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1. Introduction

1.1. Motivation

From natural occurring liquid aerosols, such as water droplets in clouds
and mist, to industrially produced emulsions, such as cremes and pastes,
droplets can be found almost anywhere in our everyday lives. It is there-
fore interesting to analyse the properties and in particular the dynamics
of droplet suspensions. The focus in this work will be on stable droplet
suspensions, i.e. the behaviour of two immiscible fluids, with the dispersed
phase representing the droplet and the continuous phase the suspension.
Droplet suspensions in liquids are called multicomponent systems, as they
are comprised of two fluid components, the droplet and its suspension. On
the other hand, bubbles in water or droplet aerosols would be examples of
multiphase systems. A particularly interesting problem involving droplets is
the mixing of two immiscible fluids, created by breakup of the droplets [1–4],
which involves multiple scales and, in general, turbulent flow dynamics. The
largest characteristic structures in turbulent flows are called eddies. In three
dimensional turbulence the flow’s energy of the largest eddies is passed down
to the smallest turbulent flow scales via a cascade mechanism, the Richard-
son cascade [5–8]. The droplets are typically of the size of the smallest scales.
Consequently, the droplets may still be subjected to large shear and/or stress
rates due to the Richardson cascade, which transfers energy from the largest
eddies to the smallest scales. The mixing of the two immiscible fluids is
achieved via the breakup of the droplets into smaller ones. A very first study
on breakup of large droplets in turbulent flows was conducted by Hinze [9].
Further studies on droplet deformation in turbulence followed, both exper-
imentally and numerically [10–13]. Numerical studies investigating small
sub-Kolmogorov droplets, i.e. droplets with a characteristic length scale
smaller than the Kolmogorov scale, used more sophisticated approaches,
such as the one by Cristini et al. [14] coupling a pseudo-spectral solver for
the outer flow with a boundary integral method to model the dynamics of
the droplet. Furthermore Euler-Lagrangian approaches have been used to
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1. Introduction

simulate sub-Kolmogorov bubbles in turbulent Taylor-Couette flows [15]. A
phenomenological model devised by Maffettone and Minale [16] has been
used very effectively in conjunction with pseudo-spectral flow solvers to
model the statistics of sub-Kolmogorov droplet dynamics and their breakup
conditions [17, 18]. The Maffettone-Minale model is an extension to Tay-
lor’s theory, a perturbative approach to a droplet in Stokes flow [19–21].
Even in the absence of turbulence, droplet dynamics are complex flows to
investigate and model [22–25], especially in the presence of strong confine-
ment [26–38]. Theoretical models accounting for the effect of confinement
exist as well, such as the Shapira-Haber model [39, 40] extending Taylor’s
theory [19, 20] and an extension to the Maffettone-Minale model [16] in-
cluding the effect of confinement [41,42]. Both the Shapira-Haber and the
confined Maffettone-Minale model were experimentally validated [43, 44].
Further factors affecting the flow of multicomponent systems are the role
of inertia [12,25,45–64], varying startup conditions [65–69] and the droplet
dynamics in laminar time-dependent flows [70–74]. In order to model our
multicomponent droplet system we use Lattice Boltzmann methods (LBM),
which are a useful computational tool for the description of general mul-
tiscale flow problems. LBM’s fame is due to its ability to couple physical
phenomena on the microscale, such as interface dynamics, polymers and
thermal fluctuations, and continous hydrodynamical flows at the macro-
scopic scale, e.g. flow-structure coupling and capillary fluctuations. LBM
are derived from physical laws on the mesoscale, but can describe macro-
scopic flow phenomena via a coarse grained procedure starting from proba-
bility distribution functions at the kinetic level [75, 76]. This makes LBM
very successful in simulating the physics of fluids over a very broad range
of scales. A further advantage of using LBM for multicomponent systems
is a diffuse interface model called the Shan-Chen multicomponent model
(SCMC) [77,78], which is able to simulate the two-way coupling between the
fluids, the droplet and the solvent. The nature of the SCMC model in the
LBM framework made it possible to accommodate complex dynamics on the
microscopic level, such as non-ideal effects [79], coupling with polymer micro-
mechanics [80] and thermal fluctuations [81,82]. This LBM multicomponent
scheme has also been used widely for the modelling of breakup behaviour in
laminar flows [12,55,83–90]. In this thesis we will study the effect of generic
time-dependency on droplet dynamics and breakup in laminar flows and
then move on to the study of sub-Kolmogorov droplet dynamics in homoge-
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1.2. Thesis outline

neous and isotropic turbulence (HIT). We find that breakup in confined and
oscillatory shear flows is not only dependent on the degree of confinement,
but also on the flow start up conditions and the explicit time-dependency
of the solvent flow. For all problems treated in this work we use a newly
developed LBM boundary flow scheme, and compare the LBM simulation
results with the Maffettone-Minale model [16] and with other theoretical
predictions, whenever suitable.

1.2. Thesis outline

The thesis is organized according to the following chapters. Chapter 1 con-
cerns the general motivation of the studies of droplets in turbulent and
complex flows. Chapter 2 gives a brief introduction to droplet flow models
starting from perturbative models in the Stokes limit to phenomenological
models, which are valid for generic flow fields. Furthermore, a brief intro-
duction to turbulent flows and the Kolmogorov scales is given. Chapter 3
provides an overview of LBM and in particular SCMC, an extended LBM
diffuse interface model. Chapter 4 discusses droplet behaviour in a low am-
plitude time-dependent shear flow, which is extended in chapter 5 to large
amplitude droplet dynamics and breakup in time-dependent flows with and
without confinement. Chapter 6 outlines the details of a multiscale LBM
algorithm to model sub-Kolmogorov droplet dynamics and chapter 7 com-
pares the breakup predictions of the Maffettone-Minale model [16] with the
LBM predictions. In the end, chapter 8 provides an overall conclusion to the
thesis and an outlook to further research on the sub-Kolmogorov droplet
dynamics in homogeneous isotropic turbulence.
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2. Theoretical Background

This chapter provides an introduction to the theoretical background nec-
essary for the proceeding chapters. Firstly, we discuss the general Navier-
Stokes and Stokes equations and then introduce models for multicomponent
systems in Stokes flow. We also discuss in detail a phenomenological droplet
deformation model, the Maffettone Minale [16], due to its adaptability to
droplet dynamics in arbitrary flows. In the end, we give a brief overview
of the phenomenology of turbulent flows with an emphasis on the energy
cascade and the dissipative scales.

2.1. The equations of fluid flows

The governing equation for incompressible fluid flows are the Navier-Stokes
equations (NSE):

∇ · v = 0

∂tv + (v · ∇)v = −1

ρ
∇p+ ν∇2v (2.1)

The first equation represents the mass conservation of the incompressible
fluid, while the second describes the change of the fluid’s momentum due
to pressure and dissipative forces. v(x, t) represents the velocity field of the
fluid at location x and time t, p is the pressure of the flow, ρ the density
of the fluid and ν represents the kinematic viscosity. We can define the
Reynolds number Re in order to provide an order of magnitude estimate of
the ratio of the inertial (v · ∇v) and viscous term (ν∇2v) in equation (2.1)

Re ≡ LcUc
ν

(2.2)

with Lc and Uc being a characteristic length and velocity scale of the flow
respectively [6]. Using the characteristic length and velocity scales Lc and

5



2. Theoretical Background

Uc in addition to the kinematic viscosity ν we can non-dimensionalise the
NSE:

∂t̃ṽ + (ṽ · ∇̃)ṽ = −∇̃p̃+
1

Re
∇̃2ṽ (2.3)

where˜denotes that the physical quantity is given in units of Lc, Uc and
ν. In the limit of low Reynolds numbers, i.e. Re→ 0, equation (2.3) reduces
to the Stokes equation

−∇p+ η∇2v = 0 (2.4)

where we use the dimensional quantities p and v again. η = ρν is the
dynamic viscosity of the flow. Both the non-linear term ∼ v · ∇v and the
time dependency ∂tv of equation (2.3) vanish. Thus, the Stokes equation
is a stationary linear differential equation, whose solutions are unique [91].
This is of great importance in order to find analytical solutions to weakly
deformed droplets in Stokes flow, as will be explained in the next section.

2.2. Multicomponent flows

We have derived the Stokes equation (2.4) in section 2.1 as a limiting case of
the Navier-Stokes equations (2.1) for Re→ 0. We reformulate equation (2.4)
for a two component system, where the subscript d denotes the droplet and
the subscript s the solvent component:

−∇ps + ηs∇2vs = 0

−∇pd + ηd∇2vd = 0 (2.5)

In order to solve (2.5) we employ a perturbation scheme developed by
Taylor [19, 20], where we expand the pressure p and the velocity v up to
linear order in the capillary number Ca for both the droplet d and external
flow phase s (subscripts are omitted).

p = peq + Ca pT +O(Ca2)

v = veq + CavT +O(Ca2) (2.6)
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2.2. Multicomponent flows

with Ca being the capillary number, which serves as a control parameter
for the droplet deformation. peq and veq are the pressure and velocity of
the undeformed droplet respectively. Ca is given by the ratio of viscous and
interfacial forces of the droplet

Ca =
ηsRG

σ
(2.7)

where G is the shear rate of the solvent flow vs, defined via G ≡ ‖∇vs‖,
R is the radius of the undeformed droplet, ηs the dynamic viscosity of the
solvent and σ the surface tension between the two liquids at their interface.
The interpretation of the capillary number can be deduced from the Stokes
equations (2.5) of the two component system: it represents the ratio of the
viscous shear stresses in the flow ∼ ηs to the surface tension σ. The extent
of deformation of the spherical liquid droplet can then be given by

D =
L−W
L+W

(2.8)

where L and W are the major and minor axis of the deformed ellipsoidal
droplet respectively. With the help of Taylor’s theory we may now determine
the deformation parameterDT of the droplet up to first order in the capillary
number Ca [19,20]

DT = Ca
16 + 19χ

16 + 16χ
(2.9)

with

χ =
ηd
ηs

(2.10)

being the viscosity ratio of the two immiscible fluids, where ηd is the
dynamic viscosity of the droplet. Since the Taylor deformation theory con-
siders the droplet to be unbounded, we employ an extension to Taylor’s
theory [19, 20], the Shapira-Haber model (SH-model) [39, 40], which has
a similar line of reasoning as Taylor’s theory, but takes the issue of con-
finement into account. Therefore, in the Shapira-Haber model [39, 40] the
deformation parameter is given by

DSH = Ca
16 + 19χ

16 + 16χ

[
1 +

(
R

Lc

)3
]
Cs

5
2χ+ 1

χ+ 1
(2.11)
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2. Theoretical Background

where Cs is the so called shape factor [40].

