)

and
Ω[i j ] =Σ[i ]

k|k +Σ
[ j ]
k|k

Γ[i j ] = C[i ]TA[i ] B[i ] −C[ j ]TA[ j ] B[ j ]

ζ[i j ] = C[i ]A[i ]x̂[i ]
k+1|k −C[ j ]A[ j ]x̂[ j ]

k+1|k

(2.14)

with the matrices A[i ],B[i ],C[i ] and Toeplitz matrix TA[i ] constructed from the

state-space matrices in (2.1), and Σ[i ]
k|k are the covariance matrices of the estimates of

the output ŷ[i ]
k|k . The full definitions together with that of h[i j ] are given in Appendix

2.B.
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Given the bound in (2.10), the relaxed MPC problem reads

u∗
k = argmin

uk∈U

k+N∑
ℓ=k+2

∑
i

∑
j>i

√
Pk (M [i ])Pk (M [ j ])B[i j ](uk+1:ℓ−1). (2.15)

Since the objective function (2.15) is still non-convex, efforts have been made to
simplify it further. The approach in [16] aims to solve

u∗
k = arg min

uk∈U

∑
i

∑
j>i

√
Pk (M [i ])Pk (M [ j ])B[i j ](uk ) (2.16)

instead, using only the error bound for time step k +N . Furthermore, [15] simplifies
problem (2.16) to

u∗
k = arg min

uk∈U

∑
i

∑
j>i

−d [i j ](uk ) (2.17)

in which only the Bhattacharyya distances d [i j ](uk ) are considered. Its performance
is demonstrated on a problem with a polytopic constraint set, such that the
minimum of this concave function lies at one of the vertices of this set. Although the
computational effort is relatively small, the solution can differ significantly from the
optimum of (2.16). To improve the optimization outcome, [16] proposes to evaluate
the objective function in (2.16) only at the vertices of the constraint set. Still, the
global optimum of (2.16) is not guaranteed using this approach.

The current chapter follows the observation that (2.15) is in closed-loop diagnosis
– with challenging discrimination conditions – often concave within the given
constraint set. The next sections elaborate on verification of concavity and show
how this concave problem can be minimized for polytopic constraints and energy
constraints. Besides, Sect. 2.3.5 presents an improved quadratic approximation w.r.t.
(2.17), which can be used if regular concave minimization is still too demanding
with respect to quadratic concave minimization.

2.3.3. DOMAIN OF CONCAVITY OF THE BHATTACHARYYA COEFFICIENT

Note that in case of Gaussian process and measurement noise, the Bhattacharyya
coefficient is a Gaussian function

B(uk ) = exp
(−u⊤

k Huk − c⊤uk −h
)

(2.18)

with H a positive semi-definite, symmetric matrix (the indices i j are omitted for
clarity) which can be partitioned using the singular value decomposition (SVD)

H = [
U1 U2

][
Λ1 0
0 0

][
U⊤

1
U⊤

2

]
. (2.19)

The domain where the Bhattacharyya coefficient is concave, is provided in the
following lemma.
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Lemma 2.1 (Domain of concavity of a multivariate Gaussian). Expression (2.18) is
concave in the domain where

u⊤
k Huk + c⊤uk +

1

4
c⊤U1Λ

−1
1 U⊤

1 c ≤ 1

2
(2.20)

is satisfied.

Proof. The Bhattacharyya coefficient can be represented as

B(uk ) = a exp(−ρ2) (2.21)

with
ρ2 = g⊤g

g =Λ
1
2
1 U⊤

1 uk +
1

2
Λ
− 1

2
1 U⊤

1 c

a = exp

(
1

4
c⊤U1Λ

−1
1 U⊤

1 c −h

)
.

(2.22)

The second derivative of (2.21) with respect to the radius ρ is non-positive for ρ2 ≤ 1
2 ,

implying that the concave part of (2.18) is the domain where (2.20) is satisfied.

As illustrated in Fig. 2.1, Lemma 2.1 implies that concavity is likely in the
challenging conditions when the model differences indicated by Γ[01] in (2.14) are
small and the noise contribution indicated by R is large. The term c grows with
differences in state estimates per model. As long as the input remains small enough,
and the candidate models do not differ significantly in resonance frequencies, the
term c will remain small and the optimization problem is likely to be completely in
the domain of concavity. Note that these conditions are again the most challenging
for discrimination of models, whereas minimization of the Bhattacharyya coefficient
is a concave problem for these conditions, which is computationally tractable for
multiple types of constraints.

2.3.4. ONLINE CHECK FOR CONCAVITY OF (2.15)
FOR POLYTOPIC CONSTRAINTS

To see whether (2.15) is concave in the case of polytopic constraints, it is sufficient
to check whether all vertices of the constraint set satisfy (2.20), for each model
combination i j .

FOR ENERGY CONSTRAINTS

The input energy constraint set has the form

U =
{

uk

∣∣∣ ∥uℓ∥2
2 ≤ ε, k +1 ≤ ℓ≤ k +N

}
. (2.23)

If the input sequence uk = 0 satisfies (2.20), it can be deduced that any point uk for
which ∥uk∥2 ≤ ∥z∗∥2, with

z∗ = argmin
z

z⊤z

s.t. z⊤H z + c⊤z + 1

4
c⊤U1Λ

−1
1 U⊤

1 c = 1

2

(2.24)
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Figure 2.1: The compliance of (2.20) against measurement noise variance R and

model differences
∥∥Γ[01]

∥∥
F, generated with initial conditions, horizon N

and model M[0] as in Sect. 2.4.1, C[1] = constant ·C[0], and with inputs
uk = [−1, −1, −1, −1, 1, 1, −1, −1, 0, 0]⊤. Large noise contribution and
small model differences are favorable for satisfying (2.20).

is within the concave domain of (2.18). This optimization can be solved using only
small computational effort as is shown in Appendix 2.C. Since there is an input
energy constraint for each time step in the horizon,

∥uk+1∥2
2 +∥uk+2∥2

2 + . . .+∥uk+N∥2
2 ≤ εN

holds and therefore the optimization problem will be in the domain of concavity of
(2.15) if

p
εN ≤ ∥z∗∥2 is satisfied for each model combination i j .

These tests for concavity are performed each time step before the input
determination. The assessment of concavity prior to the full closed-loop
discrimination experiment requires closer investigation in future research. This
deficiency however does not prevent the closed-loop approach from diagnosing the
true candidate model. Instead, it is only uncertain whether the solution found each
time step is the actual optimum of (2.15).

2.3.5. QUADRATIC TAYLOR APPROXIMATION OF (2.15)
The quadratic Taylor approximation of the Bhattacharyya coefficient around uk = 0 is

TB(uk |0) =B(0)

(
1

2
u⊤

k

(
cc⊤−2H

)
uk − c⊤uk +1

)
. (2.25)
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The Taylor approximation of the sum of weighted coefficients, such as the right-hand
side of (2.10), can be obtained by taking the weighted sum of individual Taylor
approximations. This means that minimization (2.15) is approximated by

u∗
k = arg min

uk∈U

k+N∑
ℓ=k+1

∑
i

∑
j>i

√
Pk (M [i ])Pk (M [ j ])TB(uk+1:ℓ|0). (2.26)

Note that this quadratic approximation is significantly different from simply taking
the sum of Bhattacharyya distances as in (2.17). It is more reasonable, since the error
bound in (2.10) is now appropriately approximated, rather than only disregarding
the model probabilities and base of exponentials as is done in (2.17).

2.3.6. SUMMARY OF APPROACHES

Four MPC-based approximations and one open-loop (OL) approach of (2.7) will
be compared. The Bhattacharyya Distance (BD) approach is reproduced from [15]
and solves (2.17) in a receding horizon manner. The Bhattacharyya Coefficient
(BC) approach solves (2.16) instead, given that the problem is within the domain
of concavity. The validity of the optimum can be checked as described in Sect.
2.3.4. The Summed Bhattacharyya Coefficient (ΣBC) takes multiple time steps into
account by solving (2.15), again while considering the domain of concavity. Next, the
Quadratic Taylor Approximation (QTA) approach solves (2.26), yet only considering
the error bound at time step k +N in order to make a fair comparison with BD and
BC. Lastly, the OL approach minimizes (2.16) offline (i.e., only at time step k = 0)
with very large horizon N .

2.4. SIMULATION EXPERIMENT

The proposed approaches are first tested in a setting with a polytopic constraint set
on the inputs, as is done in [15]. Moreover, a Monte-Carlo simulation is conducted
in order to assess the performance more generally. Additionally, they will be tested
in a case with quadratic input constraints, aided by the DCCP toolbox [19]. A final
simulation in Sect. 2.4.2 demonstrates how the methodology can be applied to a
feedback controlled system.

The approaches were tested on the simulation setup given in [15]. The
performances of the approaches were very similar to each other due to the chosen
set of candidate models and small noise contribution, such that a well-designed
input was not crucial for discrimination. In this section, we therefore created a more
challenging case study, namely with multiple groups of close candidate models and
large noise contribution.

2.4.1. CLOSED-LOOP DIAGNOSIS OF AN UNCONTROLLED SYSTEM

The candidate models in the simulation are constructed from a continuous-time
harmonic oscillator with resonance π/2, damping 0.1 and discretized with sampling
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time 1, such that the matrices1

A[i ] =
[−0.0792+∆[i ] −0.6746

1.0936 0.0926

]
,

B [i ] =
[

0.2734 1.5700−δ[i ]

0.3677 0

]
∆= {0, 0.2, 0.4, 1.0, 1.1}

δ= {0, 0.1660, 0.3319, 0.8297, 0.9127}

(2.27)

variable per model, and

C [i ] =C =
[

0 1
0.1 0.5

]
(2.28)

equivalent for each model, with in total five models M [i ] constructed from taking
i = {0,1,2,3,4}. The Gaussian noise contribution is relatively high with Q = 0.2I2,
R = 80I2 and S = 0. Given these quantities, a Kalman filter [20] is constructed for
online estimation of the system state and output, which are normally distributed.

The initial state is x̂0|−1 = [
0 1

]⊤
with covariance Ξ0|−1 = 0.5I2, and the initial

probabilities are P0(M [i ]) = 0.2 for each candidate model. For online determination
of a separating input, the BD, QTA, BC and ΣBC approaches are implemented with
receding horizon of length 5. Either if a model probability exceeds 1− ϵ= 0.98, or
if the number of measurements exceeds its maximum of 400, the discrimination
experiment stops and the algorithm makes a decision about the underlying model
of the system.

The OL approach uses a horizon of 200 time steps. The optimum is found as in
[18] using sequential quadratic programming with 20 initializations. If a decision
cannot be made after 200 time steps, the open-loop input is repeated.

For each experiment setting, the number of Monte-Carlo (MC) runs is 1000, with
200 per true candidate model, performed on an Intel i7-9750H CPU.

PARAMETERS FOR POLYTOPIC CONSTRAINT SET

For the experiment with polytopic constraint set, the input is restricted to

U =
{

uk

∣∣∣ ∥uℓ∥∞ ≤ 2,

∥uℓ−uℓ−1∥∞ ≤ 1, k +1 ≤ ℓ≤ k +N
}

After a check of concavity as described in Sect. 2.3.4, the optima for problems (2.15),
(2.16), (2.17) and (2.26) (for the ΣBC, BC, BD and QTA approach, respectively) are
found using an exhaustive search over the vertices.

1Note that these values are rounded. Simulation results using rounded values may differ from the
results presented in this chapter. Besides, note that extension of the presented methodology to
time-variant state-space matrices and model-dependent noise characteristics is straightforward.
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PARAMETERS FOR QUADRATIC CONSTRAINT SET

The experiment with quadratic constraint set has restriction (2.23) with ε= 2. With a
positive check for concavity as explained in Sect. 2.3.4, the minimization problems
(2.15), (2.16), (2.17) and (2.26) are solved using DCCP [19].

RESULTS

The results for the polytopic and quadratic constraint set are presented as violin
plots [24, 25] in Figs. 2.2 and 2.3, respectively. According to the online check as
described in Sect. 2.3.4, all computations were done in the domain of concavity of
(2.15) for BC and ΣBC in the experiment with polytopic constraint set. With the
quadratic constraint set, at least 59.9% of the measurements yielded a domain where
(2.16) (or (2.15) for ΣBC) is concave. In the other cases, a discriminating input will
still be found, but without the guarantees of DCCP. As explained in Sect. 2.3.3, in
these cases it is less crucial for the input to be optimally discriminating.

Figs. 2.2 and 2.3 show that in both cases with polytopic or quadratic constraints,
the QTA, BC and ΣBC approaches require fewer measurements for diagnosis with
confidence 1− ϵ than OL and BD. The OL approach shows in both experiments a
bimodal distribution for the required number of measurements. This is caused by
the composition of candidate models, of which three models M [0], M [1] and M [2]

have high resonance frequency, whereas the other two models M [3] and M [4] have
relatively low resonance frequency. This implies that the input frequency should
be either low or high to separate these respective models. Since the OL approach
has a predetermined input sequence for discriminating all candidate models within
a certain time span, it will invariably first start with one frequency for a fixed
amount of time, after which it applies the other frequency for another fixed period.
Therefore, depending on the resonance frequency of the true system, the diagnosis
will be either early or late.

Fig. 2.4 presents one realization of the closed-loop diagnosis approaches in the
quadratic constraint set. The upper plot illustrates the latter phenomenon for the
OL approach. As the black vertical bar indicates, the input frequency only increases
after about 100 time steps, no matter what the system output is. In this realization,
the true candidate model is a low-frequency model. Therefore the OL approach
diagnoses it relatively quickly. Contrarily, the diagnosis in this experiment will be
slower if the true model has high resonance frequency.

As opposed to open-loop, the closed-loop approaches do consider online
measurements for updating the system inputs. Therefore, the QTA, BC and ΣBC
approaches change the main input frequency as soon as the model probabilities
‘suggest’ this, as can be seen in the bottom plots in Fig. 2.4. Although the
distributions between QTA, BC and ΣBC do not differ significantly in Fig. 2.3, the
bottom plot in Fig. 2.4 shows that individual realizations of these approaches can
actually differ.

Interestingly, in many cases the BD approach fails to diagnose with 1−ϵ confidence,
even after 400 time steps. This is mainly due to disregarding the model probabilities
in the optimization problem. As a result, it keeps trying to separate all five
models simultaneously, while at some point several candidate models may become
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Figure 2.2: Number of measurements before decision in experiment with polytopic
constraints for the four closed-loop methods, compared to open-loop. The
medians are from left to right {119, 400, 78, 78, 88} and the distributions of
all methods differ significantly with MWW approximated p-value < 0.001,
except the distribution pair (QTA,BC). The average computational time
per measurement for the closed-loop methods was {10.8, 12.4, 26.1, 89.1}
milliseconds for BD, QTA, BC and ΣBC, respectively.
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Figure 2.3: Number of measurements before decision in experiment with quadratic
constraints for the four closed-loop methods, compared to open-loop.
The medians are from left to right {122, 59, 54.5, 55, 55}. Although
the distributions of QTA, BC and ΣBC do not differ significantly
from each other, they do differ significantly from OL and BD with
MWW approximated p-value < 0.001. The average computational time
per measurement for the closed-loop methods was {223, 175, 310, 928}
milliseconds for BD, QTA, BC and ΣBC, respectively.
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Figure 2.4: Applied inputs uk = [uk,1,uk,2]⊤ for one realization of the approaches
summarized in Sect. 2.3.6 in quadratic constraint set, with corresponding
probability of true model M[3]. The black vertical bars indicate time
instances at which the input pattern changes significantly in main
frequency. The colored circles indicate time instances when the final
decision is made. The BD approach did not present the change in main
frequency and failed to decide after 200 time steps.

irrelevant due to low probability of being the true model. Another reason is that,
even with equal model probabilities, optimization problem (2.17) is by no means an
approximation to minimization of the original error bound (2.16) for the fact that
minimizing the sum of exponents produces a different result than minimizing the
sum of exponentials.

In terms of computational time, BD, QTA and BC are comparable. However, there
seems to be a preference to BD and QTA, which have quadratic objective functions.
The ΣBC approach generally uses more computational time, which is reasonable
since it has more terms in the summation in the objective function.

2.4.2. CLOSED-LOOP DIAGNOSIS OF A FEEDBACK CONTROLLED SYSTEM

The closed-loop procedure for diagnosing faults can also be applied to feedback
controlled systems as illustrated in Fig. 2.5 and described in Appendix 2.A. For this
simulation experiment, the structure of the open-loop candidate models Ã[i ], B̃ [i ],C̃ [i ]
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are chosen similar to (2.27) and (2.28) with

∆= {2, 2.01, 2.02, 2.03, 2.04}

δ= {1.6594, 1.6677, 1.6760, 1.6843, 1.6926}
(2.29)

and

Q̃ = I2 ×10−4, R̃ = I2 ×10−2, S̃ = 0. (2.30)

These candidate models are stabilized by designing a controller for the nominal
system with observer gain K [0] the Kalman gain and with feedback gain F [0] such
that Ã[0] − B̃ [0]F [0] has eigenvalues at 0.94 and 0.95. The feedforward gain G [0] is
chosen such that the input uk to the feedback controlled system acts as a reference
for the system output.