2.3. Maffettone-Minale model (MM)

A more refined model than the one proposed by Taylor [20, 21] is a phe-
nomenological model developed by Maffettone and Minale [16] (to be refer-
enced as MM-model from here on). In the MM-model the droplet is assumed
to be always ellipsoidal, so that we can describe it via a second rank tensor
Mij

Mij =
1

VD

∫
VD

d3x

(
δij −

xixj
‖x‖2

)
(2.12)

which is also referred to as the morphology tensor. VD denotes the volume
of the droplet and x the distance from the droplet’s centre of mass to a
point inside VD. Droplet deformations are characterised via the components
of Mij , for example an undeformed droplet has a morphology tensor of
Mij = δij . It should be noted, that the MM-model is able to model droplet
dynamics in generic flows and is not limited to the special case of Stokes
flow. The time evolution of Mij due to an external flow field is given by the
MM equation:

dMij

dt
= Ca [f2(SikMkj +MikSkj) + ΩikMkj −MikΩkj ]−f1

(
Mij − 3

IIIM
IIM

δij

)
(2.13)

where Sij is the strain-rate and Ωij the rotation-rate tensor of the solvent
flow, which are the symmetric and anti-symmetric parts of the velocity
gradient tensor ∂jvi respectively:

Sij =
1

2
(∂jvi + ∂ivj) (2.14)

Ωij =
1

2
(∂jvi − ∂ivj) (2.15)

IIIM = det(Mij) and IIM ≡ 1
2(M2

kk −MijMij) are the third and second
tensor invariants of Mij . Unlike previous analytical approaches to model
droplet deformation in laminar flows [20] the MM-model is not based on a
perturbative expansion in the capillary number Ca. Thus we can increase
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2.3. Maffettone-Minale model (MM)

Ca to relatively large values in our LBM simulations, since we have a robust
analytical model to compare it with. However, it should be noted, that the
MM-model requires the droplet shape to be ellipsoidal at all times (an ad
hoc assumption). Since we want to compare the LBM simulations with the
MM-model, we need to make sure that we remain in the linear flow regime
and check that our deformed LBM droplet is actually ellipsoidal at all times.
We remark that the MM-model has to be modified to account for a confined
droplet, as was the case for Taylor’s theory, see equation (2.11). This can be
achieved by modifying the parameters f1 and f2 in equation (2.13) for the
confined case. In the unbounded case [16], which we call MM-unbounded,
we have

fun
1 (χ) =

40(χ+ 1)

(3 + 2χ)(16 + 19χ)

fun
2 (χ,Ca) =

5

3 + 2χ
+

3 Ca2

2 + 6 Ca2 (2.16)

and for the confined case [41] which we call MM-confined

f1(χ, α) =
fun

1 (χ)

1 + f c1(χ)Cs
α3

8

f2(χ,Ca, α) = fun
2 (χ,Ca)

(
1 + f c2(χ)Cs

α3

8

)
(2.17)

with

f c1(χ) =
44 + 64χ− 13χ2

2(1 + χ)(12 + χ)

f c2(χ) =
9χ− 10

12 + χ
(2.18)

Cs denotes a form factor, which depends on the degree of confinement [39,
40], and

α =
2R

Lz
(2.19)
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2. Theoretical Background

is the aspect ratio of the droplet length scale, the droplet diameter 2R, to
the scale of the confinement Lz, e.g. the width of a channel, see figure 3.3.
The MM-model is originally designed for highly viscous flows, i.e. flows which
are close to the Stokes limit (see equation 2.4). Nevertheless, we will see in
chapter 7 that the MM-model can be used to study droplet deformation in
turbulent flows on the sub-Kolmogorov scale, as the limit of highly viscous
flows is still applicable on this scale, see section 2.4.

2.4. Turbulent flows

So far we have only dealt with laminar flows, be it for single or multicompo-
nent systems. However, most flows in nature are not laminar but turbulent.
Turbulent flows show specific characteristics which are [5]:

1. Irregularity: Turbulent flows are inherently unpredictable, which is
most evident by the absence of a general solution to the Navier-Stokes
equations in the turbulent regime. Nevertheless, one might think that
there might be an effective theory of turbulence even in the absence
of a general solution to the NSE. However, this is not the case, as
for example the distance s(t) between the trajectories of two tracer
particles in a turbulent flow shows choatic behaviour, because it is
highly sensitive to its initial condition. This can be expressed by the
Lyapunov exponent [92]:

s(t) = s0e
λLt (2.20)

with s0 = s(t = 0). λL > 0 is the Lyapunov exponent for the dis-
tance s(t) between the two tracer particle trajectories. We see from
equation (2.20), that a slight difference in the initial conditions s0,
leads to an exponential growth of the distance s(t) between the two
tracer particle trajectories according to equation (2.20), even if s0 is
infinitesimally small. Due to this sensitivity on initial conditions [92],
statistical models are used to investigate turbulent flow properties [8].

2. Diffusivity of energy: The transfer of energy from large scales to
smaller ones, the so called Richardson cascade, can be seen as the
most iconic characteristic of turbulence. The transfer of energy is also
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2.4. Turbulent flows

responsible for rapid mixing in case of a multicomponent turbulent
flow.

3. Large Renynolds numbers Re: For large Re the non-linearities of
the NSE are dominant, which causes the irregularity of the flow and
thus the absence of an analytical solution to the NSE. In this regime
only statistical models can adequately describe the flow.

4. Three dimensional flow: The transfer of energy from larger to
smaller scales, the Richardson cascade, is only possible due to the
vortex stretching and elongation in three dimensions 1.

5. Dissipative flow: At the smallest scale of the Richardson cascade, the
Kolmogorov scale, the viscous shear stresses dominate and dissipate
energy. Every turbulent flow requires an energy input at the largest
scales to compensate for the dissipated energy at the Kolmogorov
scale.

In general, it is useful to decompose the velocity field v̂(x, t) into a mean
flow and its fluctuations [5]:

v̂(x, t) = vm(x) + v(x, t) (2.21)

where the mean flow field vm(x) is the time average of the velocity field

vm(x) = 〈v̂(x, t)〉t (2.22)

with 〈. . .〉t denoting a time average. In this thesis we only deal with
homogeneous and isotropic turbulence (HIT), for which the mean flow is
vm(x) = 0 and we are only left with the velocity fluctuations v(x, t), which
we shall also call the velocity field from here on. Homogeneous states that
the flow is “statistically” invariant under spatial translations of

v(x, t) 7→ v(x + a, t) (2.23)

with a ∈ R3 being an arbitrary change in position [6]. Analogously,
isotropic means that the flow is “statistically” invariant under arbitrary
rotations of
1It should be noted, that a cascade exists in 2D turbulence as well. However energy is

transferred from the smallest to largest scales, so that the 2D turbulence cascade is
often called an inverse cascade [6, 8].
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2. Theoretical Background

v(x, t) 7→ A · v(x, t) (2.24)

with A ∈ SO(R3), where SO(R3) denotes the special orthogonal transfor-
mation group in R3 [6]. Therefore, the HIT turbulent flow possesses both
translational and rotational symmetry. These symmetries are of great im-
portance in order to discuss the phenomenology of turbulence. There are
two main phenomena of turbulence, which are central to this work: for one
the Richardson cascade or turbulence cascade is the underlying mechanism
of energy transfer in a turbulent flow and ultimately responsible for differ-
ent flow behaviour on different length scales. Secondly, we will discuss the
importance of the dissipative scales, the Kolmogorov microscales and even
smaller scales, the sub-Kolmogorov scales.

2.4.1. The Richardson energy cascade

We have mentioned briefly that turbulent flows are dissipative. Yet, in
many examples of turbulence structures appear to be stable [5, 6, 8]. How
can this be the case for a dissipative flow? In 1922 Louis Fry Richardson
gave an explanation to this apparent paradox [6], which is the Richardson
or energy cascade: Every fully developed turbulent flow passes its energy
from its largest scale of size l0, to its smallest scale of size ηK via a cascade
mechanism, see figure 2.1. l0 is taken to be the size of the largest eddies,
with an eddy being loosely defined as the largest turbulent structure in the
flow. We see from figure 2.1 that the energy is transferred via the energy
dissipation ε to different intermediate length scales of sizes rnl0, where
n ∈ N and 0 < r < 1, before reaching the dissipative scale ηK . The region
with scales of length ηK < ln < l0, with ln = rnl0, is called the inertial
subrange. Two key assumptions of the Kolmogorov theory of turbulence
(1941) are fulfilled by the cascade mechanism [6]: The inertial subrange is
statistically scale invariant, i.e. physical properties are merely rescaled by
moving from larger to smaller scales. Secondly, the cascade gives rise to
locality of interactions, e.g. if we deal with a length scale ln = rnl0, it has
received energy from the larger scale ln−1 = rn−1l0 and its energy is passed
on to a smaller scale of size ln+1 = rn+1l0.
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2.4. Turbulent flows

K

Figure 2.1.: Sketch of the Richardson energy cascade: the energy of the turbulent flow
are transferred through a cascade mechanism from the size l0 of the largest eddies, the
integral scale, to the smallest scale ηK , where energy starts to dissipate. The constraints
on the intermediate lengths of size rnl0, with n ∈ N, are 0 < r < 1. The blobs on each
length scale level represent the respective eddies of that scale, with l0 being the length of
the largest eddies in the flow. Courtesey of [6].
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2. Theoretical Background

2.4.2. The Kolmogorov microscales

We have seen that the energy cascade transfers energy from the largest
eddies of size l0 to smaller scales. We now investigate the dissipative scales,
the Kolmogrov microscales, at which energy will not only be transferred but
starts to dissipate due to the kinematic viscosity ν. In order to investigate the
importance of energy dissipation on the microscales, we Fourier transform
the NSE (2.1) and investigate its spectral properties. The velocity field can
be expressed in spectral space via a set of mode vectors k.

v(x, t) =
∑
k

v(k, t) e−ik·x (2.25)

and the Fourier transformed velocity field in spectral space is given by

v(k, t) =
1

L3
x

∫
ALx

d3x v(x, t) eik·x (2.26)

with ALx = Lx × Lx × Lx, where Lx ∈ R is the length scale of the
finite periodic real space ALx for the velocity field v(x, t) [6]. The Fourier
transformed incompressible Navier-Stokes equations (FTNSE) [7] in spectral
space are then given by

∂tvj(k, t)+νk
2vj(k, t) = −ikm

(
δjl −

kjkl
k2

)∑
k′

vl(k
′, t)vm(k−k′, t) (2.27)

with δjl being the Kronecker Delta and k2 = kjkj . The incompressibility
condition in Fourier space kjvj(k, t) = 0 has been implicitly used. After
contracting equation (2.27) with the velocity field vj(k, t), we obtain an
energy balance equation [7]

∂E(k, t)

∂t
= T (k, t)− 2 νk2E(k, t) (2.28)

with E(k, t) ≡ 1
2vj(k, t)vj(k, t) being the kinetic energy of the flow and

T (k, t) an energy transport term. Equation (2.28) represents the transport
of energy of the larger scales to smaller scales according to the procedure of
the Richardson cascade, until energy dissipates on the Kolmogorov scale and
sub-Kolmogorov scale, where the kinematic viscosity ν dominates. Thus, for
scales in the inertial subrange, i.e. k � 1

ηK
, only the transport of energy is
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2.4. Turbulent flows

relevant and the dissipative term in equation (2.28) can be neglected. If we
sum over all k modes, thus averaging over all length scales, equation (2.28)
reads 〈

dĒ

dt

〉
t

= −ε (2.29)

where

Ē ≡
∑
k

E(k, t) =
1

2

∑
k

vj(k, t)vj(k, t) (2.30)

is the mean energy of the flow per unit mass and

ε ≡ 2ν

〈∑
k

k2E(k, t)

〉
t

(2.31)

is the mean energy dissipation of the flow per unit mass [6]. The transport

function vanishes
∑
k

T (k, t) = 0, because the energy is only transported via

the energy cascade. We can now define the dissipative scale in turbulent
flows, the Kolmogorov scale: The energy input is given by the energy dissi-
pation ε according to equation (2.29). Since we are now in the dissipative
region in terms of the Richardson cascade, the transferred energy from larger
scales dissipates according to the kinematic viscosity ν. Consequently, we
can define a length ηK , time tη and velocity scale uη through dimensional
analysis

ηK =

(
ν3

ε

) 1
4

tη =

√
ν

ε

uη = (νε)
1
4 (2.32)

which are the Kolmogorov microscales. An alternative definition of the
dissipative scale, is the local Reynolds number of the Kolmogorov scale

Reη ≡
ηKuη
ν

= 1 (2.33)
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2. Theoretical Background

At this point we should also consider the Taylor Reynolds number [6]

Reλ =
Ē

ν

√
10

3ΩE
(2.34)

with

ΩE ≡
1

2L3
x

∫
ALx

d3x ω(x, t) · ω(x, t) (2.35)

being the mean enstrophy per unit mass, where

ω(x, t) = ∇× v(x, t) (2.36)

is the vorticity of the flow. Enstrophy can be seen as a measure of vortices
and rotation in a turbulent flow [8]. Since Reλ is only defined via global
flow quantities and not specific length or velocity scales, it is an appropriate
measure for the degree of turbulence of a flow. Furthermore, it has to be
stressed that the Kolmogorov microscale phenomenology still holds true for
length scales l < ηK , where ε acts as an energy input from larger scales and
ν is responsible for its dissipation. In this work we deal with sub-Kolmogorov
length scales for droplet dynamics, whose radii R fulfil R� ηK , for which
the local Reynolds number Re < 1.
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3. The Lattice Boltzmann Method
(LBM)

The equations for incompressible fluid flows, the Navier-Stokes equations (2.1),
are continuum equations, i.e. they contain continuous functions, the scalar
density ρ(x, t) and pressure p(x, t) fields and the fluid velocity field v(x, t).
In this chapter we will show that a discrete microscopic description, the
Lattice Boltzmann equation (LBE), can be used to derive the equations
of fluid flows (equation (2.1)) in the hydrodynamic limit. We will also out-
line the general algorithmic structure of the Lattice Boltzmann methods
(LBM). Furthermore, we will introduce the Shan-Chen multicomponent
model (SCMC) [77, 78], which is an LBM based diffuse interface model.
Moreover, we report validation results for the SCMC model and introduce
an LBM ghost node boundary scheme to be used in all simulations per-
formed in chapters 4, 5, 6 and 7.

3.1. The Boltzmann and Lattice Boltzmann equation

The Boltzmann equation and Lattice Boltzmann equation can be derived
from Hamiltonian classical mechanics. Let us consider a set of N classical
particles {qj ,pj}N with generalised coordinates qj and generalised momenta
pj , which obey the symplectic Hamilton equations

q̇j =
∂HN

∂pj

ṗj = −∂HN

∂qj
(3.1)

where HN ≡ H({qj ,pj}N ) is the (time-independent) Hamilton function
of the system of classical particles [93]. Thus, we can formulate a Liouville
equation by introducing a particle density function gN ({qj ,pj}N , t) [93]:
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3. The Lattice Boltzmann Method (LBM)

∂gN
∂t

= −
N∑
j=1

(
∂gN
∂pj

ṗj +
∂gN
∂qj

q̇j

)
(3.2)

Although the Liouville equation provides a time evolution for the particle
distribution function gN , we would like to have a simpler expression, ideally
involving a single particle distribution function g(qj ,pj , t) for particle j. In
order to derive a simpler equation we need to employ three approximations
given in [93]:

1. only pairwise collisions of particles are considered (e.g. particle i with
particle j)

2. the pre-collision velocities of colliding particles are uncorrelated

3. particle interactions are not influenced by external forces

Now we can derive an evolution equation for the single particle distribu-
tion function g(x,v, t):

∂g(x,v, t)

∂t
+ v · ∇g(x,v, t) = Ω(g(x,v, t), geq(x,v, t)) (3.3)

which is the Boltzmann equation without external forces, where x = qj
and v =

pj
m are the position and velocity of the single particle j respec-

tively. m is the particle mass and Ω(g(x,v, t)) is the collision operator,
which depends on the single particle distribution function g(x,v, t) and an
equilibrium distribution function geq(x,v, t). The equilibrium distribution
function can be derived by looking at the stationary state of equation (3.3)
Ω(g(x,v, t), geq(x,v, t)) = 0 and we find

geq(x,v, t) = n

(
m

2πkBT

) 3
2

e
− m

2πkBT
(v−v̄)2

(3.4)

which is the Maxwell Boltzmann distribution function with velocity field v,
temperature T (x), total particle density n(x) and mean velocity v̄(x), where
kB is the Boltzmann constant [93]. We can now discretise the Boltzmann
equation in both space and time on a lattice and obtain [94,95]:

gi(x + ci∆t, t+ ∆t)− gi(x, t)︸ ︷︷ ︸
Streaming

= Ωi({gi(x, t)})︸ ︷︷ ︸
Collision

(3.5)
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3.1. The Boltzmann and Lattice Boltzmann equation

which is the Lattice Boltzmann equation (LBE). x are the discrete lattice
positions and ∆t is the discretised time step. The index i now denotes
a lattice stencil for each lattice position x with a set of discrete lattice
velocities (or lattice vectors) ci, for which i ∈ {0 . . . N} with N being the
number of non-zero lattice vectors and ci=0 = 0 indicating the lattice node
at position x. An example of such a lattice stencil is shown in figure 3.1
for a D3Q19 lattice (3D and 19 lattice velocities ci). We remark that the
discretised single particle distribution functions gi(x, t) are often called
lattice populations or simply populations.

Figure 3.1.: Sketch of a 3DQ19 lattice with the discrete lattice velocities ci given as
lattice directions.

The LBM equivalent of the equilibrium distribution function in equa-
tion (3.4) is given by [93,94]:

geq
i (ρ,v) = wiρ

(
1 + 3(ci · v) +

9

2
(ci · v)2 − 3

2
v2

)
(3.6)

with ρ(x, t) being the density of the system, v being the equilibrium veloc-
ity and wi lattice weights [94]. The LBM equilibrium distribution function
geq
i is essentially a velocity truncated discretised Maxwell Boltzmann dis-

tribution function, see equation (3.4). The velocity truncation is especially
necessary in the case of low compressibility, since in this region the Mach
number

Ma =
v

cs
(3.7)
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3. The Lattice Boltzmann Method (LBM)

should obey the limit Ma � 1. v = ‖v(x, t)‖∞, with ‖. . .‖∞ being the
maximum norm, and cs denotes the speed of sound in lattice Boltzmann
units (lbu), which for a uniform lattice is cs = 1√

3
. We have indicated two

qualitatively different steps in equation (3.5), collision and streaming. The
collision step merely evaluates the collision operator function Ωi({gi(x, t}).
The streaming step updates the values of the populations gi(x + ci∆t, t+
∆t) at the neighbouring lattice nodes of node x with the post collisional
populations g′i(x, t+∆t). This provides us with the essential LBM algorithm:

Figure 3.2.: Sketch of the streaming step: The values of the populations gi(x+ci∆t, t+∆t)
are updated with the post collisional population values g′i(x, t+ ∆t) at the lattice node
x.