In this proof-of-concept demonstration we regard a quadratic constraint set

U =
{

uk

∣∣∣ ∥uℓ− rℓ∥2
2 ≤ ε, k +1 ≤ ℓ≤ k +N

}
. (2.31)

such that the input uk is bounded around a given reference signal rk = [3,5]⊤ ∀k
with ε= 2.5×10−3. With the straightforward translation u′

k = uk − rk this constraint
set is equivalent to (2.23) such that the methodology presented in Sect. 2.3 is still
applicable to this case. The closed-loop approach BC is implemented with a horizon
of N = 5.

The results are presented in Fig. 2.6. According to the online check presented in
Sect. 2.3.4, all computations were done in the concave domain of the Bhattacharyya
coefficients. From Fig. 2.6 it can be concluded that it is impossible to reliably
diagnose the model without using an auxiliary input. With the closed-loop approach
BC however, an input is computed with a user-defined energy limit so that the
system is minimally disturbed while still being able to diagnose the correct model
after 400 time steps.

Figure 2.5: Online input design for discrimination of models for a feedback (FB)
controlled system with observer, feedforward (FF) and feedback gains
K [0], G [0] and F [0], respectively. The online input design method BC can
also be replaced with one of the other methods proposed in this chapter
ΣBC or QTA.
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Figure 2.6: A feedback controlled system with and without auxiliary input generated
by BC (right and left, respectively). The system outputs yk (top)
approximately track a reference rk = [3,5]⊤ (blue and red dashed,
respectively) even though the auxiliary input u′

k = uk − rk is applied.
However, the correct model could be diagnosed with probability
P400(M [3]) ≈ 1 using BC, whereas this is not possible with u′

k = 0 ∀k.

2.5. APPLICATION TO ACTIVE OBJECT RECOGNITION
This section uses CLAFD for high-performance object recognition with minimal
phototoxicity. The proposed closed-loop imaging scheme consists of a neural
network cluster for diagnosing the object with a certain confidence, and of a
controller for determination of the next minimally invasive yet discriminating
illumination input. The vast majority of the computations can be done offline, such
that fast online execution is ensured. Simulation experiments test the procedure on
the MNIST handwritten digit dataset [26], after which the results can be compared
to an open-loop approach.

2.5.1. PROBLEM REFORMULATION

Consider the objects to be imaged xk for each time step k. The objects xk can
represent one of the NM classes, therefore NM hypotheses are defined:

Mi : xk ∈Xi ∀k (2.32)

with i ∈ {0,1, . . . , NM −1} and Xi the set of images corresponding to class i . The
images are formed using

yk = xk ·uk + vk , (2.33)

with uk ∈Rm×m+ the illumination input, yk ∈Rm×m+ the output intensity, vk ∈Rm×m the
noise at time step k, and the symbol · represents element-wise multiplication. With
all measurements available up to (and including) yk−1, the hypothesis probabilities
Pk−1(Mi ) evolve according to the Bayesian update rule

Pk−1(Mi ) = p(yk−1|Mi ,uk−1)Pk−2(Mi )

p(yk−1|uk−1)
, (2.34)
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where p(yk−1|Mi ,uk−1) ∈ R+ is the probability density function (PDF) of output
image yk−1, conditioned on hypothesis Mi and input uk−1. The initial conditions
P0(Mi ) can be set to any prior probabilities.

The goal is to minimize the probability misdiagnosis after the next measurement
yk , which is defined as [18]

Pe(uk ) =∑
i

∑
j ̸=i

∫
R j

p(yk |Mi ,uk )Pk−1(Mi ) dyk (2.35)

where

R j =
{

yk
∣∣ p(yk |M j ,uk )Pk−1(M j ) > p(yk |Mi ,uk )Pk−1(Mi ) ∀i ̸= j

}
.

In the current application we limit the so-called input energy

vec(uk )⊤vec(uk ) ≤ ε. (2.36)

This input will be evaluated in the “Controller"-block in Figure 2.7. The closed-loop
procedure has the purpose of reducing phototoxicity while increasing the reliability
of diagnosis. One can for instance limit the total energy

∑
k ε by limiting the number

of measurements, or alternatively predefine a desired probability of misdiagnosis
and iterate the scheme until this confidence is achieved.

2.5.2. MULTIPLE-INPUT INFERENCE IMPLEMENTATION

For simplification of the problem, the images are split up in n2 subimages with
uniform input uk,ℓ ∈ R for ℓ ∈ {1,2, . . . ,n2}. For each subimage, s neural networks
are trained with varying prospected inputs. As depicted in Figure 2.8, the relative
probabilities of the neural network outputs are evaluated using the accompanying
PDFs for each hypothesis Mi . These PDFs were constructed by fitting Gaussian
kernel density estimates to the neural network output distributions. Since multiple
neural networks with different uniform illumination intensities are used for one
single subimage, the outcome of the PDFs are linearly interpolated with respect
to the actual illumination input. For combining the outcomes all subimages, the
Bayesian update rule (2.34) is applied repetitively and for each hypothesis.

CLOSED-LOOP INPUT DETERMINATION

The probability of misdiagnosis in (2.35) is bounded by [18]

Pe(uk ) ≤∑
i

∑
j>i

√
Pk−1(Mi )Pk−1(M j )Bi j (uk ) (2.37)

for which the Bhattacharyya coefficient is defined as

Bi j (uk ) =
∫ √

p(yk |Mi ,uk )p(yk |M j ,uk ) dyk . (2.38)
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Figure 2.7: Control scheme. The (unknown) object xk is fed to the imaging system
together with illumination input uk . Its output is corrupted with noise
vk , after which yk is measured. The neural network cluster updates the
probabilities of each hypothesis, after which the controller determines
the input for next measurement.

Figure 2.8: Neural network cluster from Figure 2.7 unfolded. The images yk are
split up in n2 subimages. Each subimage is fed to s different neural
networks which are trained for varying prospected inputs ū. The neural
network scalar outputs z are converted to their corresponding relative
likelihood p(z|Mi , ū), using the probability density functions obtained in
the training phase of the neural networks. Regarding the actual input
uk which was fed to the system to obtain yk , the relative likelihoods are
then linearly interpolated. Finally, the results of the n2 estimated relative
likelihoods are combined by successive Bayesian updates as in (2.34).

Furthermore, this inequality also holds for the subimages:

Pe,ℓ(uk,ℓ) ≤∑
i

∑
j>i

√
Pk−1(Mi )Pk−1(M j )Bi j ,ℓ(uk,ℓ). (2.39)

The total error probability is then obtained by applying the Bayesian update
rule (2.34) to the hypothesis probabilities of all individual subimages, assumed
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independence of the measurements. The task now is to distribute the inputs uk,ℓ

such that the total error probability is minimized. The next step approximates the
Bhattacharyya coefficient with an affine function.

LEAST-SQUARES APPROXIMATION OF BHATTACHARYYA COEFFICIENT

A least-squares fit to the Bhattacharyya coefficient can be performed by fitting the
function

B̂i j ,ℓ(uk,ℓ) = 1+ai j ,ℓuk,ℓ (2.40)

to the data gathered with the s training instances. Its solution is

ai j ,ℓ =
Bi j (ūℓ)⊤ūℓ−∥ūℓ∥1

ū⊤
ℓ

ūℓ
(2.41)

with ūℓ = [ū⊤
ℓ,1, . . . , ū⊤

ℓ,s ]⊤ the inputs for which the neural networks are trained.

INPUT DETERMINATION USING LEAST-SQUARES FIT

Using approximation (2.40), the double sum in (2.39) can be simplified to∑
i

∑
j>i

√
Pk−1(Mi )Pk−1(M j )Bi j ,ℓ1 (uk,ℓ) ≈ ck −bk,ℓuk,ℓ (2.42)

with

bk,ℓ =−∑
i

∑
j>i

ai j ,ℓ

√
Pk−1(Mi )Pk−1(M j ) (2.43)

ck =∑
i

∑
j>i

√
Pk−1(Mi )Pk−1(M j ). (2.44)

Now, one can see that a large coefficient bk,ℓ implies a high degree of distinction
between relevant models with high belief states Pk−1(Mi ), at subimage ℓ. This
reasoning suggests that

bk,ℓ1 > bk,ℓ2 =⇒ uk,ℓ1 > uk,ℓ2 (2.45)

(with ℓ1 ̸= ℓ2 two different realizations of ℓ) is a sound rule for approximately
minimizing the right-hand side of (2.37), and therefore for minimizing the error
probability.

With the energy constraint in (2.36), a possible input choice is

uk,ℓ =
n

m

√√√√ bk,ℓ∑n2

i=1 bk,i

ε . (2.46)

This solution will not lead to an overall minimum error probability, yet requires
low computational effort. Moreover, the Bhattacharyya coefficients and their
least-squares approximations can be calculated offline, implying that only Equations
(2.43) and (2.46) need to be determined online. The next section validates the
improvement in recognition performance as compared to using a constant uniform
input.
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2.5.3. SIMULATION RESULTS

For the objects xk , we used the MNIST handwritten digit dataset [26], normalized to
the segment [0,1]. The noise vk is Gaussian with zero mean and variance Rv = 0.04
and the input energy for each measurement k is limited to ε= 64. The images are
split into n2 = 49 subimages. For each subimage, s = 5 neural networks are trained
using inputs ūℓ = [0.2, 0.4, 0.6, 0.8, 1.0]⊤. The neural network internal architecture
is similar to a previous contribution[16], having three layers with 128, 10 and 1
neurons, respectively, with the first two layers a rectified linear unit (ReLU) activation
function. It is optimized using the Adam optimizer [27] in the Tensorflow package
[28].

Whereas the open-loop procedure uses constant and uniform illumination over
the whole image, the closed-loop input is determined using (2.46). Two realizations
of the closed-loop algorithm for true hypotheses M5 and M7 are shown in Figure 2.9.
The challenging noise conditions in the output yk require multiple measurements
in order to find the true hypothesis with high confidence. Taking previous
measurements into account, the input energy is distributed efficiently in order to
achieve this high confidence in a small number of measurements.

For a Monte-Carlo simulation, 100 realizations are generated for each class,
making a total of 1000 realizations. With a desired confidence of Pk (Mi ) ≥ 0.98 for
any hypothesis Mi , the distribution of number of measurements before decision is
presented in Figure 2.10. From the left plot it can be seen that the closed-loop
approach requires in general fewer measurements as compared to the open-loop
approach. Moreover, on average only 3.22 measurements are required instead of 4.37.
The error rates are with 3.6% for open-loop and 2.7% for closed-loop slightly higher
than the desired 2%. This is probably due to inaccuracies in obtaining the probability
density functions from the neural network outputs. Besides, there might be a
dependence between measurements in different subimages, whereas independence
was assumed. Interestingly, the error rate was for the open-loop approach higher,
while it uses on average more measurements than the closed-loop approach. So in
fact, the open-loop approach would require even more measurements to obtain an
error rate equivalent to the closed-loop approach.

The right plot in Figure 2.10 confirms the decrease in average number of
measurements for each hypothesis. The digits 0 and 1 are on average diagnosed in
fewer measurements than the remaining digits, which is presumably due to their
apparent uniqueness in graphical appearance.

2.6. CONCLUSION
This chapter improves the trade-off between the three factors high accuracy, small
number of consecutive measurements and low computational effort, with respect to
existing stochastic CLAFD methods such as [15]. The proposed approach considers
the weighted sum of Bhattacharyya coefficients as bound on the error probability,
which is shown to be concave in the case of close linear candidate models with
significant Gaussian process and measurement noise. In addition, a quadratic
Taylor approximation of the error bound is proposed for a further speedup of
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the computations without significantly sacrificing the discrimination performance.
Simulation results show that the newly proposed approaches require a smaller
number of measurements than the open-loop approach, whereas the approach in
[15] frequently fails to decide at all with the predefined confidence. By additionally
considering a similar computational effort, it can be concluded that the newly
proposed approaches have favorable trade-off with respect to the state-of-the-art
closed-loop method in [15].

In order to further improve the online input design, future research is suggested
to focus on minimizing the actual error probability instead of only the bound.
The approach proposed in this chapter can be used to initialize this nonlinear
optimization problem.
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Figure 2.9: Realizations of the closed-loop algorithm with true hypothesis M5 (top)
and M7 (bottom).
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Figure 2.10: Distribution of number of measurements before a decision with
98% desired confidence is taken, for open-loop (blue) and closed-loop
solution (red). Overall distribution (left) and average number of
measurements per hypothesis (right). The final error rates of the open-
and closed-loop approaches were 3.6% and 2.7%, respectively.
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2.A. APPLICABILITY FOR FEEDBACK CONTROLLED SYSTEMS

Consider the open-loop candidate models

M [i ] :

{
xk+1 = Ã[i ]xk + B̃ [i ]ũk + w̃k

yk = C̃ [i ]xk + ṽk
(2.47)

with the joint covariance matrix of the noise sequences

E

[[
ṽk

w̃k

][
ṽ⊤
ℓ

w̃⊤
ℓ

]]=


[
R̃ S̃⊤
S̃ Q̃

]
if k = ℓ,

0 otherwise.
(2.48)

A feedback controller is constructed for the nominal model

ũk =−F [0]x̂[0]
k|k−1 +G [0]uk (2.49)

with F [0] and G [0] the feedback and feedforward gains. The state estimate is given by

x̂[0]
k+1|k = Ã[0]x̂[0]

k|k−1 + B̃ [0]ũ(k)+K [0]
(

y(k)− C̃ [0]x̂[0]
k|k−1

)
(2.50)

with K [0] the observer gain. The resulting closed-loop dynamics of the candidate
models are described by (2.1) and (2.2) with

A[i ] =
[

Ã[i ] −B̃ [i ]F [0]

K [0]C̃ [i ] Ã[0] − B̃ [0]F [0] −K [0]C̃ [0]

]
,

B [i ] =
[

B̃ [i ]

B̃ [0]

]
G [0], C [i ] = [

C̃ [i ] 0
]

,

Q =
[

Q̃ S̃(K [0])⊤

K [0]S̃⊤ K [0]R̃(K [0])⊤
]

,

S =
[

S̃
K [0]R̃

]
, R = R̃.

(2.51)

2.B. DEFINITIONS FOR (2.12)
Whereas the definitions of H [i j ] and c [i j ] are given in (2.13), the variable h[i j ] is
defined as

h[i j ] = 1

4
(ζ[i j ])⊤(Ω[i j ])−1ζ[i j ]

+ 1

2
log


∣∣ 1

2Ω
[i j ]

∣∣√∣∣∣Σ[i ]
k|k

∣∣∣ ∣∣∣Σ[ j ]
k|k

∣∣∣


(2.52)

with | · | indicating the determinant operator.
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The boldface matrices and Toeplitz matrix in (2.14) are given by the state-space
matrices in (2.1) as (with indices i omitted for clarity)

A =


I
A
...

AN−1

 , B = IN ⊗B , C = IN ⊗C ,

TA =



0 0 . . . 0 0
I 0 . . . 0 0

A I
. . .

...
...

...
. . .

. . . 0 0
AN−2 . . . A I 0


with IN the N -by-N identity matrix and ⊗ the Kronecker product. Moreover, the
equations for models (2.1) can be expanded to

xk = Axk+1 +TABuk +TAwk

yk = Cxk +vk
(2.53)

with wk ∼N (0,Q) and vk ∼N (0,R). Given the joint covariance matrix in (2.2), the
extended covariance matrices are defined as

Q = IN ⊗Q, R = IN ⊗R,

S = E[
wk v⊤k+1

]=


0 0 . . . 0
S 0 . . . 0
...

. . .
. . .

...
0 . . . S 0

 .
(2.54)

The predicted output sequence with corresponding covariance matrix is

ŷk|k = CAx̂k+1|k +CTABuk

Σk|k = CAΞk+1|k A⊤C⊤+CTAQT ⊤
A C⊤

+CTAS+S⊤T ⊤
A C⊤+R

(2.55)

with Ξk+1|k the state-error covariance matrix corresponding to state estimate x̂k+1|k .
The covariance matrix Σk|k is then used in (2.14) and (2.52) to determine the
Bhattacharyya distance in (2.12).

2.C. SOLUTION OF (2.24)
With the definitions in (2.22), optimization (2.24) can be rewritten as

g∗ = argmin
g

g⊤Λ−1
1 g − c⊤U1Λ

− 3
2

1 g

s.t. g⊤g = 1

2
,

(2.56)
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which in turn is equivalent to

q∗ = argmin
q

q⊤Λ−1
1 q +b⊤q

s.t. q⊤q = 1

2
,

(2.57)

with Λ1 a diagonal matrix with elements λ1 ≥ λ2 ≥ . . . ≥ λn > 0 and b ≥ 0. The
Lagrangian of (2.57) equals

L (q,τ) = q⊤Λ−1
1 q +b⊤q −τ

(
q⊤q − 1

2

)
. (2.58)

The solution is given by the stationary point of the Lagrangian and should therefore
satisfy 

q1 = b1

2
(
τ−λ−1

1

)
...

qn = bn

2
(
τ−λ−1

n
)

q⊤q = 1

2

. (2.59)

with bi , qi the i th element in b or q , respectively. This system of equation can be
seen as intersection of a parametrically defined critical curve q(τ) defined by its
first n equations with the sphere B of radius 1/

p
2. On the other hand, it can be

rewritten into one polynomial equation in variable τ of degree 2n, and there exist no
more than 2n intersection points corresponding to the polynomial roots, which can
be found numerically by root-finding methods. For each of the intersection points,
the objective function of (2.57) can be calculated and the point giving the minimal
value provides the solution of (2.57). The searching range of τ for the root-finding
methods can be reduced significantly by using the following considerations.