1. perform the collision step via the collision operator Ωi({gi(x, t})

2. carry out the streaming step

3. evaluate and update the macroscopic quantities ρ(x, t) and v(x, t)

4. repeat step 1

The density ρ(x, t) and velocity field v(x, t) can be obtained via the LBM
populations:

ρ(x, t) =
∑
i

gi(x, t)

v(x, t) =
1

ρ(x, t)

∑
i

gi(x, t)ci (3.8)
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3.1. The Boltzmann and Lattice Boltzmann equation

Ωi({gi(x, t)} is now a generic discretised collision operator depending on
the whole set of lattice distribution functions {gi(x, t)} at lattice position
x and time t. It can be shown [95] that any generic LBM collision operator
only depends linearly on the local populations gi(x, t) and the equilibrium
distribution functions geq

i (ρ,v):

Ωi({gi(x, t)}) = Lij(gj(x, t)− geq
j (x, t)) = Lijgneq

j (x, t) (3.9)

where gneq
i (x, t) = gi(x, t) − geq

i (x, t) is the non-equilibrium part of the
distribution function gi and Lij the distribution function independent col-
lision operator. The simplest collision operator is the BGK operator, for
which Lij is diagonal and equal to a constant:

Lii =
1

τ
(3.10)

with τ being called the relaxation time of the system. According to equa-
tion (3.9), τ indicates the speed at which the collision step takes place, i.e. at
which rate the populations gi approach the equilibrium populations geq

i (x, t)
or equivalently at which rate the non-equilibrium parts of the populations
gneq
i (x, t)→ 0. Consequently the BGK operator models the collision with a

single relaxation time scale. For further numerical stability [96] we can use
the multi relaxation time scheme (MRT) [97]. In MRT we perform a basis
transformation into a mode space with a set of orthonormal basis vectors
{eij}i and corresponding modes mi(x, t):

mi(x, t) =
∑
j

eijgj(x, t) (3.11)

The collision step in mode space with relaxation parameters λi is then
given via

m∗neq
i (x, t) = (1 + λi)m

neq
i (x, t) (3.12)

wherem∗neq
i (x, t) is the post-collision non-equilibrium mode, andmneq

i (x, t)
the pre-collision non-equilibrium mode. Important conserved modes are

• m0(x, t) = ρ(x, t)

• m1(x, t) = jx(x, t)∆t

• m2(x, t) = jy(x, t)∆t
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3. The Lattice Boltzmann Method (LBM)

• m3(x, t) = jz(x, t)∆t

which represent the mass ρ(x, t) and momentum density j(x, t) = ρ(x, t)v(x, t)
respectively. For MRT the collision operator contains several relaxation
times linked to its relaxation modes (depending on the lattice stencil) [97].
In case of a fluid flow, one relaxation time τ is directly linked to the kine-
matic viscosity ν in the system (incidentally it is equivalent to the one in
the BGK collision model)

ν = c2
s

(
τ − 1

2

)
=

1

3

(
τ − 1

2

)
(3.13)

which is one of the primary links between the LBM scheme and hydro-
dynamics [75, 76]. In this work we use the MRT collision model for all
simulations.

3.2. The Chapman-Enskog Expansion (CEE)

So far we have only dealt with LBM as a solver for the dynamics of particles,
but have not seen their applicability to the continuum equations of fluid
flows (equations (2.1)). The hydrodynamical manifold, i.e. the Navier-Stokes
equations (NSE), can be recovered via the Chapman-Enskog expansion, a
perturbation theory in the Knudsen number Kn, which is defined as

ε = Kn =
lm
L

(3.14)

where lm is the molecular mean free path length and L a macroscopic
length scale. The Knudsen number Kn can therefore be seen as an indicator
for the physical density ρ of a system, e.g. for a fixed macroscopic length scale
L the Knudsen number Kn is directly proportional to the mean free path
lm, which decreases with increasing density. Now we define three relevant
time scales and one length scale for our perturbative expansion in Kn. We
will be following the outline given in [95].

∆t ∼ O(1) lattice time scale

t1 = ε∆t ∼ O(ε) convective time scale

t2 = ε2∆t ∼ O(ε2) diffusive time scale

x1 = εx ∼ O(ε) coarse grained position vector (3.15)
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3.3. Shan-Chen multicomponent model

With these scales defined we obtain a series expansion of equation (3.5)
in orders of ε

O(1) : Ω
(0)
i = 0

O(ε) : (∂t1 + ci · ∇x1)g
(0)
i =

Ω
(1)
i

∆t

O(ε2) :
[
∂t2 + (∂t1 + ci · ∇x1)2

]
g

(0)
i +

∆t

2
(∂t1 + ci · ∇x1)g

(1)
i =

Ω
(2)
i

∆t
(3.16)

with the indices (0), (1) and (2) denoting contributions of the order of
O(1), O(ε) and O(ε2) respectively. Thus, for the expansion of the LBE until
O(ε2) we obtain

∂tρ+∇ · (ρv) = 0

∂t(ρv) +∇ · (ρvv) = −∇p+∇ · σS (3.17)

with ∇x1 representing ∇ in respect to x1, the Euler stress Seq
ij = pδij +

ρ vivj and the non-equilibrium stress tensor S∗neq + Sneq = −2σ(S), where

σ
(S)
ij = ηijkl

∂vk
∂rl

is the viscous stress tensor and ηijkl the dynamic viscosity
tensor. The pressure p(x, t) is given via an LBM equation of state

p(x, t) = ρ(x, t)c2
s (3.18)

which can be seen as a pressure-density equivalency in the LBM frame-
work. Equations (3.17) are the compressible Navier-Stokes equations (2.1)
with a generic dynamic viscosity tensor, which reduce to the incompressible
Navier-Stokes equations in the incompressible (ρ(x, t) = ρ = constant) and
the Newtonian (η = ρν = constant) limits, where the dynamic viscosity η
is a scalar quantity.

3.3. Shan-Chen multicomponent model

The classical Lattice Boltzmann Model (LBM) for single phase flows needs
to be modified to account for a system containing two immiscible fluids,
in particular the fluid-fluid interface between them. One of the most used
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3. The Lattice Boltzmann Method (LBM)

scheme to model the fluid-fluid interface is the Shan-Chen Multi-Component
model (SCMC) [77, 78]. For two (or more) immiscible fluids we need to
distinguish between the type of fluid component at hand, thus we get for
the mass and momentum densities:

ρ(x, t) =
∑
σ

∑
i

gσi (x, t)

ρ(x, t)v(x, t) =
∑
σ

∑
i

gσi (x, t)ci (3.19)

where gσi (x, t) denotes the populations in the LBM model for the fluid
component σ and ci are the lattice velocities. The interaction at the respec-
tive fluid-fluid interface [98,99] is given by:

F σ(x) = −ψσ(x)
∑
σ′ 6=σ

N∑
i=1

Gσ,σ′wiψσ′(x + ci)ci (3.20)

where ψσ(x) is a local pseudo-potential which may be defined via the
phase densities ρσ(x, t). Gσ,σ′ is a coupling constant for the two phases σ and
σ′ at position x and wi are the lattice isotropy weights. One should note that
the stencil for the SCMC pseudo-potential interaction does not necessarily
have to coincide with the stencil populations for the LBM streaming, but
could be a different lattice stencil, given that the interaction force F σ(x)
remains isotropic.

3.4. Validation tests for confined droplets

After having introduced the LBM as a fluid solver for both single phase and
multicomponent flows, we give a LBM multicomponent flow example. We
consider the static deformation of a 2D droplet centred in the middle of the
simulation domain, with periodic boundary conditions [94] in the x- and
bounce-back (wall) boundary conditions [94] in the z-direction, see figure 3.3.
The aim of the LBM simulations is to determine the deformation of the
2D droplet as a function of the capillary number Ca under the influence of
an external shear flow ux at the boundary walls. ux at the boundaries is a
free parameter in our simulations and ranges from the static case ux = 0 to
ux = 0.05 (lbu), which enables us to tune the capillary number Ca. In order
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3.4. Validation tests for confined droplets

to determine the surface tension σ we carry out a Laplace measurement in
the static case, before starting the dynamic simulations involving ux. The
Laplace pressure in 2D is:

∆p =
σ

R
(3.21)

with ∆p ≡ |pin − pout| being the difference between the internal pressure
(inner pressure) of the droplet and the external pressure of the surrounding
fluid (outer pressure). The Laplace measurement is visualised in figure 3.4
from which we can determine the surface tension σ due to (3.21). For
the dynamic simulations we use a constant shear flow ux at the boundary
walls in the z-direction, see figure 3.3. In order to measure the deformation
parameter D, we calculate the moment of inertia tensor Iij of the droplet
at first:

Iij(t) =

∫
VD

d3x ρ(x, t)
(
δij‖x‖2 − xixj

)
(3.22)

where VD is the volume of the droplet [92]. Then we determine the major
L and minor axis W of the deformed droplet via the relation

L ∼ 1
√
µ2

W ∼ 1
√
µ1

(3.23)

with µ1 ≥ µ2 > 0, where µ1 and µ2 are the eigenvalues of Iij . This yields
the degree of deformation D defined in (2.8). Furthermore, for a comparison
of our simulations with the Shapira-Haber model [39,40] we need the shape
factor, which is Cs ≈ 5.6996 for a centred droplet. We can see in figure 3.5
that our LBM simulations are in relatively good agreement with the Shapira-
Haber model in the case of low capillary numbers Ca. The simulation results
deviate significantly from the theoretical model, however, if we consider a
range of larger Ca values. This is to be expected, since the Shapira-Haber
model considers only the linear term in Ca of a perturbation series of p and
v, see equations (2.6) 1.