Due to the symmetry of the constraints of (2.57) and b being non-negative,
the solution of (2.57) lies in the negative orthant, and therefore τ ∈ (−∞,λ−1

1 ). On
this interval, each of the first n equations of (2.59) is negative, continuous, and
monotonically decreasing, and thus the point q(τ) on the critical curve goes out
of the origin (at τ=−∞) with continuously and monotonically increasing distance
to the origin, with |q(λ−1

1 )| =∞. Therefore, the range of τ can be reduced to that
part of the curve which lies outside the inscribed hypercube in B and inside the
circumscribed hypercube around B. The inscribed hypercube is given by conditions
{|qi | ≤ 1/

p
2n, i = 1, . . .n}, and thus for

τ≤ τ− def= min
i
λ−1

i −
√

n

2
bi ,

the critical curve is still inside the inscribed hypercube. Similarly, the circumscribed
hypercube is given by {|qi | ≤ 1/

p
2, i = 1, . . .n} and the curve is still inside it for

τ≤ τ+ def= min
i
λ−1

i − 1p
2

bi .
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The root-searching method can be thus reduced to the interval [τ−,τ+]. Finally,
because |q(τ)| is continuous and monotone on this interval, the solution exists and
is unique.
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3
SPARSE FAULT DIAGNOSIS FOR

HIGH-SPEED ATOMIC FORCE

MICROSCOPY

We propose to use the State Estimation by Sum-of-Norms Regularization (STATESON)
algorithm for recovering the tip-sample interaction in high-speed tapping mode atomic
force microscopy (AFM). This approach enables accurate sample height estimation
for each independent cantilever oscillation period, provided that the tip-sample
interaction dominates the noise. The entire course of the cantilever deflection
signal is compared to a modeled counterpart in subsequent convex minimizations,
such that the sparse tip-sample interaction can be recovered. Afterwards, the
sample height is determined using the minimum smoothed cantilever deflection per
cantilever oscillation period. Results from simulation experiments are in favor of the
proposed approach as it consistently reveals sharp edges in sample height, as opposed
to both the conventional and a closely related existing approach. However, the
non-processed cantilever deflection provided most accurate sample height estimation.
It is recommended to implement the STATESON-algorithm in the form of a filter to
use it in feedback control of the scanner and cantilever excitation.

© 2023 IEEE. Reprinted, with permission, from J. Noom, C. Smith, G. J. Verbiest, A. J. Katan,
O. Soloviev, and M. Verhaegen. “High-Speed Tapping Mode AFM Utilizing Recovery of
Tip-Sample Interaction”. In: IEEE Transactions on Nanotechnology 22 (2023), pp. 273–279. DOI:
10.1109/TNANO.2023.3284654

The corresponding code is available in:
J. Noom. Matlab code for HS-AFM utilizing recovery of tip-sample interaction. 2024. DOI:
10.5281/zenodo.10454091
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3.1. INTRODUCTION

The Atomic Force Microscope (AFM), invented by Binnig and Quate in 1986 [3],
is a versatile instrument which can be used for imaging and manipulation of
biological samples. High-Speed tapping mode AFM (HS-AFM) facilitates videos of
living biological samples at molecular scale [4–7], enabling biologists to make new
discoveries (e.g. [8]). A tiny cantilever with length of several micrometers oscillates
above the sample, tapping the sample intermittently. Variations in cantilever
oscillation amplitude enable controlling the scanner height. The sample height is
determined directly from the control input. Both high scan speed and accuracy
are required to produce a proper video with high frame rate. Considering that
(living) biological samples are primarily imaged in liquid (e.g. [8–10]), a main
limitation of conventional methods is the dependence on the Lock-In Amplifier
(LIA) (or alternatively the phase-locked loop). Two drawbacks of the LIA are that (a)
determination of the amplitude takes multiple cantilever oscillation periods, and (b)
higher order cantilever dynamics containing important information of the tip-sample
(t/s-) interaction are filtered out. This results in a shifted image with low sharpness
at high scan speeds. Therefore, effort should be taken to process the available data
more appropriately.

Sahoo and co-workers [11] used the entire course of the cantilever deflection
signal to determine the presence of t/s-interaction at specific locations above the
sample. The detection was based on the Willsky-Jones generalized likelihood ratio
method [12], in which the impulsive disturbances are detected one by one in
chronological order. An adaptive filtering scheme [12] provided estimates of the
t/s-interaction. However, future estimates are corrupted by past (fixed) estimates
and the procedure could only detect the presence of the sample, but not its height.
In [13], the detection was extended for providing images by calculating the power of
the innovation signal, which was presumably used as scaled sample height estimate.

More approaches for recovering the t/s-interaction in HS-AFM have been developed
in [14–17]. In contrast to the former two methods [14, 15], Karvinen et al. [16]
employ the impulsive nature of the interaction, making the recovery less sensitive to
noise. Although the time instances of the pulses are fixed in [16], the magnitudes of
previously estimated pulses are more flexible than in [11], such that future estimates
of the t/s-interaction are less influenced by previous estimates. Nevertheless, the
assumptions in [16] involving fixed time instances of pulses is too restrictive. In [17],
(semi-)periodicity of t/s-interaction is still assumed, requiring a cumbersome system
augmentation involving a priori modeling of a chosen number of harmonics above
the noise level.

In this chapter, the complete t/s-interaction is estimated based on its sparsity by
the State Estimation by Sum-of-Norms Regularization (STATESON-)algorithm [18].
This pragmatic algorithm is a convex relaxation of the problem for recovering abrupt
disturbances [18] in any linear dynamical system and therefore likely to be applicable
to postprocess HS-AFM data for recovering the t/s-interaction. For this, the exclusive
assumption is made that the t/s-interaction is pulse-like. As opposed to [16, 17]
where the idea was to use the estimated t/s-interaction as input for the controller,
our final goal is to estimate the sample height as accurate as possible. After applying
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an equivalent extension for reconstructing the sample height to the method in [16],
the results will be compared. In the analysis an additional approach has emerged
which is also taken into account in the comparison.

The chapter starts with presenting a state-space description [19] of the cantilever,
which will be used in the evaluation of both the algorithm presented in [16] and the
one presented in this chapter based on the STATESON-algorithm. After describing
the two algorithms in Sect. 3.2, the experimental design of the simulation study and
corresponding results are presented in Sect. 3.3 and 3.4, respectively. The results are
discussed in Sect. 3.5. Lastly, Sect. 3.6 states the conclusions.

3.2. METHODOLOGY
The AFM is shown schematically in Fig. 3.1(a). The cantilever deflection is measured
through a reflected laser beam on a photodetector. This signal yc is in a conventional
manner fed to a lock-in amplifier (LIA), after which its oscillation amplitude Ac is
used for control uz of the scanner height z. In this section the conversion from
cantilever input uc and output yc to t/s-interaction F̂ and estimated deflection ŷ
will be elaborated. This will (together with estimated table height ẑ) eventually lead
to estimates of the sample height ĥ.

The cantilever dynamics can be approximated by the linear time-invariant (LTI-)
system [19]

x(k +1) = Ax(k)+Bū(k)+Hη(k)

yc (k) =C x(k)+ν(k),
(3.1)

with A, B , H and C the (known) system matrices; yc (k) the measured cantilever
deflection at time step k; ū(k) = uc (k)+F (k) consists of the known input signal uc (k)
(driving force) and the unknown t/s-interaction F (k); x(k) is the state; and η(k) and
ν(k) are the (approximately white) process and measurement noise with variances
Rη and Rν. With uc (k) and yc (k) measured for k = {1,2, . . . , N } the first task is to
recover F (k) for k = {1,2, . . . , N −1}.

Due to sinusoidal actuation of the cantilever, the tip makes intermittently contact
with the sample. This implies that F (k) can be approximated with a sparse signal.
The following two methods reconstruct F (k) based on this assumption.

3.2.1. KALMAN FILTER FORMULATION

The method in Karvinen et al. [16] involves two assumptions in order to cast it in
the so-called Kalman Filter Formulation (KFF). Firstly, the pulses occur regularly at
specific time instances:

F (k) =
{

F (k) if k = kF T /Ts

0 otherwise
(3.2)

with T the cantilever oscillation period in seconds, Ts the sampling time and kF ∈N0

is a non-negative integer. Secondly, the impulse response of system (3.1) becomes
negligible after Td seconds.
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Figure 3.1: (a) Illustration of AFM-operation with additional processing (the four
blocks on the right-hand side). Directly measured output data yc is
captured and fed to SBR (see Sect. 3.2.2) and KFF (from [16], summarized
in Sect. 3.2.1), which recover the tip-sample interaction and smooth (or
filter) the output resulting in F̂ and ŷ . The LIA extracts the oscillation
amplitude Ac from yc , which serves as input for the controller, which
in turn determines the control input to the scanner uz for adjusting the
table height z. As the signal z cannot be measured, a model for the
z-piezo is used to form an estimate ẑ, which can be used for the two new
methods for estimating the sample height h with ĥ. (b)-(f) Simulation
of the algorithms from measured cantilever deflection to estimates of
the sample height. (b) The measured cantilever deflection. (c) The real
t/s-interaction (black) with estimates using KFF (gray) and SBR (blue).
(d) t/s-interactions and estimates enlarged. (e) The (smoothed) cantilever
deflection corresponding to zoomed t/s-interactions. (f) The actual and
estimated topographies in original time frame including the conventional
estimate (red). © 2023 IEEE.

The KFF-approach is based on a new state-space representation with the state
consisting of the magnitudes of the relevant past pulses:

θ(k) = [
F (ℓ1(k)) F (ℓ1(k)−⌊T /Ts⌉) . . . F (ℓ2(k))

]⊤
and

ℓ1(k) =
⌊⌊

kTs

T

⌋
T

Ts

⌉
,

ℓ2(k) =
⌊⌈

kTs −Td

T

⌉
T

Ts

⌉
.
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with ⌊•⌋, ⌈•⌉, ⌊•⌉ representing the floor, ceiling and nearest integer function. Note
that the length of θ(k) can vary over time as Td is not necessarily an integer multiple
of T . The state-space equation becomes

θ(k +1) =A (k)θ(k)+µ(k)

y2(k) =C (k)θ(k)+γ(k)
(3.3)

with

C (k) =



{
0 if k −ℓ1 = 0
C A(k−ℓ1−1)B if k −ℓ1 > 0

C A(k−ℓ1−1+T /Ts )B
...

C A(k−ℓ2−1)B



⊤

,

µ(k) =
{ [

δ(k) 0 . . . 0
]⊤

if k = (kF T +∆)/Ts[
0 0 . . . 0

]⊤
otherwise.

The matrix A (k) is usually identity, except for the case when a new pulse appears
in θ(k) (i.e. ℓ1(k) ̸= ℓ1(k −1)) or if an old pulse disappears beyond the Td -limit (i.e.
ℓ2(k) ̸= ℓ2(k −1)). See [[16], Appendix A] for more details on updating A (k). The
variable δ(k) is a white noise sequence with variance Rδ. On the contrary, γ(k) is
a result of both η({1,2, . . . ,k}) and ν(k), from which the former introduces colored
noise according to (3.1). Yet, a Kalman Filter (which is designed for systems with
white noise) is applied in [16] to estimate θ(k).

The Kalman Filter equations for system (3.3) read as:

K (k) = P (k|k −1)C (k)⊤

× (
Rγ+C (k)P (k|k −1)C (k)⊤

)−1
(3.4a)

θ̂(k|k) = θ̂(k|k −1)

+K (k)
(
y2(k)−C (k)θ̂(k|k −1)

)
(3.4b)

P (k|k) = (
I −K (k)C (k)

)
P (k|k −1) (3.4c)

θ̂(k +1|k) = A (k)θ̂(k|k) (3.4d)

P (k +1|k) = A (k)P (k|k)A (k)⊤+Q(k) (3.4e)

with Rγ the variance of sequence γ(k). Furthermore, note that initial guesses P (1|0)

and θ̂(1|0) are required for execution. Similarly to the matrix A , the matrix Q(k)
usually consists of zeros, except for the case when a new pulse appears in θ(k),
which results in the upper-left element of Q(k) being equal to Rδ. The last entry
of θ̂(k|k) is expected to contain the most accurate estimate of F (k) and is therefore
used as final estimate F̂ (k).

Choosing Rδ is nontrivial, for the definition of δ(k) in combination with updating
rules of A (k) result in the nonzero elements in F (k) being modeled as a Gaussian
random walk (with mean zero), which is disputable. Besides, the choice of Rγ may
be nontrivial due to the nonphysical definition of γ(k), as opposed to η(k) and ν(k).
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The cantilever deflection can be reconstructed using

x̂(k +1) = Ax̂(k)+Bû(k)

ŷKFF(k) =C x̂(k)
(3.5)

with û(k) = uc (k)+ F̂ (k).

3.2.2. THE PROPOSED APPROACH: SPARSITY-BASED RECONSTRUCTION

The proposed approach entitled Sparsity-Based Reconstruction (SBR) employs the
STATESON-algorithm presented in [18]. This algorithm is aimed at finding state
estimates x̂(k) under additive pulse-like disturbances to the state equation. Sparsity
of the t/s-interaction F (k) is the only assumption. The algorithm starts with iterating
the following two steps to find the time instances k at which a pulse occurred:

1. Minimize
[x̂l (1), F̂l (k), η̂l (k)] =

argmin
x(1),F (i ),η(i )

1≤i≤N−1

N∑
k=1

∥∥R−1/2
ν

(
yc (k)−C x(k)

)∥∥2
2

+λ
N−1∑
k=1

αl (k)
∥∥R−1/2

F F (k)
∥∥

1

+
N−1∑
k=1

∥∥∥R−1/2
η η(k)

∥∥∥2

2

s.t. x(k +1) = Ax(k)+Buc (k)+BF (k)+Hη(k).

(3.6)

2. Set

αl+1(k) = (
ϵ+∥∥R−1/2

F F̂l (k)
∥∥

1

)−1
(3.7)

where ϵ is a positive tuning parameter. Increase the iteration number l = l +1
and return to step 1.

After convergence, a final estimate of the magnitude of the pulses can be found
using

[x̂l+1(1), F̂l+1(k), η̂l+1(k)] =

argmin
x(1),F (i ),η(i )

1≤i≤N−1

N∑
k=1

∥∥R−1/2
ν

(
yc (k)−C x(k)

)∥∥2
2

+
N−1∑
k=1

∥∥∥R−1/2
η η(k)

∥∥∥2

2

s.t. x(k +1) = Ax(k)+Buc (k)+BF (k)+Hη(k)

F (k) = 0 if k ∉T

(3.8)

with T = {k|F̂l (k) ̸= 0}.
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The new parameters introduced in (3.6) have the following definitions. The
quantity λ is a tuning parameter, αl (k) is a variable weighting vector to enhance
convergence and RF is the estimated variance of F

(
k|F (k) ̸= 0

)
. The 1-norm in (3.6)

and (3.7) is used to enhance sparsity. Ohlsson et al. described a non-iterative
procedure for finding an appropriate λ [[18], eqs. (25)-(28)], though we found in the
simulation experiments that additional tuning is useful.

Although the minimization in (3.6) is convex due to the use of the 1-norm
instead of the 0-norm, the disadvantage is estimates F̂l (k) being biased towards
zero. The concluding convex minimization (3.8) corrects this bias using the time
instances at which the estimates of F̂l (k) in (3.6) of the latest iteration are nonzero1.
Thus, the STATESON-algorithm utilizes only convex minimizations, which makes it
computationally attractive.

Furthermore, optimization problem (3.6) can be rewritten to a general ‘lasso’ form
[20] by substituting η(k) in the objective function and rearranging it to

ψ̂l = argmin
ψ

∥Φ−1(Γψ−ϕ)∥2
2 +λ∥Ξlψ∥1 (3.9)

where

Φ−1 =


R−1/2
ν 0 0 . . .
0 R−1/2

η 0 . . .
0 0 R−1/2

ν
...

...
. . .

 ,

Γ=


C 0 0 0 0 . . .
−A −B I 0 0 . . .

0 0 C 0 0
0 0 −A −B I
...

...
. . .

 ,

Ξl =

0 R−1/2
F αl (1) 0 0 . . .

0 0 0 R−1/2
F αl (2)

...
...

. . .

 ,

ψ=


x(1)
F (1)
x(2)
F (2)

...

 , and ϕ=


yc (1)

Buc (1)
yc (2)

Buc (2)
...

 .

Optimization problems in the ‘lasso’ form as in (3.9) can be solved efficiently, for
instance using FISTA [21].

Likewise, optimization problem (3.8) can be rewritten to an unconstrained
least-squares problem

ψ̂LS = argmin
ψLS

∥Φ−1(ΓLSψLS −ϕ)∥2
2 (3.10)

1In practice, the set T = {k|F̂l (k) > ε} will be used, with ε a small number, so that very small values
in F̂l (k) are set to zero.
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where ΓLS and ψLS are constructed similarly to those in (3.9), though omitting the
columns of Γ and rows of ψ corresponding to the zero estimated t/s-interactions
F̂l (k|F̂l (k) = 0). The solution to this problem can be found analytically [22].

The cantilever deflection can be reconstructed using

ŷSBR(k) =C x̂(k). (3.11)

Note that the smoothed states are directly available as outcome of the optimization
problem (3.10), as opposed to (3.5) in which the states need to be reconstructed
using previous states and estimates of the t/s-interaction.

3.2.3. FROM T/S-INTERACTION TO SAMPLE HEIGHT

The idea in [16] was to use the estimated t/s-interaction as input for the controller. In
this chapter, the goal is to estimate the sample height as accurate as possible at high
scan speeds, rather than only the t/s-interaction. Moreover, the sample height is in
our perspective the most appropriate input signal to the controller and the ultimate
information to be obtained. Various models exist for converting the t/s-interaction to
distance between tip and sample, such as the Hertzian, the Derjaguin-Müller-Toporov
and the Johnson-Kendall-Roberts model [23]. Unfortunately, each model requires
knowledge of several parameters of both tip and sample [23, 24], which are in
addition likely to vary spatially for biological samples. Hence, those models will not
be used.

To make the height reconstruction generally applicable, it is estimated for each
oscillation period (

i − 1

2

)
T ≤ kTs <

(
i + 1

2

)
T

using the minimum of the estimated cantilever deflection:

ĥ(i ) = min
k

(
ŷ(k)

)− ẑ(i ). (3.12)

Naturally, the estimated table height ẑ(i ) is subtracted from the minimum cantilever
deflection in order to arrive at the sample height. Accordingly, the estimated table
height captures the coarse height profile and the minimum cantilever deflection
term captures the finer variations in height.

3.3. EXPERIMENTAL DESIGN
The discussed methods will be tested in two simulation studies. A first simulation
tests the methods for a one-dimensional scan with two steps of height 1 nm. The
second simulation experiment comprises a scan of a 24-nm×24-nm-sized grating
consisting of discrete steps of height 1 nm. The sample is scanned with a cantilever
tip radius of 1 nm, from left to right in 20 scan lines with scan speeds varying from
2 to 200 µm/s.

Signals Ac , uz , z, ẑ and ĥ in Fig. 3.1(a) are sampled for each cantilever oscillation
period 1/T = 400 kHz, whereas the other signals are sampled with rate 1/Ts = 10
MHz.
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A piece-wise linear force-distance curve is used to simulate the tip-sample
interaction. If the distance between tip and sample is smaller than 0 (i.e. the tip is
intruding the sample), then the interaction is proportional to the depth of the tip in
the sample with factor 1.6 nm−1, otherwise there is no interaction.

For the cantilever immersed in liquid, a second-order model is used, identified
from experimental data obtained from an SS-NEX Ando model AFM. The cantilever
dynamics are identified by processing its thermal motion (yc (k) with input uc (k) = 0)
in a subspace identification algorithm [22, 25]. This yielded a resonance frequency
of 552 kHz, quality factor 1.59 and steady-state gain 6.59 dB. The input of the
cantilever uc (k) is a sinusoid with frequency 1/T = 400 kHz such that the cantilever’s
free oscillation amplitude is ca. 2.15 nm. The thermal noise and measurement noise
are inspected from measurement data and valued as Rη = 0.0033 and Rν = 0.0151.

The LIA is simulated using [[26], eq. (2), (3), (8)]. The input yc (k) is mixed with
reference signals cos(2πkTs /T ) and sin(2πkTs /T ). The resulting signals are fed to a
fourth-order Butterworth low-pass filter. As the output of the LIA is sampled each
oscillation period of the cantilever T , the Butterworth filter should filter out all
frequencies higher than the Nyquist frequency 1/(2T ) Hz and therefore, the cutoff
frequency of the filter is chosen as 2/(5T ) Hz.

The z-piezo is modeled as an all-pole second-order transfer function with
resonance frequency ωz = 40000×2π and damping coefficient ζz = 0.5. For simplicity,
the steady-state gain of this model is unity, such that scaling of uz in Fig. 3.1(a)
is unnecessary before combining it with Aref. A PI-controller regulating the table
height is empirically designed with proportional and integral gains kp = 0.1 and
ki = 7.5×104. The setpoint oscillation amplitude of the cantilever is Aref = 1.6 nm.

The parameters of the KFF-approach are chosen as follows. The variance Rδ = 30:
lower values result in a slower transient of the nonzero elements in F (k) whereas
higher values do not affect the solution significantly. The variance of γ(k) is chosen
to be Rγ = 0.0012 and the length of vector θ(k) is chosen as constant 5 (implying
Td = 5T −Ts ). A smaller length of θ(k) results in a nonconverged estimate, whereas
the choice of a larger vector does not affect the solution significantly. The initial

conditions are chosen as P (1|0) = I5 and θ̂(1|0) = [
0 0 0 0 0

]⊤
. Since T is in our

case not necessarily an integer multiple of Ts , the pulse occurrences are chosen to
be a fixed number of time steps before the input crosses 0 with positive derivative.

The SBR-approach is implemented with the following parameters. The variance of
the t/s-interaction is RF = 10−2, tuning parameter λ= 1, the weighing factor α1(k) = 1
∀k and the threshold value is ε= 0.01. In the simulation we restricted the algorithm
to the first step (3.6) followed by (3.8) only. The overall problem is split into parts of
300 data points to prevent computational overload, and solved using FISTA [21, 27].

3.4. RESULTS
Fig. 3.1(b-f) presents the results of the first simulation experiment. From the
noisy measured cantilever deflection in Fig. 3.1(b), the tip-sample interaction is
reconstructed in Fig. 3.1(b,c). Fig. 3.1(c) reveals the difference between KFF and SBR.
The KFF-approach is restricted to F̂ (k) to be nonzero for one single value of k within
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one cantilever oscillation period. On the contrary, F̂ (k) determined in SBR may be
nonzero at more time instances. This results in Fig. 3.1(e) in better reconstruction
of the cantilever deflection using SBR than using KFF, which is confirmed by the
residuals in Table 3.1.

Note that the residual of measured cantilever deflection Var(yreal−yc ) (approximated
by Rν) has a magnitude in between that of SBR and KFF. This gives rise to the idea
to apply (3.12) with ŷ(k) replaced by the raw measurement data yc (k), meaning
that in Fig. 3.1(a) the blocks “SBR" and “KFF" are bypassed to directly advance to
the height estimation block representing (3.12). This additional approach will be
evaluated in the second simulation experiment under the name Minimum of Raw
Measurements (MRM).

Fig. 3.2 presents images resulting from the second simulation experiment. In
a slow scan, all methods are able to recover the sample height accurately up to
the effect of nonzero tip radius, with SBR and MRM slightly more noisy than the
conventional method and KFF. For higher scan speeds, the proposed methods seem
to increase only in noise, whereas the existing two methods show image artifacts due
to slow response of LIA and controller. The computational time of the SBR method
to evaluate all t/s-interactions in Fig. 3.2 with scan speed 200 µm/s (consisting of 48
000 data points), was 7.50 seconds using Matlab R2021a on an Intel i7-9750H CPU.
This is slightly larger than that of KFF, but improves the performance significantly.
Fig. 3.3 shows the sample height reconstruction performances for increasing scan
speeds quantitatively.
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Figure 3.2: Simulations of a 24 nm×24 nm sample scan with steps in height of 1
nm, using a drive frequency of the cantilever of 400 kHz and 20 scan
lines. The columns from left to right: the ground truth, the conventional
approach (−uz ), KFF, SBR, and MRM. A slow scan of 2 µm/s (top) and a
fast scan of 200 µm/s (bottom). © 2023 IEEE.
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Table 3.1: Residuals of estimated cantilever deflection at scan speed 200 µm/s.
© 2023 IEEE.

Approximation method Var(yreal − ŷ) Comp. time (s)
KFF (ŷ = ŷKFF) 0.0944 1.87
SBR (ŷ = ŷSBR) 0.0089 7.50
Raw measurements (ŷ = yc ) 0.0150 -

10
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10
1

10
2

10
-3

10
-2

10
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Figure 3.3: Mean-Squared Errors (MSEs) of sample height reconstruction against scan
speed. The conventional method (blue circle), KFF (red, down-pointing
triangle), SBR (yellow, up-pointing triangle) and the MRM (purple,
square). © 2023 IEEE.

Table 3.2: Significance between SBR and MRM by Mann–Whitney–Wilcoxon approxi-
mated p-values. © 2023 IEEE.

Scan speed (µm/s) p-value
2 0.0965
5 0.2108

10 0.4359
20 0.2437
50 0.1682

100 0.6114
200 0.2678
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3.5. DISCUSSION
The results in Fig. 3.3 confirm the observation from Fig. 3.2 that the conventional
method and KFF perform better for lower scan speeds. As expected, for higher
scan speeds the SBR-method and MRM produce a lower mean-squared error (MSE).
The KFF-approach has a performance curve similar to that of the conventional
approach for the reason that it has large dependency on the scanner height, as can
be seen in Fig. 3.1(e,f). It performs slightly better than the conventional approach
for being able to reconstruct sharper edges in the sample, as seen in the fast scan
in Fig. 3.2. The SBR-method and MRM also have a similar curve. Moreover, the
Mann-Whitney-Wilcoxon approximated p-values between these methods in Table
3.2 (calculated over the squared errors in sample height estimation) show weak
significance with p > 0.05, whereas other approaches differ with stronger significance
with p-value < 0.05. Remarkably, MRM and SBR produce similar MSE for sample
height reconstruction, whereas SBR has lower residual in cantilever deflection
reconstruction as was shown in Table 3.1. The reason for this contradiction could be
that the minimum cantilever deflection typically occurs at time instances at which
F̂ (k) is nonzero. As subsequent elements in F̂ (k) can be nonzero, it can fully
compensate the measurement noise ν(k) at time instances around the minimum
deflection, or even worse: it compensates the noise with errors. It is expected
that the last-mentioned scenario occurred in this simulation. As the minimum
estimated cantilever deflection determines the sample height, the image degrades
in this scenario. This effect will be smaller for sparser t/s-interactions, which can
be realized using a larger reference amplitude Aref for gentler tapping or a higher
quality factor of the cantilever.

3.6. CONCLUSION
The proposed novel approach for sample height reconstruction for high-speed AFM
demonstrates accurate recovery of tip-sample interaction and practically eliminates
unwanted artifacts. Using the STATESON-algorithm, the SBR approach outperforms
the most promising algorithm previously used in high-speed tapping mode AFM.
Moreover, the STATESON-algorithm is a convex relaxation for recovering abrupt
disturbances and not restricted to fixed time instances for identifying impulses.
After recovering the tip-sample interaction, the sample height is determined
using minimum smoothed cantilever deflection per cantilever oscillation period.
Simulations show the ability to recover sharp edges in the sample, unlike the
conventional approach.

In current simulation settings, the minimum of the raw cantilever deflection
measurements provided unexpectedly a sample height reconstruction performance
similar to that of SBR. Therefore we advise to use non-processed cantilever deflection
for estimating the sample height. Additionally, the SBR is pragmatic for providing
insight in interactions during operation.

Future research should focus on implementing SBR as a filter, such that real-time
sample height and interaction estimates form a reference for the scanner or can
be used to control the cantilever excitation signal. Besides, it is recommended
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to find a procedure to tune the parameters involved in SBR automatically. This
may for instance be done by optimizing the image resolution using Fourier ring
correlation [28]. The computational time may be further decreased depending on the
computing platform and code optimization, for instance by exploiting the sparsity
and redundancy of the matrices involved in the optimization problems.
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4
ONLINE MODEL-FREE

DATA-DRIVEN FAULT DIAGNOSIS

We present a novel problem formulation for model-free data-driven fault diagnosis,
in which possible faults are diagnosed simultaneously to identifying the linear
time-invariant system. This problem is practically relevant for systems whose model
cannot be identified reliably prior to diagnosing possible faults, for instance when
operating conditions change over time, when a fault is already present before system
identification is carried out, or when the system dynamics change due to the
presence of the fault. A computationally attractive solution is proposed by solving
the problem using unconstrained convex optimization, where the objective function
consists of three terms of which two are non-differentiable. An additional recursive
implementation based on a proximal algorithm is presented in order to solve the
optimization problem online. The numerical results on a buck converter show the
application of the proposed solution both offline and online.

The contents of this chapter are submitted as or have been published in:
J. Noom, O. Soloviev, and M. Verhaegen. “Proximal-based recursive implementation for model-free
data-driven fault diagnosis”. Accepted for publication in Automatica.
J. Noom, O. Soloviev, and M. Verhaegen. “Data-driven fault diagnosis under sparseness
assumption for LTI systems”. In: IFAC-PapersOnLine 56.2 (2023), pp. 7722–7727. DOI:
10.1016/j.ifacol.2023.10.1176

The corresponding code is available in:
J. Noom. Matlab code for model-free data-driven fault diagnosis. 2024. DOI:
10.5281/zenodo.10454000
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4.1. INTRODUCTION

With the increase of complexity of automated systems, timely and accurate fault
diagnosis is essential for preventing catastrophic failures. Accordingly, fault detection
and identification has recently been considered within the top-three of control
technologies with high future impact in industrial applications [4]. Whereas
model-based and signal-based methods [5] require human expertise on modeling
of the specific system or designing its characteristic signal shapes, knowledge-based
methods rely on identifying the system and the possible faults from past data [6,
7]. This makes knowledge-based fault diagnosis attractive specifically for large-scale
industrial systems for which modeling is burdensome.

For its use of large amounts of historical data, knowledge-based fault diagnosis
is often referred to as data-driven [6, 8–11]. However, it can effectively be
partitioned in a (data-based) model acquisition phase and a model-based fault
diagnosis phase. Especially in the first phase reliable and often also labeled data
is required. In complex industrial applications this is not always available, or it is
desired to diagnose faults directly from the first operational run of the unidentified
system. Moreover, the main limitation of existing fault diagnosis techniques
is that predetermined features or predetermined models lack the capability of
accommodating for changing input/output dynamics for example due to changes in
the internal system dynamics or in the environment.

The main contribution of this chapter is threefold. First, a formulation for the
problem of model-free data-driven fault diagnosis is presented. Different from
existing categories for fault diagnosis which assume separate time periods for system
modeling/identification and fault diagnosis, this novel formulation includes the goal
of both retrieving the system dynamics and diagnosing the faults simultaneously.
With a fixed data window, the diagnosis involves both the determination of the active
faults from a set of hypothesized faults (fault isolation) and of their corresponding
sizes (fault identification). The system dynamics are assumed to be Linear and
Time-Invariant (LTI) over the considered data window. The proposed problem differs
from the one formulated in [12], where only the presence of a fault in an unknown
LTI system is to be detected. Instead, model-free data-driven fault diagnosis focuses
on fault isolation and identification, simultaneously to retrieving an up-to-date
model of the system.

The second contribution of this chapter proposes to use our earlier developed
solution [13] to the problem of model-free data-driven fault diagnosis. By
reformulating the problem as a convex optimization problem, the proposed solution
is computationally attractive. As in [14] a dictionary of hypothesized faults is
constructed, after which sparsity is employed by the natural assumption that
only a few of the hypothesized faults are concurrently active. The model-based
approach in [14] however assumes the availability of a predetermined model of the
system. In the proposed solution for model-free data-driven fault diagnosis such a
predetermined model is not required, but is identified simultaneously to diagnosing
the faults. The simultaneous goal is achieved using results from the field of
blind system identification [15], which aims for identifying a system with unknown
inputs. Different from [15], the proposed solution in this chapter considers multiple
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non-differentiable optimization terms in order to apply it to model-free data-driven
fault diagnosis. Hereby this contribution establishes a link between blind system
identification and model-free data-driven fault diagnosis. In addition to our earlier
work [13], conditions are introduced on the identifiability and diagnosability of the
system and faults, respectively.

The third contribution of this chapter is to propose a fast recursive implementation
for solving the convex but non-differentiable optimization problem, enabling online
monitoring including fault detection, isolation, fault identification and simultaneous
system identification. The recursive implementation allows the unknown system
dynamics and active faults to change over time, while being identified and diagnosed
in real-time. Whereas the recursive approaches in [10] are limited to fault detection
only and require an initial model of sufficient quality, our approach is fully
model-free and is able to isolate and identify the faults in addition to detection. The
proposed recursive implementation of model-free data-driven fault diagnosis relies
on the proximal operators [16, 17] of the objective terms, of which closed-form
solutions are available. Using efficient updates of the proximal operators, an
established proximal algorithm [18] is implemented recursively. Different from
recursive implementation of subgradient methods such as in [19], the proposed
proximal-based implementation does not involve fragile restrictions on tuning
parameters for guaranteeing convergence. Other recursive implementations of
proximal algorithms [20, 21] are only able to cope with one non-differentiable
objective term (or multiple terms only if the problem is block-separable), whereas
the proposed approach can handle multiple non-differentiable objective terms even
if the problem is not block-separable.