1The disagreement between LBM and the SH-model vanishes, if we reduce the inertia,
i.e. lower Reynolds numbers Re, as will be shown in chapter 4
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2RLz

ux

-ux

x

z

Figure 3.3.: Set up for the Laplace test and static droplet deformation of a 2D confined
droplet in a shear flow. The droplet radius is given by R and the wall separation length
by Lz. For the Laplace test the wall velocity ux = 0 and ux 6= 0 in the case of static
deformation. The droplet is visualised in 3D for simplicity, even though the simulations
were carried out in 2D.
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is given via the slope of the best fit through the LBM data points.
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Figure 3.5.: Static droplet deformation test against the Shapira-Haber model (SH-
model) [40] for a low Ca range. The best fit of the data points and the SH-model predictions
agree well in this capillary number range.
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Figure 3.6.: Static droplet deformation test against the SH-model [40] for a high Ca
range. The LBM data points do not follow a linear relationship and thus LBM disagrees
with the SH-model in this capillary number range. This disagreement is due to inertia
and vanishes for lower Reynolds numbers Re for the Ca range used here, see chapter 4.
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3.5. A ghost node boundary flow scheme

In order to effectively simulate a time-dependent flow, we use specially
modified boundary conditions. We make use of the ghost populations (or
halos) to store the local LBM equilibrium population distributions given by
the systems boundary values for the density ρb(x, t) and velocity u(x, t) of
the outer fluid (for simplicity we will treat a single component fluid).

geq
i (x, t) = ρb(x, t)wi

(
1 + 3 ci · u +

9

2
(ci · u)2 − 3

2
u2

)
(3.24)

with {wi} being the lattice weights for the set of lattice vectors {ci}.
Thus the ghost distributions will update the boundary nodes during the
LBM streaming step and let the system know about the previously chosen
boundary conditions (see figure 3.7). Since the ghost nodes only stream
into the system and not out of it, we have to correct the local population
mass densities in order to keep the system mass conserving [11, 100–102],
in the case of a confined system with a no slip boundary wall. Thus, the
boundary scheme is equivalent to a mid-bounce-back rule [93, 94], if con-
finement is present. However, if we deal with an unconfined system, which
we would have in the case of a sub-Kolmogorov droplet in a turbulent flow,
mass conservation does not have to be strictly enforced and we use an anti
evaporation scheme [11] to keep the mass of the droplet constant. This is
a suitable procedure, since we are only interested in the dynamics of the
droplet and not that of the solvent. In this way we keep a constant density
ratio and keep the droplet’s mass fixed, even though the mass of the solvent
may vary.
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3.5. A ghost node boundary flow scheme

Ghost nodes Boundary nodes

gi
eq gi

Figure 3.7.: Sketch of the streaming step from ghost to boundary nodes. The ghost
nodes are initialised via the local equilibrium distributions geqi . By initialising the ghost
nodes with a given equilibrium density ρ(x, t) and equilibrium velocity field u(x, t), we
can effectively set the boundary conditions of the system.
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4. Droplet in a time-dependent flow:
LBM and MM comparison

This chapter 1 deals with the ghost node boundary flow method outlined
in chapter 3. The method is first tested for a simple single phase problem.
An oscillatory shear flow in an infinitely long channel. Then we use this
set up to to investigate droplet deformation in confined systems with both
stationary and time-dependent flows. The results of the LBM simulations
are compared to the ones obtained via numerical and perturbative solutions
to the MM-model [16,41].

4.1. Introduction

The multiscale problem of interest in this chapter is the fluid dynamics of an
emulsion, i.e. a collection of small deformable droplets dispersed in a solvent
immiscibile fluid: droplets can deform under the action of an imposed flow
and can interact with neighboring droplets, they provide a back-reaction
on the solvent component and ultimately determine the complex flowing
properties of the emulsion at large scales. Far from being only an interest-
ing multiscale physical problem, it also finds a variety of applications in
industrial and engineering processes [1]. In order to describe these complex
multicomponent flows, we reduce the system to the dynamics and defor-
mation of a single droplet under the influence of an externally imposed
flow. The literature on single droplet deformation is vast, especially when
dealing with laminar flows: following the pioneering work by Taylor [20],
the deformation properties of a droplet have been extensively studied and
reviewed [25, 103]. Existing studies address the effects introduced by the
nature of the flow [104–107], the effects of confinement [40, 41], as well as

1Published as: Milan, F., Sbragaglia, M., Biferale, L., Toschi, F., Lattice Boltzmann
simulations of droplet dynamics in time-dependent flows, Eur. Phys. J. E (2018) 41: 6.
https://doi.org/10.1140/epje/i2018-11613-0
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the effects introduced by the complex non-Newtonian nature of the bulk
fluids [87, 108, 109]. Exact analytical approaches are typically limited to
“small” deformation assumptions, i.e. perturbative results. Extensions to
time-dependent laminar flows have also been carried out [21]. From the
theoretical side, a popular model has been developed by Minale & Maffet-
tone [16], the MM-model, which assumes the droplet to be an ellipsoid at
all times [110,111], and is constructed to recover the perturbative results on
droplet deformation at small Ca (e.g. Taylor’s result [20]) in the presence of a
steady flow. The MM-model has the key advantages to allow for time dynam-
ics and also to extend the description of droplet deformation beyond the lim-
its of applicability of perturbation theories [20], hence it has also been used to
characterize the critical Ca for which droplet breakup occurs [16]. Following
the MM-model, a whole class of “ellipsoidal” models have been introduced
with further enrichments to account for a variety of other effects, including
viscoselasticity [61, 112–114], confinement [29, 31–34,87, 88, 115] and match-
ing with more refined perturbative results at small Ca [105,108,109,116]. A
detailed review on the topic can be found in [42]. These ellipsoidal models
become particularly useful when studying the properties of a single droplet
under the influence of turbulent fluctuations [13,15,17]. Depending on the
characteristic size of the droplet, turbulent fluctuations can provide either
inertial distortions [13], when the droplet size is above the characteristic
dissipative scale, or laminar distortions [15,17], for smaller droplets. It has
to be noted that analytical models cannot be used to describe the defor-
mation of large droplets accurately and in particular the MM-model fails
to capture non-ellipsoidal deformations. Therefore, it is crucial to develop
ab initio models, such as multicomponent LBM with appropriate boundary
schemes in order to enforce time-dependent fluid deformations. If combined
with a Lagrangian history of a turbulent strain matrix, the model allows
for a comprehensive characterization of the statistics of droplet shape, size
and orientation in a realistic turbulent environment [17]. A key parameter
to quantify the reaction of the droplet to the time-dependent signal is the
ratio between the droplet relaxation time

td =
ηdR

σ
(4.1)

and the fluid time scale
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4.2. Static droplet deformation

tf =
R

u0
(4.2)

where u0 is the maximal shear flow intensity. Depending on the ratio td/tf
the droplet is either able to follow the fluid variations (td/tf → 0), or starts
to decouple when td/tf ≈ 1. This influences its deformation and possibly the
allignment with the flow. Furthermore, a turbulent signal has a broad spec-
trum rather than a single time scale tf, thus resulting in a multi-chromatic
behaviour coupled to the non-linear response of the droplet deformation
process. This is an ideal workspace for LBM mesoscopic models to operate:
they intrinsically allow for both droplet deformation at the mesoscale, and
they can be constructed to reproduce the desired hydrodynamical flow at
large scales. Droplet deformation properties have been the subject of various
articles [12, 29, 41, 43, 44, 48, 85, 103, 117–119], but these typically contain
studies of deformation and orientation in steady state flows [12,80, 85, 119],
or studies of the critical droplet breakup condition [46,88], with particular
emphasis on the comparison between the (diffuse interface) hydrodynamics
of LBM and the sharp interface results [12, 87, 88, 119]. Droplet dynam-
ics has also been simulated [25, 105, 108, 109, 111, 120], but the associated
quantitative validation has been scarcely detailed in the literature. This
chapter aims at filling this gap from the methodological point of view: after
revisiting the validation of LBM for steady state flows, we introduce a time
dependency to the system and quantitatively compare LBM against the
analytical predictions of ellipsoidal models at changing the ratio between
the droplet relaxation time td and the fluid time scale tf. The chapter is
organized as follows: section 4.2 gives a brief overview on the static droplet
deformation of Lattice Boltzmann simulations compared with relevant the-
oretical models. In section 4.3 the behaviour of a simple oscillatory shear
in a 2D LBM channel flow is tested, which will be relevant for section 4.4
where we investigate the response of an isolated droplet to a time-dependent
oscillatory channel flow in a 3D LBM model.

4.2. Static droplet deformation

The first step is to test our algorithm in the case of the deformation of a
single droplet in a constant shear flow confined in a channel, see figure 4.1.
Inertia is characterised by the Reynolds number Re = R2G/ν where, in the
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4. Droplet in a time-dependent flow: LBM and MM comparison

case of a simple shear flow, the shear rate is G = 2u0/Lz, with u0 being
the maximum shear at the wall and Lz the channel width. Now we let the
droplet evolve in the shear flow and measure its deformation. We consider
only set-ups with an aspect ratio α ≡ 2R/Lz = 0.75 and keep the viscosity
ratio χ = 1 throughout all simulations. According to [121] the droplet will be
stable up to a value of Ca ≈ 0.4 regardless of our choice for the confinement
ratio α. A series of LBM runs is shown in figure 4.2 and three different values
for the kinematic viscosity ν in lbu (Lattice Boltzmann units). We may see
that for the lowest value of ν the deformation D is deviating substantially
from the theoretical predictions for a confined droplet, given both by the
Shapira-Haber model [29] and the MM-confined model [41].