The chapter is organized as follows. Sect. 4.2 presents the novel problem
formulation. Sect. 4.3 presents the methodology for model-free data-driven fault
diagnosis, starting with Sect. 4.3.1 introducing the structured data matrices and Sect.
4.3.2 recapping the method of [14] for model-based fault diagnosis, neglecting the
effect of the initial state. This negligence is based on developments in subspace
identification [22, 23]. The proposed data-driven approach to fault diagnosis is
presented in Sect. 4.3.3 with conditions on identifiability and diagnosability in Sect.
4.3.4. For the resulting convex optimization problem, Sect. 4.4 demonstrates the
adoption of a proximal algorithm. Subsequently, Sect. 4.5 shows how the proximal
algorithm can be implemented recursively in order to achieve online monitoring.
The proposed methodology is tested numerically on a buck converter electronic
circuit in Sect. 4.6 and conclusions are drawn in Sect. 4.7.

4.2. PROBLEM FORMULATION
Consider the following linear time-invariant system

x(k +1) = Ax(k)+Bu(k)+F d(k)+w(k)

y(k) =C x(k)+ v(k)
(4.1)

with x(k) ∈Rnx , u(k) ∈Rnu , d(k) ∈Rnd and y(k) ∈Rny the state, input, fault signal and
output; A, B , C and F the state-space matrices; and w(k) and v(k) the process and
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measurement noise, respectively. The fault signal

d(k) = θ(k)z (4.2)

is constructed from a known dictionary θ(k) ∈ Rnd×nz consisting of possible fault
signal shapes and an unknown weighing vector z = [z1, . . . , znz ]⊤ ∈ Rnz which
determines the active faults and their severity. Typically only a few faults out of the
set of possible faults are active simultaneously.

With Φ= A−KC , consider the observer [23] for system (4.1):

x̂(k +1) =Φx̂(k)+Bu(k)+Fθ(k)z +K y(k)

ŷ(k) =C x̂(k)
(4.3)

with estimated state x̂(k) and estimated output ŷ(k). Using this model, we can write
the estimated output ŷ(k) as:

ŷ(k) =CΦs x̂(k − s)

+
s∑

i=1
CΦi−1

(
Bu(k − i )+Fθ(k − i )z +K y(k − i )

)
(4.4)

If the system is detectable and K is designed such that Φ is asymptotically stable,
the effect of the state x̂(k − s) decreases to zero for increasing s. This leads to the
following approximate Vector Auto-Regressive model with eXogenous input (VARX):

ŷ(k) ≈
s∑

i=1
Bi u(k − i )+Fiθ(k − i )z +Ki y(k − i ). (4.5)

The matrices Bi , Fi and Ki of compatible size refer to the so-called observer Markov
parameters [24]. The VARX model description covers a wide range of multiple-input
multiple-output (MIMO) systems and is studied comprehensively in [22, 25]. It is
identifiable in the sense that every unique set of VARX parameters leads to a unique
output given that the input is persistently exciting [26].

First we formulate the problem for model-based Fault Diagnosis (FD).

Problem 4.1 (Model-based FD). Given the VARX parameters Bi , Fi and Ki in (4.5),
input u(k) and output y(k) sequences and the corresponding fault dictionary θ(k),
isolate the faults as the nonzero elements in the unknown vector z, together with their
corresponding sizes.

The problem for model-based FD within this formulation has been widely studied
both for time-invariant and time-varying systems (see e.g. [27–29]). Alternatively,
knowledge-based (also called data-driven) FD consists of an extra preceding phase,
formulated as follows.

Problem 4.2 (Data-driven FD). Given the input u(k) and output y(k) sequences and
the corresponding fault dictionary θ(k) with the true weights z, first identify the
system characteristics in a training phase with known faults. Afterwards, diagnosis
can be performed in a subsequent phase where the faults are unknown. Based on the
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identified system characteristics and given the input u(k) and output y(k) sequences
and the corresponding fault dictionary θ(k), isolate the faults as the nonzero elements
in the unknown vector z, together with their corresponding sizes.

Some well-known approaches for solving the data-driven FD problem for dynamical
systems are summarized in [6, 9, 10]. These approaches require separate time
periods for system identification prior to the fault diagnosis experiment. However,
the system dynamics may already have changed in between the system identification
and the fault diagnosis experiment, or for some applications it is not even possible
to perform system identification due to costly data acquisition prior to productive
system operation. In such cases it is desirable to perform fault diagnosis without
requiring a previously identified model. This problem is formulated below.

Problem 4.3 (Model-free data-driven FD). Given the input u(k) and output y(k)
sequences and the corresponding fault dictionary θ(k), simultaneously identify the
system characteristics and isolate the faults as the nonzero elements in the unknown
vector z, together with their corresponding sizes.

Problems 4.1, 4.2 and 4.3 are visualized in Fig. 4.1. Naturally, the problem for
model-free data-driven FD imposes some assumptions on system observability, the
input sequence and the fault dictionary. The assumptions on input sequence and
the fault dictionary will be stipulated in Sect. 4.3.4.

Figure 4.1: a) Model-based, b) data-driven and c) model-free data-driven FD.
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In the methodology we will make use of the following matrix norm notation. The

Frobenius norm is defined as ∥X ∥F =
√∑

i , j |xi j |2, the (1,1)-norm as ∥X ∥1,1 =∑
i , j |xi j |

and the nuclear norm as ∥X ∥∗ =∑
i σi (X ), where xi j are the (i , j )th elements of the

matrix X , and σi (X ) the i th singular value.

4.3. MODEL-FREE DATA-DRIVEN FAULT DIAGNOSIS

4.3.1. VARX MODEL IDENTIFICATION

To introduce the structured data matrices, we first consider the fault-free
identification problem with d(k) = 0. It should be noted that this fault-free
identification step is not required for the execution of the proposed approach
introduced later, however essential for building up the relevant knowledge.

Regard the available information[
u(k) u(k +1) . . . u(k +N −1)

]
,[

y(k) y(k +1) . . . y(k +N )
]

.

Then with

Y =


y⊤(k + s)

y⊤(k + s +1)
...

y⊤(k +N )

 , B =


B⊤

1
B⊤

2
...

B⊤
s

 , K =


K⊤

1
K⊤

2
...

K⊤
s

 , (4.6)

and the Toeplitz matrices

Tu =


u⊤(k + s −1) u⊤(k + s −2) . . . u⊤(k)

u⊤(k + s) u⊤(k + s −1) . . . u⊤(k +1)
...

...
. . .

...
u⊤(k +N −1) u⊤(k +N −2) . . . u⊤(k +N − s)



Ty =


y⊤(k + s −1) y⊤(k + s −2) . . . y⊤(k)

y⊤(k + s) y⊤(k + s −1) . . . y⊤(k +1)
...

...
. . .

...
y⊤(k +N −1) y⊤(k +N −2) . . . y⊤(k +N − s)



(4.7)

the following least-squares problem aims at finding the system parameters B and
K for the 1-step ahead predictor:

min
B,K

∥∥∥Y − [
Tu Ty

][
B
K

]∥∥∥2

F
. (4.8)

The solution to this problem is unique if the matrix
[
Tu Ty

]
has full column

rank. This condition requires the input to be persistently exciting [23] and leads to
identifiability of the system as in Definition 4.1.
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4.3.2. MODEL-BASED FAULT DIAGNOSIS UNDER SPARSENESS

ASSUMPTION

Suppose now that the fault signal d(k) is nonzero and composed as in (4.2), and
the system matrices A, B , C , F and K are known. Whereas [14] indicates for
conventional approaches that “tractable solutions are only available when a small
number of possible faults are assumed," recently he proposed a computationally
efficient method to diagnose from a large set of possible faults. Neglecting the
effects of initial condition (given the fact that Φ is asymptotically stable [22, 23]) the
approach in [14] can be (accurately) approximated as follows.

Let F be constructed from F similarly to B from B in (4.6). Consider the Kronecker
product

F(z) = F⊗ z (4.9)

and the Toeplitz matrix Tθ constructed as Tu in (4.7) with all elements u⊤(k)
replaced by vec(θ⊤(k))⊤, such that the VARX approximation becomes

Y ≈ [
Tu Tθ Ty

] B
F(z)

K

 . (4.10)

With the sparseness assumption on z entailing only a small number of faults is
active simultaneously, this results in a lasso optimization problem:

min
z

∥∥∥Y − [
Tu Ty

][
B
K

]
−TθF(z)

∥∥∥2

F
+λ∥z∥1 (4.11)

with F(z) given in (4.9). In words, the output residual is minimized over the fault
weighing variables z by subtracting their corresponding fault responses TθF(z) from
the data equation. The 1-norm is included to enhance sparsity on the weighing
vector. This approach has shown good performance on both time-invariant and
time-variant systems by [14], where also the (negligible) effect of the initial condition
is taken into consideration.

4.3.3. MODEL-FREE DATA-DRIVEN APPROACH TO FAULT DIAGNOSIS

In our case of data-driven fault diagnosis the system matrices B, K and F are
unknown in addition to the fault(s). This implies (4.11) becomes a bilinear
optimization problem, which is computationally expensive due to its nonconvexity.
However, from the definition of F(z) it is possible to compose the matrix F∗(z) as

F∗(z) := vec
(
F⊤)

z⊤ (4.12)

which has rank one [15]. Besides, the variable F(z) has by construction in (4.9) a
degree of sparsity (defined as the ratio of nonzero components) equal to that of z. As
a result, the bilinear optimization problem can be replaced by the rank-constrained
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minimization problem

min
B,F(z),K

∥∥∥Y − [
Tu Tθ Ty

] B
F(z)

K

∥∥∥2

F
+λ∥F(z)∥1,1

s.t. rank
(
F∗(z)

)= 1.

(4.13)

Note that in contrast to (4.11) where z is the optimization variable, in (4.13) the
quantity F(z) is an explicit optimization variable. The solution of F and z can
be found up to a multiplicative scalar from singular value decomposition (SVD) of
F∗(z). Since no model knowledge is assumed, the optimization problem relies on
minimizing the output residuals, now with respect to both model parameters as well
as fault parameters.

Problem (4.13) can be relaxed to a convex optimization problem by replacing the
rank constraint with an additive weighted nuclear norm to the objective function.
The eventual unconstrained convex optimization problem is then

min
B,F(z),K

∥∥∥Y − [
Tu Tθ Ty

] B
F(z)

K

∥∥∥2

F
+τ

∥∥∥F∗(z)
∥∥∥∗

+λ∥F(z)∥1,1.

(4.14)

The faults can be isolated using (4.14) only, however their magnitudes will be
biased toward zero due to the additional penalties to the least-squares term. Also,
the identified VARX matrices B and K may be affected by the bias in F(z). For refined
estimation of the fault magnitudes and system parameters, a second optimization
without the 1-norm can be performed over the nonzero estimated elements ẑ
found in (4.14). In practice, this means that the components of the dictionary
θ(k) and the weighing variables z in (4.2) are in the second optimization neglected
according to the ‘zero’ (in practice below a threshold) elements of ẑ found in the
first optimization, and in the second optimization λ= 0.

The choice of the tuning parameters may be nontrivial. However, it can be
deduced that a rank one solution is encouraged by increasing τ, and the sparsity
of z by increasing λ. A possible tuning strategy is to set λ to zero first and tune
τ such that the predictor performance of (4.5) (for instance calculated as Variance
Accounted For (VAF)) with parameters found in (4.14) is optimized on a validation
data set. While fixing τ to the value found in the first step, λ can be adapted
gradually by optimizing the performance of (4.5) on validation data, with parameters
found in (4.14) after refinement.

4.3.4. IDENTIFIABILITY & DIAGNOSABILITY

The model-free data-driven approach to fault diagnosis requires both the system to
be identifiable and the faults to be diagnosable.



4.3. MODEL-FREE DATA-DRIVEN FAULT DIAGNOSIS

4

71

Definition 4.1 (Identifiability of a system). A system is regarded to be identifiable
if there exists an input sequence such that the variables B and K in (4.14) can be
determined uniquely.

A sufficient condition for the solution to B, K and also F(z) in (4.14) to be unique
is that the matrix

[
Tu Tθ Ty

]
has full column rank. This is now a condition on

the persistency of excitation of the joint input (u⊤(k),vec(θ⊤(k))⊤). However, due
to the regularization terms, full column rank of

[
Tu Tθ Ty

]
is not a necessary

condition for uniqueness of the solution to (4.14). Moreover, with
[
Tu Ty

]
full

column rank and τ= 0, the solution may still be unique [30]. The fact that τ> 0 in
(4.14) further increases the probability of a unique solution. It must be noted that a
unique solution does not guarantee diagnosability of each fault, and vice versa.

Definition 4.2 (Diagnosability of a fault). Given an input/output sequence u(k) and
y(k) and a fault dictionary θ(k), a fault z j ̸= 0 is regarded to be diagnosable if all
possible solutions to (4.14) satisfy z j ̸= 0.

The following lemma states a condition necessary for a fault to be diagnosable.

Lemma 4.1 (Necessary condition for diagnosability). Consider a fault z j with its
corresponding dictionary signal θ j (k). In order for the fault z j to be diagnosable, it is
necessary that at least one column of its corresponding dictionary signal

vec(θ⊤j (k))⊤

vec(θ⊤j (k +1))⊤

...
vec(θ⊤j (k +N −1))⊤


is linearly independent of the columns of

u⊤(k) y⊤(k)
u⊤(k +1) y⊤(k +1)

...
...

u⊤(k +N −1) y⊤(k +N −1)

 .

Proof. In the case of linear dependence, the dictionary signal can be written as

vec(θ⊤j (k)) = Luu(k)+Ly y(k) (4.15)

with Lu and Ly time-invariant matrices representing the linear dependence. Then,

∥∥∥Y − [
Tu Tθ Ty

] B
F(z)

K

∥∥∥2

F
=

∥∥∥Y − [
Tu Tθ Ty

] B̃
F̃(z)

K̃

∥∥∥2

F

(4.16)
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where

B̃ = B+

L⊤
u F⊤

1
...

L⊤
u F⊤

s

z j ,

K̃ = K+


L⊤

y F⊤
1

...
L⊤

y F⊤
s

z j ,

F̃(z) = F⊗



z1
...

z̃ j = 0
...

znz


and (B,F(z),K) the actual situation with z j ̸= 0. With optimization problem (4.14)
regularizing on F(z) but not on B and K, the global optimum is achieved with z̃ j = 0.
Following Definition 4.2, this fault is not diagnosable.

Lemma 4.1 stresses the importance of designing a healthy combination of the fault
dictionary, system inputs and outputs. As long as it satisfies Lemma 4.1, possible
dictionary signals include sinusoidal, triangular or square waveforms with various
frequencies, random Fourier expansions as in [31], unit steps with various starting
points, user-defined fault progressions and nonlinear relations of u(k) and/or y(k).
Practical examples of hypothesized fault patterns include varying load resistances in
a buck converter (as illustrated in Sect. 6) and blockage of air data sensors modeled
as additive sinusoidal pressure changes [32].

4.4. ADOPTION OF PROXIMAL ALGORITHM
The data-driven fault diagnosis problem can be recast to a batch optimization
problem consisting of m = 3 convex but possibly non-differentiable functions fi :

min
x

f (x) = min
x

m∑
i=1

fi (x) (4.17)

= min
x

1

2
∥y−Hx∥2

2 +τ∥xL∥∗+λ∥xS∥1, (4.18)

where y ∈ Rny are the vectorized measurements, x ∈ Rnx the optimization variables
with xL and xS constructed from x by selecting and rearranging its elements to a
low-rank matrix and sparse vector, respectively. For the data-driven fault diagnosis
problem, identical elements from x are selected for constructing both xL and xS .

Problem (4.18) is convex but non-differentiable due to both the nuclear norm
and the 1-norm. Therefore, conventional gradient-based algorithms provide limited
convergence properties. Alternatively, proximal algorithms have recently shown their
potential for solving large-scale non-smooth problems [16, 17].

A proximal algorithm uses proximal operators of the objective terms iteratively
in order to solve a convex optimization problem [17]. The proximal operator of a
function g is defined as

proxg (v) = argmin
x

(
g (x)+ 1

2
∥x−v∥2

2

)
. (4.19)
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For several specific functions g a closed-form expression for the proximal operator
can be derived [16], enabling fast evaluation.

For optimization problems involving a sum of two terms fi , established proximal
algorithms include forward-backward splitting [33], Douglas-Rachford splitting [34]
and FISTA [35]. However, the data-driven fault diagnosis problem encompasses
three terms of which two are non-differentiable, which in general cannot be handled
efficiently by these algorithms. Alternatively, minimization of (4.18) is enabled by
multiple-operator splitting schemes, such as the Parallel ProXimal Algorithm (PPXA)
[18], generalized forward-backward splitting [36] or the Davis-Yin algorithm [37]. For
the small number of tuning parameters, and the convergence being robust against
the choice of these tuning parameters, we select PPXA for solving the data-driven
fault diagnosis problem. It is reproduced in Algorithm 1.

Algorithm 1 Parallel ProXimal Algorithm (PPXA) [18] for solving (4.17)

Initialization
0 < ρ <∞ ▷ Scalar step size
0 <ω= [ω1, . . . ,ωm] ≤ 1 satisfying

∑m
i=1ωi = 1

Γ= [γ1, . . . ,γm] = ρω
x0 ▷ Initial condition

function PPXA(Γ,ω,x0)
v0 : (vi ,0)1≤i≤m = x0 ▷ Auxiliary variables
for j = 0,1, . . . ,np −1 do ▷ For np iterations

for i = 1, . . . ,m do
pi , j = proxγi fi

(vi , j )+εi , j ▷ Error εi , j

end for
p j =∑m

i=1ωi pi , j

ξ j ∈]0,2[ ▷ Tuning parameter
for i = 1, . . . ,m do

vi , j+1 = vi , j +ξ j (2p j −x j −pi , j )
end for
x j+1 = x j +ξ j (p j −x j )

end for
end function

In words, PPXA evaluates the proximal operator for the individual terms fi in
parallel, after which the outcomes are averaged and employed in next iteration.
Convergence is ensured under the following conditions [18]:

• lim∥x∥→∞ f (x) =+∞
• ∩m

i=1ri dom fi ̸= ; (the intersection of the relative interiors of the domains of fi

is nonempty)

• limnp→∞
∑np

j=0 ξ j (2−ξ j ) =+∞

• ∀i ∈ {1, . . . ,m} limnp→∞
∑np

j=0 ξ j ∥εi , j ∥ < +∞ (the possible error εi , j in the

computation of the i th proximal operator decreases to zero)
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For the data-driven fault diagnosis problem (4.18) the first two conditions are
naturally satisfied and the third condition by the straightforward choice ξ j = 1 ∀ j .
Assuming the ability for precise evaluation of the proximal operators (for instance
by closed-form computation) and by assigning trivial values to the weights ωi = 1/m,
the only remaining tuning parameter γ affects the speed of convergence. A small
step size γ will lead to slow initial convergence, whereas a large step size decelerates
convergence close to the optimum.

With the soft-thresholding operator defined entrywise as

[Sγ(v)]n = sign(vn)[|vn |−γ]+ (4.20)

closed-form expressions for the proximal operators of the objective terms in
optimization problem (4.18) are presented in Table 4.1. The evaluation of proxγ f1

is

relatively computationally expensive due to the inverse (γH⊤H + I )−1, which would
require O(n3

x) flops for each iteration of the proximal algorithm. However, given that
PPXA allows some small errors εi , j in the calculation of the proximal operators,
there are several possibilities to ease the evaluation of proxγ f1

(v). Some of these
possibilities are specified in the next section.

4.4.1. OPPORTUNITIES FOR ACCELERATED IMPLEMENTATION

Since the inverse (γH⊤H + I )−1 and γH⊤y remain invariable over the iterations of
the proximal algorithm for the batch problem (4.18), a first option is to cache and
reuse it in subsequent iterations of the proximal algorithm. This would require
O(n3

x) flops for the first iteration, however only O(n2
x) flops for subsequent iterations,

without introducing approximation errors.
A second option is to replace the proximal operator with a step in the direction of

the negative gradient, as elaborated in the following lemma.

Lemma 4.2. If γ is small enough such that

lim
n→∞(−γH⊤H)n = 0, (4.21)

the proximal operator for γ f1 can be approximated by a step in the direction of its
negative gradient:

proxγ f1
(v) ≈ v−γH⊤Hv+γH⊤y = v−γ∇ f1(v). (4.22)

Proof. Under condition (4.21), by the Neumann series:

(γH⊤H + I )−1 =
∞∑

n=0
(−γH⊤H)n

= I −γH⊤H +
∞∑

n=2
(−γH⊤H)n

= I −γH⊤H +e(γ, H)
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Table 4.1: Proximal operators for objective terms in (4.18) with step size γ.

Function g (x) Proximal operator proxγg (v)

f1(x) = 1
2∥y−Hx∥2

2 (γH⊤H + I )−1(v+γH⊤y)
f2(x) = τ∥xL∥∗ [38] USγτ(Σ)V ⊤

with SVD vL =UΣV ⊤
f3(x) =λ∥xS∥1 Sγλ(vS )

This approximation is substituted in the proximal operator for f1 in Table 4.1:

proxγ f1
(v) = (

I −γH⊤H +e(γ, H)
)

(v+γH⊤y)

= v−γ(H⊤Hv−H⊤y)−γ2H⊤H H⊤y

+e(γ, H)(v+γH⊤y)

= v−γ∇ f1(v)−γ2H⊤H H⊤y

+e(γ, H)(v+γH⊤y),

which concludes the proof.

The gradient step in (4.22) reduces the computational complexity to O(n2
x) flops

for each iteration. This goes at the expense of trading off γ for small approximation
errors and fast convergence while guaranteeing (4.21).

A third possibility is to approximate it with an iterative method such as conjugate
gradient, provided with a warm start from a previous solution [17]. The conjugate
gradient method requires multiple iterations of O(n2

x) flops in order to solve
proxγ f1

(v). However, in contrast to approximation (4.22), the conjugate gradient
method allows the tolerance (and thus the magnitude of the approximation error
εi , j ) to be predefined, providing more control on the convergence properties of
Algorithm 1.

4.5. PROXIMAL-BASED RECURSIVE IMPLEMENTATION
Multiple variants are possible to solve (4.18) online in which each time step a new
set of inputs and outputs become available. Let us consider (4.18) over an Infinite
Window (IW), Finite moving Window (FW) or Exponentially Weighted (EW) window.
These are all addressed by the following adapted cost function:

x̂k = argmin
x

1

2

k∑
j=ℓ

βk− j ∥y j −H j x∥2
2 +τ∥xL∥∗+λ∥xS∥1 (4.23)

where 0 ≤βk− j ≤ 1 is a forgetting factor and H j is the regressor matrix corresponding
to time instance j . The formulation (4.23) allows to make three different choices
by the parameters ℓ and βk− j as highlighted in Table 4.2. With the corresponding
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Table 4.2: Basic instances of (4.23) by choices of ℓ and βk− j , where L is a fixed
window length and 0 ≤β< 1.

Window type ℓ βk− j Rk rk

Infinite Window (IW) 1 1 Rk−1 +H⊤
k Hk rk−1 +H⊤

k yk

Finite Window (FW) k −L 1 Rk−1 +H⊤
k Hk −H⊤

ℓ
Hℓ rk−1 +H⊤

k yk −H⊤
ℓ

yℓ
Expon. Weighted (EW) 1 βk− j βRk−1 +H⊤

k Hk βrk−1 +H⊤
k yk

recursive definitions Rk and rk in Table 4.2, the argument of optimization problem
(4.23) can be found by

x̂k =argmin
x

1

2
x⊤Rk x−x⊤rk +τ∥xL∥∗+λ∥xS∥1

=argmin
x

fr,k (x)+ f2(x)+ f3(x).
(4.24)

Accordingly, the proximal operator for the least-squares term fr,k is

proxγ fr,k
(v) = (γRk + I )−1(v+γrk ). (4.25)

Together with the proximal operators for f2 and f3 in Table 4.1, PPXA in Algorithm 1
can be performed each time instance k with warm start x0 = x̂k−1 in order to solve
(4.24).

Section 4.4.1 provides three opportunities to accelerate the evaluation of the
proximal operator for the least-squares term in the batch problem (4.18). These
opportunities can be extended to the case when the cost function is recursive as
in (4.24). The first opportunity of caching and reusing the inverse enables exact
evaluation, however in the recursive problem the inverse (γRk + I )−1 should be
updated each time step. This exact evaluation is handled in Section 4.5.1, whereas
two approximations analogous to those in Section 4.4.1 are elaborated in Section
4.5.2.

4.5.1. EXACT RECURSIVE EVALUATION OF (4.25)
Depending on the window type, the evaluation of proxγ fr,k

can be accelerated using
the matrix inversion lemma (for Infinite Window (IW) and Finite Window (FW)) or
CG (for Exponentially Weighted (EW) window). First, we study the case of IW after
which FW is studied in the following two lemmas, which are general results from
recursive least-squares literature [39].

Lemma 4.3. In the case of IW, Pk = (γRk + I )−1 can be updated recursively by

Pk = Pk−1 −γPk−1H⊤
k (I +γHk Pk−1H⊤

k )−1Hk Pk−1. (4.26)

Proof. The matrix inversion lemma is given by [23]:

(A+BC D)−1 = A−1 − A−1B(C−1 +D A−1B)−1D A−1. (4.27)
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In the case of IW (see Table 4.2),

(γRk + I )−1 = (
(γRk−1 + I )+γH⊤

k Hk
)−1

.

By substituting the matrices in (4.27) with

A ← P−1
k−1 = (γRk−1 + I ), B ← γH⊤

k ,

C ← I , D ← Hk

one arrives at (4.26).

Lemma 4.4. In the case of FW, Pk = (γRk + I )−1 can be updated recursively by

P
′
k = Pk−1 −γPk−1H⊤

k (I +γHk Pk−1H⊤
k )−1Hk Pk−1

Pk = P
′
k −γP

′
k H⊤

ℓ (−I +γHℓP
′
k H⊤

ℓ )−1HℓP
′
k

(4.28)

Proof. By defining

P
′
k = (γR

′
k + I )−1 = (

(γRk−1 + I )+γH⊤
k Hk

)−1
,

the first line in (4.28) is obtained using Lemma 4.3.
In the case of FW (see Table 4.2),

(γRk + I )−1 = (
(γRk−1 + I +γH⊤

k Hk )−γH⊤
ℓ Hℓ

)−1

=
(
(γR

′
k + I )−γH⊤

ℓ Hℓ

)−1
.

By substituting the matrices in (4.27) with

A ← (P
′
k )−1 = (γR

′
k + I ), B ← γH⊤

ℓ ,

C ←−I , D ← Hℓ

one arrives at the second line in (4.28).

The computational complexity for evaluating the proximal operator (4.25) using
(4.26) or (4.28) is O(n2

x) flops for each iteration of the proximal algorithm.

4.5.2. APPROXIMATE EVALUATION OF (4.25)
An exact recursive update of (γRk + I )−1 is not for each window type available.
For EW some possibilities for approximating this covariance matrix based on
(γRk−1 + I )−1 and γH⊤

k Hk are summarized in [40], in general at the cost of O(n2
x)

flops each time step k. However, such approximation induces the corresponding
errors to propagate over time.

Following Lemma 4.2, the proximal operator in (4.25) can be approximated by a
step in the direction of the negative gradient, for which evaluation of the matrix
inversion is not required. Such gradient step involves a computational complexity of
O(n2

x) flops per iteration of the proximal algorithm. This is however at the expense
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of inducing an upper bound on γ, which in the recursive variant cannot be verified
prior to the experiment.

An alternative to the gradient step as introduced in Section 4.4.1, is to approximate
the proximal operator in (4.25) using the conjugate gradient method provided with a
warm start. This requires multiple evaluations of O(n2

x) flops each iteration of the
proximal algorithm and allows the approximation tolerance to be predefined. The
warm start could for instance be provided from a previous solution of the proximal
algorithm at no computational cost.

4.5.3. ALGORITHM OVERVIEW

The overview of the proximal-based implementation for model-free data driven fault
diagnosis is presented in Algorithm 2. It should be noted that this scheme is applied
straightforwardly to optimization problems in the form of (4.24), as well as recursive
least-squares problems with convex regularization terms different from the nuclear
norm and 1-norm, especially when closed-form expressions of their corresponding
proximal operators are available. A list of functions with closed-form expressions for
the proximal operators is for instance given in [16].

Algorithm 2 Proximal-based implementation for solving (4.24) recursively

Initialization
0 < ρ <∞ ▷ Scalar step size
0 <ω= [ω1,ω2,ω3] ≤ 1 satisfying

∑3
i=1ωi = 1

Γ= [γ1,γ2,γ3] = ρω
x̂s−1 ▷ Initial condition

for k = s, . . . , N do

Obtain measurement yk with regressor Hk

Update Rk and rk in (4.25) using Table 4.2

If applicable update Pk = (γ1Rk + I )−1 using (4.26) or (4.28)

x̂k = PPXA(Γ,ω, x̂k−1) (Algorithm 1) using the updated proxγ1 fr,k
in (4.25), and

from Table 4.1 proxγ2 f2
and proxγ3 f3

end for

In order to solve (4.24), Algorithm 2 preserves the convergence properties of PPXA
[18] summarized in Algorithm 1. The warm start from x̂k−1 allows to perform only
a small number of iterations np in PPXA, suppressing the computational effort per
time instance k. The experimental demonstration of Algorithm 2 is presented in
Sect. 4.6.3.

4.6. NUMERICAL RESULTS
Consider the buck converter in Fig. 4.2 as example for a DC-DC switch mode
power supply. In [41] the issue is raised that contemporary system identification
procedures for DC-DC switch mode power supplies cannot handle unknown rapidly
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varying load resistances. However, when a set of possible load profiles is available
– for instance when multiple loads are connected but not necessarily activated –
the proposed data-driven fault diagnosis procedure can be implemented in order to
identify the system characteristics simultaneously to diagnosing the activated loads.
The assumptions are as follows:

• The voltage difference over the load resistance VR (k) is measured as output
variable, corrupted with noise y(k) =VR (k)+ v(k).

• The duty ratio of the switch is regarded as the known input variable
u(k) = SB(k). These are typical input/output variables [41].

• The load resistance RB(k) = RB +∆RB(k) consists of a static part RB and a
time-varying part ∆RB(k).

• For the time-varying load resistance d(k) =∆RB(k) = θ(k)z, a dictionary θ(k) of
possible profiles (or: faults) is known, but not necessarily their magnitudes z.
Only a small number of possible load resistance profiles from the dictionary is
active.

• The variables LB, CB, VB and RB are unknown.

The simultaneous goals are:

• Identify the system (obtain an equivalent for the knowledge of LB, CB, VB and
RB).

• Diagnose the time-varying load resistance ∆RB(k).

In order to show that the dynamics of the buck converter can be captured in
(4.5), an averaged and linearized model of the buck converter is presented in
Appendix 4.A. The nominal numerical values are taken similar to those in [42],
namely VB = 10 V, LB = 220 µH, CB = 330 µF and RB = 5 Ω. The switching frequency

+

-

Figure 4.2: Buck converter circuit with inductance LB, diode DB, capacitance CB,
switch with duty ratio SB(k), source voltage VB and time-varying load
resistance RB(k). The voltage difference over the load resistance VR (k) is
measurable.
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is 200 kHz and the sampling rate 20 kHz. The initial voltage VR (0) = 4.5 V and
initial inductor current iL(0) = 0.9 A. The measurement noise is distributed as
v(k) ∼ N (0,10−3). The duty ratio of the switch SB(k) takes the values 0.4 and 0.5
following a pseudo-random binary signal. The time-varying load resistance ∆RB(k) is
built up from the dictionary θ(k) ∈R1×50 consisting of 50 square waves with linearly
increasing frequencies between 1000 and 1900 Hz and amplitude 1 Ω. The fault
parameter vector z ∈R50 consists of zeros with randomly drawn entries set to one.

4.6.1. DATA-DRIVEN FAULT DIAGNOSIS

The simulation experiment tests the proposed approach to model-free data-driven
fault diagnosis in (4.14) with number of data points N = 1200, VARX order s = 3 and
τ=λ= 10. It is solved using PPXA in Algorithm 1 with γ= 10−3 and np = 104.

Fig. 4.3 shows a typical realization of the simulated buck converter in the case
of three active faults. In the bottom figure it can be seen that the entries of
z corresponding to the activated square waves are diagnosed correctly up to a
multiplicative scalar. After applying the refinement step as elaborated in Section
4.3.3, the estimates of B, K, F and z are verified with a Variance Accounted For
(VAF) [23] of 98.8%.

4.6.2. COMPARISON TO MODEL-BASED FAULT DIAGNOSIS

The proposed model-free approach with parameters as in Sect. 4.6.1 is compared
to model-based fault diagnosis using an error-free and erroneous linearized model.
The corresponding linear VARX-models required for the model-based approach are
constructed as described in Appendix 4.A, after which an error of 0.4 is introduced
in the (2,1)th element of the discretized A-matrix. Then, the observer poles for the
discretized linear models are placed on 0.2 and 0.21 and a VARX model order of s=8
is chosen. These models are then used in the model-based approach (4.11) with
λ= 0.3 and solved using CVX [43].

Based on 100 realizations, the rates of successful fault isolation against the number
of data points are presented in Figs. 4.4 and 4.5 for three and four active faults,
respectively. The isolation is regarded successful if each nonzero component of ẑ
satisfying |ẑ| > ϵ∥ẑ∥∞ with ϵ= 0.1 is diagnosed while the other components are not,
i.e. no misdetection nor overdetection.