Figure 4.1.: Screenshot of a multicomponent LBM simulation. A droplet is ellipsoidally
deformed via an external shear flow, created by the moving channel walls. The relevant
system parameters are: the initial droplet radius R, the shear rate G, the channel width Lz
and the other lengths of the simulation domain Lx and Ly (not shown). The magnitude
of the overall velocity field in lbu is given via a colour gradient.

For the two lower Re values the simulations agree much better with the
MM-confined model predictions. Figure 4.2 also shows the static defor-
mations for a higher resolution in the bottom panel where the respective
Reynolds number Re lies in the same range as for the plots in the top
panel. In this case the droplet deformation of our LBM scheme agrees even
better with the theoretical predictions for a confined droplet. Thus we can
deduce both: that we need a significantly low Reynolds number and that we
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4.3. Probing the parameter space: single component oscillating shear flow

may only compare our simulation results to models which account for the
confinement of the droplet. To our knowledge this is the first benchmark of
LBM against theoretical predictions for the influence of droplet inertia in
static droplet deformation in a system with a significant confinement ratio.

4.3. Probing the parameter space: single component
oscillating shear flow

After having benchmarked the static droplet deformation against a variety
of theoretical models we investigate the

droplet behaviour under a time-dependent linear shear flow. Before con-
sidering explicitly the case of a binary fluid (see section 4.4) we need to
determine a suitable range for our LBM parameters. We remark that LBM
works well as a “hydrodynamic solver” only if the LBM populations are
close to the hydrodynamical manifold. Hence it is crucial to design a set of
“working parameters” for which we know that our LBM scheme correctly
solves the time-dependent hydrodynamical equations. Specifically, for the
case of a time-dependent shear flow, we will compare our LBM scheme
against the exact time-dependent solution of an oscillating shear flow [91].
For simplicity we modify the boundary conditions for a 2D channel flow by
setting vx(0, t) = u0 cos(ωt) and vx(Lz, t) = 0, i.e. one side of the channel is
oscillating with a shear frequency ωf = ω/(2π) and the other one is static
(see figure 4.3). Making use of the incompressibility condition ∇ · v = 0 we
obtain for the Navier-Stokes equation:

∂t vx = ν ∂2
z vx. (4.3)

Making the ansatz

vx(z, t) = e−iωt (A cos(kz) +B sin(kz)) (4.4)

leads to the dispersion relation

k =
1 + i

δ
, (4.5)

where δ ≡
√

2 ν
ω is the penetration depth of the system. The solution for vx

reads

vx(z, t) = u0 e
−iωt sin(k(Lz − z))

sin(kLz)
, (4.6)
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Figure 4.2.: Droplet deformation test benchmarked against several theoretical models:
perturbative models in the capillary number Ca, Taylor (unconfined droplet) [19,20] and
Shapira-Haber (accounting for droplet confinement) [39, 40] and models extending the
Ca range to higher values, MM-unbounded [16] and the MM-confined [41] model. The
extent of the deformation measured by the parameter D is plotted against the capillary
number Ca. We choose a series of three Reynolds number ranges by selecting three
kinematic viscosities. We can see that the agreement between the LBM simulation and
the theoretical predictions improves significantly for lower Reynolds numbers. This is due
to the reduction of inertia in the system. Top panel: Resolution 80 × 40 × 40 Bottom
panel: Resolution 160 × 80 × 80. To account for similar Reynolds number ranges at a
higher resolution the simulations in the bottom panel have higher viscosity values than
the one in the top panel.
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4.3. Probing the parameter space: single component oscillating shear flow

vx(0,t) = u0cos(ωt)

vx(Lz,t) = 0

z

x

Lz
vx,nonlin

vx,lin

Figure 4.3.: Sketch of the single phase model set-up. A 2D channel of width Lz with one
stationary and one oscillating wall. The flow in the x-direction is periodically extended.
Two typical velocity profiles of the oscillating channel flow are shown, a linear one in red
and a nonlinear one in blue.

whose real part is denoted by v(0)
x (z, t). The velocity profile vx(z, t) has

a linear limit, which is given by the penetration depth δ and the channel
width Lz. If Lz/δ � 1 the condition for a linear profile is fulfilled, and we
get

v(lin)
x (z, t) = u0 cos(ωt)

(
1− z

Lz

)
. (4.7)

Thus we can find an upper bound for the frequency

ωc ∼
ν

L2
z

(4.8)

so that Lz/δc ∼ 1, with δc being the critical penetration depth of the system.
With the analytical solution at hand we can now test our LBM scheme for
an external shear flow in a channel including an exact time dependence and
perform a “scanning” of the parameter space. In the following we define two
error functions based on an L2-norm. Deviations from the exact analytical
solution v0

x(z, t) are given by

E(0)
x =

[
1

LxLz

∫ Lx

0
dx

∫ Lz

0
dz (vx(x, z, t)− v(0)

x (z, t))2

] 1
2

. (4.9)
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Figure 4.4.: Summary of a LBM benchmark series (channel width Lz = 128, relaxation
time τ = 1, maximal shear velocity u0 = 10−3) for a single component in the presence
of an oscillating shear. Left panels: time evolution of the velocity field at different height
locations: upper channel (z = 3Lz/4), middle channel (z = Lz/2) and lower channel
(z = Lz/4). We see a transient for higher frequencies ωf/ωc ∼ 10, which is due to the
relaxation of the velocity field v(x, z, t) to the analytical solution in equation (4.6) from
a zero velocity initialisation state. Middle panels: normalized error with respect to the
exact solution (equation (4.9)) and normalized error with respect to the linearised solution
(equation (4.10)). Right panels: Velocity profile vx(z, t) as a function of the dimensionless
cross-flow coordinate z/Lz at different times t = T/5, T/2, 3T/5, T (in units of the shear
period T = 1/ωf ). In all plots we non-dimensionalise the shear frequency ωf by the
critical frequency ωc. We may notice qualitatively that the velocity profile is becoming
gradually more nonlinear with increasing frequency ωf after passing the critical region
ωf/ωc ≈ 0.1. This is in agreement with the system parameter scan shown in figure 4.5.
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4.4. Multicomponent oscillating flow

Moreover we define an error function with respect to the linearised solution
v(lin)
x

E(lin)
x =

[
1

LxLz

∫ Lx

0
dx

∫ Lz

0
dz (vx(x, z, t)− v(lin)

x (z, t))2

] 1
2

. (4.10)

We perform several simulations with different oscillation frequencies rang-
ing from ωf = 10−7 to ωf = 10−4. We can estimate the critical frequency
ωc ≈ 10−5 via equation (4.8), which is supported by figure 4.4, as the veloc-
ity profile starts to become linear at around this frequency value. We can
also see that the error E(0)

x with respect to the exact solution is (almost)
independent of the oscillation frequency ωf . In addition, we now like to
know whether our LBM simulations produce similar results for a choice
of different system parameters. A sample of the parameter space is shown
in table 4.1. Figure 4.5 is key in understanding the validity of our LBM
simulations for the single phase oscillatory shear flow. We can see both that
the exact analytical error E(0)

x is generally well behaved (fluctuations around
a mean value) for the entire frequency range and that the error to the lin-
earised solution E(lin)

x is well behaved for a frequency range ωf/ωc ≤ 10−1

and is increasing for higher frequencies. Thus, we may determine a frequency
threshold of about ωf/ωc ≈ 10−1 for the linear shear regime for which our
LBM solution is both stable and linear.

4.4. Multicomponent oscillating flow

After having investigated the parameter space for a single phase system, we
add the droplet. We follow the discussion in [73] yielding a perturbative
solution in Ca. Firstly we consider the MM equation in a different non-
dimensionalised form with respect to equation (2.13):

dMij

dt
= Ca(t) [f2(SikMkj +MikSkj) + ΩikMkj −MikΩkj ]

− f1

(
Mij − 3

IIIM
IIM

δij

)
, (4.11)

where the time t is given in units of the droplet relaxation time td. It
is important to note that Ca(t) is now time-dependent due to the time-
dependent external shear flow [70–73]. Following the discussion in [73], we
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Figure 4.5.: Scatter plot of the averaged analytical error function E
(0)
x ≈ 1

2u0
(E

(0)
x,max +

E
(0)
x,min) and averaged linear error function E

(lin)
x ≈ 1

2u0
(E

(0)
x,max + E

(0)
x,min) as a function

of the renormalised frequency
ωf

ωc
with ωc = ν

L2
z

and ωf ≡ ω
2π

. The analytical error E
(0)
x is

relatively well behaved with a mean value of around 10−2 when averaged over the whole
frequency range for all parameter set-ups. On the other hand the linear error E

(lin)
x shows

a clear dependence on the normalised frequency ωf/ωc. The linear error is well behaved
up until a value of ωf/ωc ∼ 10−1, where the shear velocity profile starts becoming non

linear, which is demonstrated by the drastic increase in E
(lin)
x . The two regions, linear and

nonlinear, are separated by a dashed vertical line at ωf/ωc = 10−1.
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4.4. Multicomponent oscillating flow

expand the morphology tensor Mij as a perturbation series in the capillary
number Ca(t), see appendix B. Ignoring an initial transient, we end up with
the following first order solutions for the squared ellipsoidal axes

L̂2 = 1 + Camaxf2

(
ωtd cos(ωtdt)− f1 sin(ωtdt)

f2
1 + ω2t2d

)
+O(Ca2

max),

Ŵ 2 = 1− Camaxf2

(
ωtd cos(ωtdt)− f1 sin(ωtdt)

f2
1 + ω2t2d

)
+O(Ca2

max),

B̂2 = 1 +O(Ca2
max), (4.12)

where Camax denotes the maximal capillary number and t is given in
units of td. The quantities L2, B2 and W 2 denote the maximal, medium
and minimal eigen-directions of the morphology tensor Mij at all times t
and are defined via