For three active faults, Fig. 4.4 shows that the model-free approach requires more
data than the model-based approach in order to reach a high isolation rate. However,
if the employed model is erroneous, the isolation rate of the model-based approach
remains at a value around 80%, regardless of the increasing data size. For four active
faults, Fig. 4.5 presents a different phenomenon, namely a decreasing isolation rate
from a certain data size. Since the net load resistance RB (k) approaches zero at
certain time instances, the buck converter starts showing non-negligible nonlinear
behavior. Since the performance of the model-free approach decreases slower than
the model-based approach, it appears that the model-free approach can better
accommodate this nonlinearity.
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Figure 4.3: Part of a realization of the noise-free system output of the buck-converter
with corresponding duty ratio as input and load resistance RB(k). A
solution of the optimization problem (4.14) provides diagnosis of z
(bottom, red circles) and a refinement step using (4.14) with λ = 0
provides system identification with VAF 98.8% (top, red) with respect to
the noise-free system output.
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Figure 4.4: Successful isolation rate in case of three active faults using a linearized
model (blue, ◦), an erroneous linearized model (red, □) and the
proposed model-free approach (yellow, ⋄). More data leads to an
increased isolation rate and the model-free approach outperforming the
model-based approach with an erroneous model.
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Figure 4.5: Successful isolation rate in case of four active faults using a linearized
model (blue, ◦), an erroneous linearized model (red, □) and the proposed
model-free approach (yellow, ⋄). More data reveals the nonlinear nature of
the buck converter in the condition of four active faults. The model-based
approach decreases in performance more than the model-free approach.



4.6. NUMERICAL RESULTS

4

83

0

0.2

0.4

0.6

0.8

0 0.05 0.1 0.15 0.2 0.25 0.3

1000

1200

1400

1600

1800

0 0.05 0.1 0.15 0.2 0.25 0.3

1000

1200

1400

1600

1800

0 0.05 0.1 0.15 0.2 0.25 0.3
70

80

90

100

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

Figure 4.6: The diagnosed faults over time without regularization using recursive
least squares ([39], FW with R0 = I , top) and with regularization using
the recursive proximal algorithm ((4.23), FW with R0 = 0 solved using
Algorithm 2, second), together with their corresponding Root Mean
Square Error (RMSE) with respect to the inactive faults (third) and the
VAF of the simultaneously identified model (bottom). The vertical dashed
lines at t = 0.06, t = 0.12 and t = 0.18 s indicate a change in active faults,
system characteristics and both, respectively. The average computational
time per time instance k on an Intel i7-9750H CPU was 929 µs for
Algorithm 2 versus 148 µs for unreguralized recursive least squares.
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4.6.3. PROXIMAL-BASED RECURSIVE IMPLEMENTATION

The second simulation experiment demonstrates the recursive implementation of
the proximal algorithm as described in Algorithm 2. Here we consider optimization
problem (4.23) with a finite window using L = 1000 samples. Equivalently to Section
4.6.1, s = 3, τ= λ= 10 and γ= 10−3. Each time step, the PPXA algorithm performs
np = 10 iterations initialized with a warm start from previous time step. The results
are compared to those without regularization using recursive least squares [39].

The results are shown in Fig. 4.6. In the initial configuration (0 ≤ t < 0.06 s) the VAF
for system identification converges around t = 0.01 s and the faults can be diagnosed
correctly from circa t = 0.04 s. In the second phase (0.06 ≤ t < 0.12 s) the active faults
have changed to different square wave frequencies. The VAF decreases slightly after
which it slowly increases again. Simultaneously, the new faults can be diagnosed
from circa t = 0.11 s. In the third phase (0.12 ≤ t < 0.18 s) the system characteristics
have changed by adjusting the nominal load resistance RB from 5 Ω to 3.5 Ω. This
results in a reduction in the VAF, after which it increases again. The diagnosed faults
remain roughly constant. In the fourth phase (0.18 ≤ t < 0.3 s) both the active faults
and model change to their original configuration. Now the VAF shows a sharp drop,
but again it recovers after some time and also the original faults are diagnosed again
around t = 0.23 s. By the regularization on the nuclear norm and the 1-norm, the
recursive proximal algorithm outperforms unregularized recursive least squares in
identifying the system in a small number of measurements, and in highlighting the
active faults while suppressing the entries of the non-active faults.

4.7. CONCLUSION
Model-free data-driven fault diagnosis aims at identifying the system and diagnosing
the faults simultaneously, eliminating the necessity of an extensive identification
phase prior to diagnosing faults. A proposed approach reformulates it as a convex
optimization problem in order to make it computationally attractive. This approach
is implemented online using a recursive implementation of a proximal algorithm.

The numerical results on a buck converter show how the faults are diagnosed
simultaneous to system identification. A second simulation shows how the recursive
implementation handles varying system parameters and (dis-)appearance of faults
during operation.

The newly introduced methodology provides ample room for future research. A
few examples are outlined as follows. First, the diagnosis performance trade-off
with respect to the data size could be analyzed theoretically, including a comparison
with model-based and state-of-the-art data-driven techniques. This is presumably
dependent on the chosen input signal and the fault dictionary. The second is the
evaluation of the uncertainty of the estimated quantities with respect to the number
of active faults, the properties of the I/O-data and those of the dictionary. On the
algorithmic side we mention a third area of future research related to competitive
optimization algorithms able to handle more than two possibly non-smooth objective
term. In line of that research objective the computational efficiency of the recursive
implementation could be further improved exploiting possible structure in the
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problem.

4.A. BUCK CONVERTER SYSTEM EQUATIONS
Regarding the continuous-time variables

x(t ) =
[

x1(t )
x2(t )

]
=

[
iL(t )
VR (t )

]
u(t ) = SB(t )

(4.29)

where iL(t ) is the current through the inductor, the averaged [44] continuous-time
model for the buck converter is

ẋ(t ) =
[

0 −1
LB

1
CB

−1
RBCB

]
x(t )+

[
VB
LB

0

]
u(t )

+
[

0
∆RB(t )VR (t )

(RB+∆RB(t ))RBCB

]
y(t ) = [

0 1
]

x(t )+ v(t )

(4.30)

Linearization around ∆RB = 0 and V R yields

ẋ(t ) =
[

0 −1
LB

1
CB

−1
RBCB

]
x(t )+

[
VB
LB

0

]
u(t )+

[
0

V R

R2
BCB

]
d(t )

y(t ) = [
0 1

]
x(t )+ v(t )

(4.31)

where d(t ) = ∆RB(t ). Assuming zero-order hold for u(t ) and d(t ), the discretized
state-space representation is

x(k +1) = Ax(k)+Bu(k)+F d(k)

y(k) = x(k)+ v(k),
(4.32)

which can be approximated by the VARX model (4.5).
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5
MODEL-FREE DATA-DRIVEN FAULT

DIAGNOSIS FOR AIR DATA SENSORS

This chapter addresses the key question that when faults occur either the aircraft
system dynamics changes due to the fault or these dynamics are unknown (precisely).
This question is addressed for the important case of Air Data Sensor failures, due
to e.g. icing, for fixed wing aircraft operating in a nominal flight condition. The
solution to this question uses basic ideas from subspace identification to cast this
problem in linear least squares problem with convex constraints (nuclear norm and
1-norm constraints). The latter are relaxations of a rank and cardinality constraint.
The presented solution is validated using real-life flight test data.

The contents of this chapter are submitted as:
J. Noom, C. C. de Visser, N. S. Ramesh, and M. Verhaegen. “Simultaneously identifying the
system dynamics and fault isolation for air data sensor failures: a convex approach”. Accepted for
presentation at IFAC Safe Process 2024.

The corresponding code is available in:
J. Noom. Matlab code for simultaneous identification of the system dynamics and fault isolation for
air data sensor failures. 2024. DOI: 10.5281/zenodo.10454343
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5.1. INTRODUCTION

Fault Detection and Isolation (FDI) has been a key attention topic in control of high
performance aircraft. See for its importance and its role in state-of-the-art in terms
of fault tolerant control applicable to civil aircraft to the overview in [3]. In that book
but also in many additional papers, different approaches have been presented for
sensor or actuator FDI for Aerospace Systems, see e.g. [4] and the many references
in it.

One crucial subset of faults in aircraft operation are faults with Air Data Sensors
(ADS). These sensors make use of pitot tubes and wind vanes, mounted on the
exterior of the airplane. From these measurements quantities like airspeed, angle of
attack or sideslip angle are derived. These quantities provide essential information
to the pilot on the state of the aircraft to safely conduct a flight [5]. Its exterior
mounting make these sensors vulnerable to icing or water accumulation. These
environmental effects may result in fault such as blocked pitot tubes [6]. The
consequence of these faults may severely influence the information provided to the
pilot, possibly even leading to catastrophic accidents. Examples are the faults in
ADS in Austral Lineas Aeroeas Flight 2553 where an improper referenced airspeed
led to structure failure due to exceeding the safe airspeed limits [7]. More recently
the Air France 447 accident was due erroneous airspeed measurements by improper
operation of the pitot probes [8]. In the period between 2003 and 2016, commercial
aircraft have suffered more than 35 recorded incidents of multiple ADS faults [7].

This high relevance of FDI for ADS faults has triggered a lot of research in this area
[6, 9]. Solutions have been sought in developing alternative hardware modification,
such as (regular) flushing of the sensing system [9] or using redundant air data
systems and majority sensor voting. Possible software extensions aim at developing
virtual sensor capabilities derived from navigation sensors [10]. These virtual
methods use analytical redundancy provided by mathematical models of the aircraft
dynamics. In general a bottleneck in these analytical approaches is the reliance on
model information of the aerodynamic forces and moments acting on the aircraft,
which have to be estimated prior to the virtual sensor design methodology. That
model information might be time consuming to obtain and/or may be inaccurate as
a consequence of storing only a limited number of models for selected operation
conditions. To overcome this shortcoming, alternative kinematic models have been
proposed, such as in [11]. These kinematic models rely on the use of Inertial
Measurement Units (IMU), to reconstruct the aircraft state. However that as well
may suffer sensor limitations that introduce noise and biases [12].

In this chapter we take a radically new approach that aims at simultaneous
identification of the aircraft system dynamics (in a particular operation (or trim)
point) and the diagnosis of the ADS faults. For the system dynamics we assume that
the aircraft dynamics in an operating point can be well described by an LTI (state
space) model and for the fault diagnosis we assume the availability of a dictionary
of different possible scenarios as represented by the “basis” signals in the dictionary.
As in [13] such a dictionary is allowed to be too “rich” to model the (additive) fault
scenario as well as does not require the magnitude of the faults to be known. Also
the case of linear combinations of the “basis” signals should be allowed.
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The chapter is outlined in the following way. We start in section 5.2 with a
brief recap on the essential step of formulating a state space identification problem
in the subspace identification framework [14]. Then we outline briefly in section
5.3 the modeling of ADS sensor faults as additive output failures with particular
signatures. After that we are ready to formulate in the next section 5.4 the joint
identification of the system dynamics and the diagnosis of the fault as a rank and
cardinality constrained least squares problem. That problem is relaxed (convexified)
by replacing these constraints resp. by a nuclear norm and a 1-norm constraint.
This formulation is based on our recent contribution for “general” faults in [15].
However we now specialize this method to the isolation of ADS faults. In this
formulation we are able to (automatically) deal with identifying the aircraft dynamics
when flying through turbulence and we do not require the determination of the
order of a state space model first, as that model is never explicitly identified. The
goal in this chapter, for the sake of brevity, is to completely focus on the isolation of
ADS faults. The validation of the new methodology in section 5.5, is demonstrated
using flight test obtained models of the Cessna II Delft-NLR test aircraft operating in
the longitudinal mode. On this real-life flight test data, we synthetically introduce
certain fault scenarios inspired by the work in [11]. The chapter is concluded with
some final remarks looking towards some future potentials.

5.2. REVIEW OF THE ESSENCE OF THE SUBSPACE PERSPECTIVE
We consider the Aircraft operating in single operation condition, possibly experiencing
turbulence, to be modeled by the following Linear Time-Invariant (LTI) system:

x(k +1) = Ax(k)+Bu(k)+w(k)

y(k) = C x(k)+ v(k) (5.1)

where x(k) ∈ Rnx ,u(k) ∈ Rnu , y(k) ∈ Rny are resp. the state, input and output; A,B ,C
are the state space matrices; w(k) and v(k) are the process- and measurement noise.
This model can therefore also accommodate the aircraft flying through turbulent
media. This is an advantage over (kinematic) model based methods (such as the
DMAE method [16] that was selected as benchmark reference to compare the new
methodology later on in Section 5.5), as the latter requires (selective) reinitialization
that does not assume process noise.

In Subspace identification we consider the observer form representation of the
above LTI system, based on the assumption that the conditions hold for the existence
of the following observer [14]:

x̂(k +1) = (A−KC )︸ ︷︷ ︸
Φ

x̂(k)+Bu(k)+K y(k)

ŷ(k) = C x̂(k) (5.2)

with x̂(k), ŷ(k) resp. the estimated state and output vectors. Using this observer form
allows to write that output as:

ŷ(k) =CΦs x̂(k − s)+
s∑

i=1
CΦi−1

(
Bu(k − i )+K y(k − i )

)
(5.3)
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If K is assumed to make Φ asymptotically stable, the effect of the (initial) state
vector x̂(k − s) in (5.3) fades away as s increases. This is referred to as the Subspace
Trick. This leads to the following approximate Vector Auto-Regressive model with
eXogenous input (VARX):

ŷ(k) ≈
s∑

i=1
Bi u(k − i )+Ki y(k − i ) (5.4)

with matrices Bi ,Ki of compatible dimensions approximating the observer Markov
parameters.

5.3. MODELING ADS FAULTS

For the sake of brevity we restrict in this chapter to the modeling faults on
the measurement of the aircraft’s airspeed. This measurement is derived from a
pitot-tube device illustrated in Figure 5.1. This device measures the total pressure at
the inlet pt and the static pressure ps . Let pd be the difference pt −ps , then using
Bernoulli’s equation (for compressible media), the True Airspeed (TAS) is given as
[18]:

VT AS =

√√√√ 2γ

γ−1
Rg Ts

( pd

ps
+1

) γ−1
γ −1, (5.5)

where, γ is the specific heat ratio of air, Rg is the ideal gas constant and Ts is the
static temperature.

When treating anomalies (due to e.g. icing or clogging) as small deviations from
the nominal values of pt and ps , these anomalies can be modeled as additive faults
to the measured VT AS [6]. A similar reasoning holds for the other air data sensor

signals like the angle of attack α. Therefore when denoting

[
VT AS

α

]
as the output

Air Data
Computer

Sta�c pressure
sensor/Transducer

Total pressure
sensor/Transducer

Ps

PT Mach
Number

True Airspeed

Sta�c Pressure Port

Pitot Inlet Drain Hole

Fuselage

Temperature
Probe

Figure 5.1: Schematic diagram of a Pitot Tube Air Data System (based on Fig. 7.1 in
[17])
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y ∈R2, the measured (faulty) output is given as:

ym(k) = y(k)+ f (k) (5.6)

Where these additive faults behave according to certain typical patterns as illustrated
in Table 5.1 [6].

5.4. SIMULTANEOUSLY IDENTIFYING SYSTEM DYNAMICS AND

FAULT DIAGNOSIS

5.4.1. PROBLEM FORMULATION

When substituting the (faulty) measurement into the VARX model (5.4) we get:

ŷm(k) ≈
s∑

i=1

(
Bi u(k − i )+Ki ym(k − i )−Ki f (k − i )

)
+ f (k). (5.7)

Making the key assumption as e.g. in [13, 15], and based on known patterns of the
time evolution of the air data sensor faults, as indicated in Table 5.1, the sensor fault
f (k) can be modeled as:

f (k) =ω(k)z, (5.8)

where ω(k) are known signal patterns in the signal dictionary of faults. The actual
fault (or fault combination) is determined by the unknown vector z ∈Rnz . Based on
this assumption and the VARX model representation of the output, allows to model
the measured output ym(k) as:

ŷm (k) ≈
s∑

i=1

(
Bi u(k − i )+Ki y(k − i )−Ki f (k − i )

)
+ f (k)

=
s∑

i=1

(
Bi u(k − i )+Ki y(k − i )−Kiω(k − i )z

)
+ω(k)z

=
s∑

i=1

(
Bi u(k − i )+Ki y(k − i )−Ki (I2 ⊗ zT )vec(ωT (k − i ))

)
+ω(k)z

=
s∑

i=1

(
Bi u(k − i )+Ki y(k − i )−Mi vec(ωT (k − i ))

)
+ω(k)z (5.9)

Fault Mathematical Representation
Abrupt blockage Bias

Gradual blockage Drift
Partial water blockage Sinusoidal

Table 5.1: Typical Patterns of the additive fault f (k) in (5.6) to the measurement of VT AS

and α [6].
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Now we are ready to define the rank, cardinality constrained least squares problem
that is at the heart of this chapter. For that purpose, define the following quantities
(assuming that we have the following input-output data {u( j ), ym( j )}k+N

j=k available):

Ym =


ym (k + s)

ym (k + s +1)
...

ym (k +N )

 ;Tu =


u(k + s −1) · · · u(k)

u(k + s) · · · u(k +1)
...

. . .
...

u(k +N −1) · · · u(k +N − s)


Like the (block-)Toeplitz matrix Tu we can define the matrices Tym and Tω from the

signals ym(k) and vec(ωT (k)). Let the products Ki (I2 ⊗ zT ) be denoted as Mi and let
the unknowns Bi be stored as follows:

B =


B T

1
B T

2
...

B T
s


and similarly we define the matrices K,M from the matrices Ki , Mi . Finally let the
matrix Ω be defined as Ym but now from the signal vec(ωT (k)), then we can define
based on (5.9) the following constrained (linear) Least Squares problem:

min
B,K,M,z

∥Ym − [
Tu Tym −Tω Ω

]
B
K
M

(I2 ⊗ z)

∥2
F (5.10)

subject to a cardinality (ℓ0) constraint on the vector z and the following rank
constraint:

rank


M1 K1

...
...

Ms Ks

(I2 ⊗ zT ) I2

= rank(P ) = 2

Using the nuclear norm (denoted as ∥.∥⋆) and the 1-norm as convex relaxations of
the above constraint, the simultaneous identification of the model dynamics and the
isolation of the faults is formulated via the following convex optimization problem:

min
B,K,M,z

∥Ym − [
Tu Ty −Tω Ω

]
B
K
M

(I2 ⊗ z)

∥2
F +τ∥P∥∗+λ∥z∥1 (5.11)

where τ,λ are hypertuning parameters. In this chapter we simply assume that the
compound matrix

[
Tu Tym −Tω Ω

]
has full column rank. This in essence means

that the joint input

[
u(k)

vec(ωT (k))

]
is persistently exciting of at least order s, see [14].
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5.4.2. A SOLUTION TO (5.11)
The convex problem (5.11) can be solved in a large number of different
ways. Standard tools like cvx1 can be readily applied. However more efficient
implementations are available, like those based on proximal algorithms. For
example for the optimization problem (5.11) that has three terms of which two are
non-differentiable, can be handled by multiple-operator splitting schemes, such as
the Parallel ProXimal Algorithm (PPXA) [19], generalized forward-backward splitting
[20] or the Davis-Yin algorithm. In this chapter we use for prototyping the new idea
the cvx toolbox. The new algorithmic approach based on solving (5.11) is indicated
in this chapter as MF2D ("Model-Free Fault Diagnosis")

5.5. VALIDATION STUDY

5.5.1. ORGANIZATION OF THE EXPERIMENT

The newly presented data driven approach is bench-marked against the state of the
art Double-Model Adaptive Estimation (DMAE) Approach for Air Data Sensor Fault
detection and diagnosis presented in [16]. In this approach two Kalman filters are
run in parallel: one using a fault-free model and the other a combination of the
fault free model with its state augmented with the faults. The faults are modeled as
random walk models and in [16] an extension is formulated to update the covariance
matrices needed in the Kalman filter design.

When using (classical) sensor data for the longitudinal aircraft mode, the input
(that is used by the MF2D) method) is the elevator angle (δe ) and the output is the
airdata sensor vector ym . Use is made of real-life recorded flight test data with the
Cessna II laboratory aircraft of the TU Delft and NLR. The recordings for a single
flight condition that we used in this validation study are displayed in Figure 5.2.

When using this “standard” (limited) sensor data in a model based approach, like
the multiple model based approach in [21], such model needs knowledge of the
aerodynamic derivatives. This would make many of such model based approaches
very ineffective as this would require dedicated flight testing and flight test data
analysis methods for capturing these derivatives. And even then the models might
never describe the actual operating conditions accurately. To overcome this major
drawback the use of kinematic models was proposed in [16]. This one hand, frees
the approach from requiring access to the aerodynamic derivatives, but on the other
hand requires the aircraft to be equipped with (very accurate) Inertial Measurement
units (IMUs). Such equipment is often present in navigation (and higher) grade IMUs
where there is a redundancy in terms of triple or even quadruple sets of duplicates.
Apart from the fact that even then special precaution is still needed to deal with
operational bias and noise effects, the kinematic approach requires the aircraft to be
rigid. The measurements used with kinematic models are listed in Table 5.2 (DMAE).

In the conducted experiments the data related to the flight condition from which
the recorded data as in Figure 5.2 is derived, is used to simulate air-data sensors
faults. As introducing such sensor faults in real-life might lead to endangering the

1http://cvxr.com/cvx
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operators and aircraft, we opted for introducing these errors synthetically afterwards
by adding errors to the measured data. Additive faults are introduced on the
measured VTAS and α as depicted in Figure 5.3 (under the label "True"). In this
chapter the raw data (part of which shown in this figure) is used. This raw data was
made to be recorded as a sample rate of 100 Hz. We note hereby that the air data
sensor was recorded at 10 Hz, but upsampled (ZOH) to 100 Hz by the flight test
instrumentation system.

5.5.2. SETTING OF THE ALGORITHMS

The DMAE kinematic model used is the one reported in [16]. This model has state
dimension 6 containing VTAS,α,β,φ,θ,ψ, the input vector containing 3 accelerations
Ax , Ay , Az and angular velocities p, q,r in describing the nonlinear kinematic
equations. The output vector in this case is the full state vector (plus the added
faults and sensor noise).

The tuning parameters used for the DMAE algorithm are as follows:

• The process noise covariance matrix

Qk =
[

10−4I3 0
0 3×10−8I3

]
• The measurement noise covariance matrix

Rk =
10−2 0 0

0 3×10−6I2 0
0 0 3×10−8I3


• The initial state covariance matrix of the nominal (fault-free = ff) model

Px0, f f = I6

• The initial state covariance matrix of the augmented fault (=af) model
Px0,a f = I8

• NQ = 40 (width of moving window)

For the new algorithm MF2D the following settings have been used:

• s = 4

• τ=λ= 0.1

• ω(k) ∈R2×80 consisting of unit steps with 40 possible starting times for fV , plus
40 possible starting times for fα (evenly distributed).

• I/O data is detrended by subtracting the sample means.

• The two sensor outputs in y are normalized such that both outputs have a
variance of 1.
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5.5.3. RESULTS

For the sake of brevity we focus only on the estimation of the additive faults. These
are for both methods displayed in Figure 5.3. From this figure it is clearly observed
that the new method MF2D outperforms the DMAE approach. The latter furthermore
makes use of a much more elaborate sensors infrastructure (which are themselves
prone to errors that need continuous calibration) and needs careful adaptation of
the Kalman filter parameters, such as a careful reinitialization [16]. This especially
for flying through turbulence might not be trivial. The performance of the DMAE
approach is tested using the code available on github2, with no efforts to finetune
the defaults given. Figure 5.3 shows that this implementation is indeed able to detect
that there is a fault in the ADS, but is not able to precisely diagnose the magnitude
and the particular part of the ADS sensor failing.

On the other hand the new MF2D captured both faults very accurately in onset and
shape. The magnitude is however not captured fully accurately due to the use of
1-norm as a convex relaxation of the 0-norm. This can however easily be improved
by a re-estimation of that magnitude as outlined in [22]. In that re-estimating
the support and shape of the fault is then used as pictured in Figure 5.3. One
challenging element for the new MF2D is the design of the dictionary ω. However
prior testing might provide useful information here, and the consideration of the
cardinality (or 1-norm) constraint as in the current experiment enabled to correctly
and accurate estimate faults that were not in the dictionary!

Table 5.2: Required sensors for the two approaches

DMAE MF2D Description

VT AS ✓ ✓ true airspeed, m/s
α ✓ ✓ angle of attack, rad
δe ✓ elevator deflection, rad
β ✓ sideslip angle, rad
p, q,r ✓ roll, pitch & yaw rates, rad/s
φ,θ,ψ ✓ roll, pitch & yaw angles, rad
Ax , Ay , Az ✓ linear accelerations, m/s2

5.6. CONCLUSION
This chapter has presented a new method to simultaneously identify the (LTI)
system dynamics and additive faults on the Air Data Sensors for civil aircraft. The
new methods, indicated as the MF2D (Model-Free Fault Diagnosis) extends basic
ideas of subspace identification and models the fault via basis (time-)functions in a
dictionary. The MF2D is presented here via convex relaxation as convex optimization
problem. This can efficiently and reliably be solved. Its comparison with the
state-of-the-art solution based on multiple Kalman filters that avoids accurate

2https:github.com/lplp8899/ADS_FDD_Turbulence
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Figure 5.2: The flight data utilized in the MF2D approach: true airspeed VT AS (top),
angle of attack α (middle) and elevator deflection δe (bottom).
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Figure 5.3: The faults fV and fα introduced in VT AS and α, respectively: true
faults (red, solid), estimation using the extended DMAE-approach (blue,
dashed), and estimation using the MF2D approach (yellow, dotted).
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knowledge of model information through the aerodynamic derivatives, as presented
in [16] demonstrated the superiority of the newly developed methodology. This
comparison makes use of real-life flight test data with the Cessna Citation II aircraft.

Though this comparison is preliminary, it shows the great potential of the new
MF2D approach. It makes use of a minimal set of sensor devices that are standardly
available on aircraft (and drones), it is able to deal with these flying objects flying
through turbulence as well as laminar flow and can also deal with non-rigid flying
devices. The difference in sensor configuration is highlighted for the current study
in Table 5.2.

These encouraging results leave plenty of room for future extensions and
validations of this approach. One is the design of the dictionary and making that
dictionary adaptive by letting the basis functions move in a moving window. Also
making the whole approach adaptive would enable extension to different flight
conditions.
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6
CONCLUSIONS

As outcome of this dissertation, convex optimization has shown its relevance to fault di-
agnosis in order to develop novel approaches with low computational requirements. This
chapter summarizes the main findings in this dissertation and provides directions for fu-
ture research, both for the field of fault diagnosis and data-driven control.
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This dissertation aimed at developing novel approaches to fault diagnosis of which the
computational requirements remained low. In order to achieve this objective, the appli-
cability of convex optimization was investigated in a variety of both state-of-the-art and
newly presented concepts for fault diagnosis. The conclusions for each contribution can
be summarized as follows.

Chapter 2 focused on online design of auxiliary inputs in order to improve the discrim-
ination performance. The online input design problem faced a trade-off between three
factors, namely a high accuracy of diagnosis, a small required number of consecutive
measurements for diagnosis, and low computational effort. Due to the use of the Bhat-
tacharyya coefficient as divergence measure and its favorable properties in challenging
discrimination conditions, the computational effort remained low. Furthermore, the
use of the Bhattacharyya coefficient preserved an analytical upper bound on the error
probability, such that a high diagnosis performance was maintained. The optimal aux-
iliary input with respect to the upper bound was determined iteratively using convex
optimization programs. It was shown that a quadratic Taylor approximation of the up-
per bound further sped up the computations without considerably sacrificing the other
trade-off factors.

Chapter 3 applied a sparse estimation method to high-speed atomic force microscopy
for diagnosing large numbers of tip-sample interactions, considered as faults. The prob-
lem was written in a convex ‘lasso’ form so that is could be solved with an efficient solver.
After optimization, the diagnosed faults were employed to recover the sample height. In
comparison with the conventional approach for high-speed atomic force microscopy,
the proposed approach recovered the sample height at high scan speeds with higher ac-
curacy.

Chapter 4 introduced a new problem formulation for simultaneously identifying the
system and diagnosing the faults. Solutions to the so-called problem of model-free data-
driven fault diagnosis should circumvent the requirement of large amounts of historical
data usually required in state-of-the-art data-driven fault diagnosis. A proposed solution
reformulated it as a convex optimization problem. Online evaluation was facilitated by
a recursive implementation of a proximal algorithm.

Chapter 5 presented a solution to the model-free data-driven fault diagnosis problem
for diagnosing air data sensor faults. Similarly to the solution proposed in Chapter 4,
it resulted in a convex optimization problem with a least-squares term, a nuclear norm
and a 1-norm. The methodology was demonstrated on real-life flight test data. Com-
pared to a state-of-the-art method for diagnosis of air data sensor faults, the proposed
solution required fewer (delicately calibrated and denoised) sensors, while still being
able to diagnose the active faults.

6.1. RECOMMENDATIONS

Based on the research presented in this thesis on the application of convex optimization
to fault diagnosis, future research is recommended to study on the following aspects.

Evaluation of the exact error probability for online input design Due to the use of
an analytical upper bound on the error probability, the method proposed in Chapter 2
performs better than state-of-the-art methods. The diagnosis performance can be even
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further improved if the actual error probability is minimized rather than its upper bound.
With the current state of developments, this however imposes a burden on the compu-
tational requirements. A way to alleviate these requirements is to use the method for
minimizing the upper bound proposed in Chapter 2 for initializing the nonlinear min-
imization of the actual error probability. The implementation of this solution together
with its possible implications is left open for further research.

Real-time estimation of tip-sample interaction in high-speed AFM The method
proposed in Chapter 3 is able to diagnose large numbers of tip-sample interactions as
faults. Even though the proposed method is computationally efficient due to the use of
the convex ‘lasso’ form and an efficient corresponding solver, it is only applied a posteri-
ori. That is to say the data is first acquired before it is analyzed for diagnosing the faults,
which requires the data to be of sufficient quality. High-speed AFM however also bears
real-time control challenges for assuring this data quality. For instance, the well-known
problem (in the AFM community) of parachuting remains to be challenging. The esti-
mation of tip-sample interaction in real-time could help to rapidly detect loss of inter-
mittent tip-sample interaction, such that appropriate control action can be taken. Such
real-time implementation of the proposed method in Chapter 3 is not realized yet. One
of the reasons for this is the typical high sampling rate required for high-speed AFM,
regarding the contemporary cantilever oscillation frequencies of hundreds of kilohertz,
imposing high required sampling rates and therefore short periods for real-time process-
ing. Future research should focus on implementing the method in Chapter 3 recursively
using a proximal algorithm. This could for instance be realized using the recursive im-
plementation of a proximal algorithm presented in Chapter 4.

Construction of the dictionary for model-free fault diagnosis The proposed ap-
proaches for model-free fault diagnosis in Chapters 4 and 5 utilize a dictionary in order
to represent shapes of possible faults in the system. Chapter 4 provides a condition on
the dictionary signals which must be satisfied in order to allow diagnosis of the faults.
Compliance with this condition is however not a guarantee for diagnosability. The chal-
lenging problem of finding a sufficient condition for diagnosability is left open for future
research. The study of a sufficient condition for diagnosability goes well with theoretical
research on the diagnosis performance with respect to the I/O-data properties and on
the evaluation of the uncertainty of the estimated system parameters and faults.

Data-driven control in the presence of disturbances A currently trending research
topic in the field of control science is on data-driven control (e.g. [1–4]). These tech-
niques aim for designing a control law directly from past I/O-data, rather than explicitly
identifying a system prior to designing the control law. With the methods presented in
Chapters 4 and 5 the state-of-the-art of data-driven control can be complemented with
disturbance rejection. For instance, if one of the methods in Chapter 4 or 5 diagnoses a
periodic fault, then its effect can be suppressed in a predictive control law to be applied
directly after the simultaneous system identification and fault diagnosis. Furthermore,
the recursive formulation presented in Chapter 4 allows to update the (disturbance re-
jecting) control law in real-time after every measurement. This is particularly relevant
for critical systems in unforeseen severe situations, such as breakage of aircraft compo-
nents during flight. Whereas aircraft in such situations may not be modeled sufficiently,
the model-free data-driven approaches in Chapters 4 and 5 may be able to identify the
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altered dynamics and diagnose the faults, so that the control law is updated accordingly.
Recursive blind deconvolution of real-time image sequences In Chapters 4 and 5 we

used a so-called lifting technique to rewrite a bilinear least-squares problem to a rank-
constrained least-squares problem. The rank constraint was then relaxed to an addi-
tional nuclear norm to the optimization problem. This concept for relaxation of bilinear
problems has far-reaching applications beyond model-free fault diagnosis. One of these
applications is blind multi-frame deconvolution of images, such as in [5]. The objective
of blind multi-frame deconvolution is to recover both the object and the point spread
functions of multiple images of the object from the same viewpoint, in order to obtain
a high resolution reconstruction of the object. The application of the lifting technique
to blind deconvolution has been presented for small images in [6]. With the recursive
implementation of a proximal algorithm presented in Chapter 4, it may however be pos-
sible to blindly deconvolve larger images with acceptable computational effort and to
process these images in real-time while they are being recorded sequentially.

Interpretability of data-driven control methodologies From a broader perspective,
two routes can be followed in the future. The first route improves the performance of
black-box algorithms for data-driven control. A good performance however is not the
only factor for algorithms to be reliable. There also needs to be some user’s understand-
ing of how the algorithms come to their results and how confident these are. The second
possible route is therefore to further develop the interpretability of data-driven control
methodologies. A first step to realize this for the methodologies in Chapters 4 and 5 can
be to provide uncertainties to the estimated quantities. A good interpretability of the
algorithms is crucial for the user to utilize these and to make well-informed decisions
based on the outcomes.
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