L2 = ||L̂2, Ŵ 2||∞,
W 2 = 2− ||L̂2, Ŵ 2||∞,
B2 = B̂2, (4.13)

where ||a, b||∞ ≡ max(|a|, |b|) is the maximum norm between two scalar
quantities a and b. Besides the three ellipsoidal axes L, B and W another
quantity is of particular interest to us. Analogously to [73] we applied
a sinusoidal shear rate, so that for the time-dependent capillary number
Ca(t) ∼ sin(ωtdt) (t in units of td). Thus we can identify a phase shift φ
between the external oscillatory shear and the droplet’s response given by
the time evolution of the squared ellipsoidal axes in equation (4.12):

φ = arctan

(
ωtd
f1

)
+O(Ca2

max), (4.14)

which is (for the linearised solution) independent of Camax. With our
theoretical model at hand we can now run LBM simulations of the droplet
in the oscillatory shear flow and check the agreement with the perturbative
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Figure 4.6.: Numerical benchmark for LBM against the MM-confined solution of equa-
tion (4.11). The time t is given in units of the shear period T = 1/ωf . W and L denote the
minor and major axes respectively with B being the vorticity axis, where the ellipsoidal
axes obey L > B > W at maximal deformation. Four system parameters are of particular
relevance: Camax and Remax denote the maximal capillary and Reynolds number (given
for the maximum shear at the channel walls) which remain fixed in the plots. ωf/ωc is
a measure of the linearity of the shear flow, where ωf/ωc ∼ 1 may be seen as a limiting
value for linearity (see section 4.3). ωf td denotes the oscillation frequency in units of the
reciprocal droplet relaxation time and is the control parameter here. We may observe
qualitatively that as the oscillation frequency tends to values close to ωf td ∼ 1 the droplet
deformation decreases and undergoes a phase shift with respect to the outer shear flow
at the walls.
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4.4. Multicomponent oscillating flow

theoretical predictions in equation (4.12). However, the perturbative an-
alytical solution is only valid in a small capillary Camax range. We can also
solve the time-dependent MM-confined equation (4.11) and compare the
numerical solution (obtained via a RK-4 scheme) to our LBM simulation
results instead of the perturbative solution. It should be remarked that
our LBM simulation results may only be compared to the MM-confined
model, when the droplet remains an ellipsoid at all times. In order to have
a complete overview of the droplet deformation it is paramount to visualise
all three major ellipsoidal axes L, B, W , where L > B > W at maxi-
mum deformation. Let us look at the top row of figure 4.6. Considering
the time evolution of the major axis L and minor axis W we can see that
MM-unbounded model is not properly accounting for the confinement of
the system (α = 0.75). On the other hand our LBM simulation results are
in relatively good agreement with the numerical solution of MM-confined.
Interestingly, the vorticity axis B is also deformed in time, which is not
the case in the perturbative model, since the deformation is due to higher
orders O(Ca2

max) in this case. Moving one row further down in figure 4.6, i.e.
increasing the previous frequency by a factor 10 we can observe two changes.
Firstly, the value of the droplet deformation D is decreasing (for both LBM
and the MM-confined solution), and secondly, the time evolution is shifted
with respect to the previous row. These effects may be explained by the
droplet inertia which tries to resist the outer shear flow. Since ωf td ∼ 10−2

we are in the regime where the droplet relaxation time scale is relatively
close to the oscillatory shear period 1/ωf . Therefore, we may expect both
a decrease in deformation and a phase shift φ between the outer shear flow
and the time-dependent droplet deformation D(t), as is also predicted by
the analytical perturbative solution (see equation (4.14)). The phase shift
φ is measured in the LBM simulations by the difference in simulation time
between the maximal shear intensity G and the maximal droplet deforma-
tion D. Increasing the frequency even more to ωf td ≈ 10−1 the deformation
decreases substantially and the phase shift φ is close to π/2. This indicates
that as ωf td → 1 the droplet is behaving as if the flow was not present at all.
We call this the “transparency” effect, since the droplet seems to be (almost)
transparent to the surronding flow field, which makes itself noticeable by
the droplet’s out of phase response and drastic decrease in the deformation
parameter D. This decrease in deformation due to a phase shift between
applied shear and droplet response has also been experimentally confirmed
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Figure 4.7.: LBM obtained droplet deformation D against Camax for various values
of the normalised shear frequency ωf td. The transparency effect, i.e. the reduction of
deformation D for ωf td → 1 (see equation (4.12) and figure 4.6) is confirmed. For further
clarification the Shapira-Haber and the MM-confined static deformation curves are shown,
from which we may see that a relatively low oscillation frequency of about ωf td ∼ 10−3

results already in a noticeable decrease in D.
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4.4. Multicomponent oscillating flow

by Cavallo et al. [72], where the authors use a different small amplitude
model as a benchmark for their experimental results. For further analysis
figure 4.7 shows the LBM droplet deformation results as a function of Camax

for the simulated frequency range. In figure 4.7 the transparency effect is
shown in a more quantitative way. We observe for various simulations, that
the deformation drops significantly for increasing frequency ωf , indepen-
dently of the capillary number Ca. For further comparison of the droplet
deformation scale D the Shapira-Haber [39,40] and MM-confined curves [41]
are given as well. Figure 4.8 shows both the deformation D and the phase
shift φ between the droplet response and the oscillatory shear flow as a
function of the normalised frequency ωf td. The general trend is that the
deformation D is stationary up until ωf td ∼ 0.01 at which point D starts
decreasing until the droplet becomes “transparent” to the outer shear flow.
We may also see that the phase shift φ is starting to increase rapidly at
ωf td ∼ 0.01 from φ ∼ 0 up to φ ∼ π/2. This reinforces the idea of the droplet
transparency effect. Similarly to a forced harmonic oscillator the shear flow
is out of phase with the droplet’s response, because the oscillatory shear
period 1/ωf is of comparable size to the droplet relaxation time td. The
numerical solution of the MM-confined equation (4.11) shown in figure 4.8 is
in good agreement with the perturbative analytical solution equation (4.12)
for both D and φ. The LBM results predict a smaller deformation D and
a larger phase shift φ compared to the MM-confined model. This may be
explained by the very thin droplet interface in the LBM simulation which
is roughly the size of 1 grid point. From this estimation we can deduce a
relative error of about 0.02 to both the time-dependent values of L and W ,
resulting in a relative error of about 0.01 for the deformation parameter D.
Moreover, it is useful to qualitatively consider streamline plots of the droplet
dynamics in both the low and high frequency regions (see figure 4.9). In
the low frequency regime for ωf td = 0.001 in figure 4.9 we see the familiar
case of static droplet deformation [87], where we have a tilted ellipsoidally
deformed droplet (in agreement with the MM-confined model) in the case of
maximum deformation coinciding with the instance of the maximum shear
due to φ � 1. In the high frequency regime ωf td = 0.1 in figure 4.9 we
see now that the droplet is only slightly deformed in the case of maximal
deformation. Since the phase shift φ ≈ π/2 now, the velocity magnitude of
the oscillatory shear flow is almost 0 at the walls. We observe that the re-
gions of highest shear flow intensity are in fact close to the droplet interface
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4. Droplet in a time-dependent flow: LBM and MM comparison

(disregarding the two channel wakes produced by the droplet). Thus the
internal droplet dynamics substantially influences the oscillatory shear flow
close to the interface in the high frequency regime. This is a consequence
of the two-way coupling of the Multicomponent LBM scheme.
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Figure 4.8.: Droplet deformation D and phase shift φ between the shear flow and the
droplet’s response for a fixed maximal capillary number Camax against the normalised
frequency ωf td. The LBM measured droplet deformation D is in good agreement with
the MM-confined prediction (see figure 4.2 for the static benchmark). The droplet trans-
parency effect seems to come into effect at around ωf td ∼ 10−2, where a gradual decrease
in D is noticeable in both MM-confined and LBM results. MM-confined and LBM agree
furthermore on the phase shift φ which increases from φ ∼ 0 to φ ∼ π/2 for the highest
measured frequencies. This indicates an out of phase droplet response to the underlying
shear flow. For further clarification the linearised perturbative MM-confined solution,
equation (4.12), is also shown.

4.5. Conclusion

We have demonstrated that a Shan-Chen multicomponent LBM set up with
particularly chosen boundary conditions yields reliable results for confined
time-dependent droplet deformation. After validations in the static case [19,
20, 39, 40], we have checked the LBM results against a variety of time-
dependent theoretical models [16, 41, 73]. Specifically, after introducing a
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Low shear frequency ωftd = 0.001, Camax = 0.12

High shear frequency ωftd = 0.1, Camax = 0.12

Figure 4.9.: Streamline plots of the LBM droplet simulations at maximum deformation
for Camax = 0.12 and Remax ≈ 0.1. Top panel: Low frequency regime ωf td = 0.001. The
droplet is ellipsoidally deformed and tilted in the channel, similarly to static droplet
deformation dynamics [87]. The droplet produces two wakes in the channel and the
velocity magnitude is largest at the channel walls. Bottom panel: High frequency regime
ωf td = 0.1. The droplet is only marginally deformed due to the “transparency effect”
at non-dimensionalised high frequencies ωf td. We observe once again two wakes in the
flow field in the vicinity of the droplet. Due to φ ≈ π/2 (phase shift between underlying
oscillatory shear and droplet deformation) the velocity magnitude is largest at the droplet
interface instead of the channel walls. The droplet is deforming the underlying oscillatory
shear flow through its own internal dynamics (two-way coupling).
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time dependence into the system via a monochromatic shear, the LBM
simulations agree fairly well with theoretical models and discrepancies are
likely due to the interface thickness in the LBM model. The simulations
in this work have been carried out with a boundary scheme using ghost
nodes which is, on the one hand, equivalent to a wall bounce back scheme,
but, on the other hand, may be extended to model more complex external
flows than those treated here. Therefore, our simulations, both in the case
of single pahse and multicomponent flows, are useful validation tests of a
boundary method involving ghost nodes, which can be extended to an exact
flow boundary scheme, similarly to [101, 102]. The work in this chapter is
extended to consider the rather interesting aspect of frequency dependent
droplet breakup in highly confined flows in chapter 5. Furthermore, we will
see in chapters 6 and 7 that the underlying LBM ghost node boundary flow
scheme described here may be extended to accurately simulate an “ab-initio”
droplet in a turbulent flow [13,15,17].
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4.5. Conclusion

Lz (lbu) τ (lbu) u0 (lbu) ωf (lbu) E(lin)

x,min/u0 E(0)
x,max/u0

128 1.0 10−2 10−7 0.7461 · 10−2 0.2442 · 10−2

128 1.0 10−2 10−6 0.7527 · 10−2 0.6827 · 10−2

128 1.0 10−2 10−5 1.2556 · 10−2 1.1707 · 10−2

128 1.0 10−2 10−4 1.8881 · 10−2 9.9081 · 10−2

64 1.0 10−3 10−7 1.542 · 10−2 0.063 · 10−2

64 1.0 10−3 10−6 1.543 · 10−2 0.595 · 10−2

64 1.0 10−3 10−5 1.633 · 10−2 1.171 · 10−2

64 1.0 10−3 10−4 2.909 · 10−2 4.833 · 10−2

128 0.7 10−3 10−7 0.447 · 10−2 0.679 · 10−2

128 0.7 10−3 10−6 0.486 · 10−2 0.701 · 10−2

128 0.7 10−3 10−5 5.087 · 10−2 1.106 · 10−2

128 0.7 10−3 10−4 12.972 · 10−2 1.558 · 10−2

128 1.0 10−3 10−7 0.243 · 10−2 0.803 · 10−2

128 1.0 10−3 10−6 0.660 · 10−2 0.810 · 10−2

128 1.0 10−3 10−5 1.185 · 10−2 1.192 · 10−2

128 1.0 10−3 10−4 9.900 · 10−2 1.893 · 10−2

Table 4.1.: System parameter scan of the single phase oscillatory channel flow (see
section 4.3). A few representative cases are reported of changing the channel width Lz,
the LBM relaxation time τ , the maximum wall velocity u0, the shear oscillation frequency
ωf .
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5. Droplet breakup in a confined and
time-dependent flow

In this chapter 1 we investigate droplet breakup in confined and time-
dependent oscillatory shear flows using the same set up as in chapter 4.
We see that breakup is not only dependent on the oscillatory frequency of
the outer shear flow, but also on start up conditions and the degree of con-
finement: two very different flow start up conditions yield two quantitatively
different results in the case of low shear frequencies and high degrees of con-
finement. Moreover, we investigate the effect of inertia and flow topology
on the breakup conditions and the mismatch between the two flow start up
protocols.

5.1. Introduction

Fluid dynamics phenomena, involving droplet dynamics, deformation and
breakup, are prominent in the field of microfluidics and even in general com-
plex flows at larger scales. Beyond the practical importance in a variety of
concrete applications [1–4], they are also relevant from the theoretical point
of view, due to the complexity of the physics involved [19, 22, 25, 27, 103].
The value of the capillary number Ca at breakup is denoted by Cacr, the
critical capillary number. A lot of attention has been dedicated to droplet
deformation and breakup in stationary flows [22–24], and in particular the
effect of the degree of confinement α, see equation (2.19), on the flow dynam-
ics [26,28,29]. Confinement is frequently encountered in experimental set ups
of droplet dynamics in simple shear flows [26,28–38] and can be enhanced
by changing α. There are some theoretical models which were developed
to capture the experimental phenomenology of confined droplet dynamics,
analytical models [39,40], which extended the theory by Taylor [19,20], and

1Submitted as: Milan, F., Biferale, L., Sbragaglia, M., Toschi, F., Lattice Boltzmann
simulations of droplet breakup in confined and time-dependent flows
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5. Droplet breakup in a confined time-dependent flow

phenomenological models [16,41,42]. The validity of the analytical models
were verified in [43] and the phenomenological models in [44]. Of particular
interest are the results in [28], which show that, for non vanishing α breakup
differs substantially from the unconfined shear case both qualitatively and
quantitatively for various viscosity ratios χ. Additionally, the dependency
of the critical capillary number Cacr on the droplet’s inertia is a central area
of interest [12,25,45–64]. Furthermore, breakup is influenced by the start up
conditions, as demonstrated in experimental and theoretical studies [65–69].
This phenomenon is rather subtle and can have different effects depending
on the protocol in use. The dependency on the rate of increase of the shear
rate G was confirmed by [65] via supporting calculations based on the model
by Taylor [19]. A theoretical model developed by Hinch et al. [66] shows that
stable droplet equilibria below the critical capillary number Cacr are only
possible for a sufficiently low increase in G. Furthermore Renardy [69] has
shown that, although these stable equilibria require a slow increase in the
shear rate G, they are unique and do not depend on the rate of change of
G. We stress that even though the effect of start up conditions on breakup
has been investigated [65–69], the role of confinement with varying start up
conditions on droplet dynamics and breakup is not clear. Moreover, it is
unclear how breakup is affected, if the flows are time-dependent [70–74]. The
aim of this chapter is to take a step further in this direction. With the use of
numerical simulations we show that at capillary numbers close to breakup,
confinement allows for the existence of a metastable flow configuration next
to the solution of the Stokes equation found in [69]. This metastable state
is prone to perturbations and collapses to the Stokes solution, if we have
a time dependent flow with a sufficiently large shear frequency. It should
be stressed that this result is unique to the case of a confined droplet in
an oscillatory shear, as this metastable configuration is not present neither
for an unconfined droplet in an oscillatory shear flow nor in the case of
an oscillatory elongational flow. Our studies can be seen as an extension
to [46, 69], where the influence of inertia on droplet breakup was studied,
whereas we deal with time-dependent cases, where the temporal rate of
change of the shear intensity is comparable to the droplet relaxation time.
This chapter extends the work produced in chapter 4, where stable time-
dependent droplet dynamics was investigated via a multicomponent Lattice
Boltzmann scheme [74] and a phenomenological model [16,41].
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5.2. Simulation set up and definitions

This chapter is organized as follows: in section 5.2 we outline the general
details of droplet breakup with an emphasis on confined systems and simple
shear flows. In section 5.3 we investigate breakup in a time-dependent
(oscillatory) shear flow under strong confinement. A mismatch between two
protocols, involving different start up conditions of the flow, leads us to
investigate breakup conditions under the influence of inertia (section 5.4)
and the effect of confinement (section 5.5), Moreover, we check whether the
protocol mismatch depends on the flow topology (section 5.6).

5.2. Simulation set up and definitions

In this section we define what we mean when we speak of droplet breakup
and characterise the simulation set ups. We deal with both a confined
droplet in a simple shear flow and an unconfined droplet in a uniaxial
extensional (elongational) flow. The velocity gradient matrix for both shear
and elongational flows is given by

∇v =
G

2

β 0 2(1− β)
0 β 0
0 0 −2β

 (5.1)

where ‖∇v‖ = G and β is a parameter characterising the flow type.
The shear flow set up is equivalent to the one used in [74] with β = 0 in
equation (5.1) except that the flow is unconfined and elongational with an
oscillatory velocity gradient amplitude G(t) given by equation (5.1) with
β = 1. Droplet deformation can be characterised by the capillary number
Ca. In the case of a shear flow including confinement the shear rate is given
by

G =
2u0

Lz
(5.2)

with Lz being the channel width responsible for the droplet confinement
and u0 being the maximum wall velocity amplitude. This definition may
also be extended to time-dependent shear flows [74]

G(t) =
2u(t)

Lz
(5.3)
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Figure 5.1.: Droplet in a confined oscillatory shear flow with a non-dimensionalised
oscillation frequency ωf td. Snapshots of the droplet in the velocity field are shown for
Ca < Cacr and Ca > Cacr. The plots on the right panel shows the time evolution of the
normalised droplet length L(t)/R. The degree of confinement of the system is given by
α = 2R/Lz, where R is the droplet radius of the undeformed droplet and Lz the wall
separation.
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5.3. Droplet breakup in an oscillatory shear flow

In accordance with [28] we define the critical capillary number Cacr as
the value of Ca for which an initially spherical droplet breaks up, which is
achieved by a sudden increase in the shear rate amplitude G. We refer to
this breakup protocol as the Shock Method. In addition we can gradually
increase the shear rate G starting from a value for which the droplet is
only marginally deformed [65, 66, 69]. A fixed increase ∆G, or ∆u0 in the
case of equation (5.3), is equivalent to a fixed increment rate ∆Ca for the
capillary number. This way the droplet and the solvent flow are given more
time to relax to their respective equilibrium distributions at specific Ca.
We call this protocol the Relaxation method. A variation of the relaxation
method for time-dependent oscillatory flows, i.e. where the shear amplitude
G(t) = G0 cos(ωt), is to consider the flow and droplet configuration at
a capillary number Ca close to Cacr and then to increase the oscillatory
shear frequency ωf = ω/(2π) until breakup, starting from the stationary
case of ωf = 0. As in [74] we use a dimensionless frequency ωf td in our
discussion, where td is the droplet relaxation time defined in equation (4.1).
In the presence of a flow with non-zero frequency ωf td, we focus on Camax,
which denotes the maximum value of the time-dependent capillary number
Ca(t) over one oscillatory cycle [74]. An instance of droplet breakup in
an oscillatory simple shear flow is depicted in figure 5.1. The droplet is
oscillating between two maximally elongated states for Ca < Cacr and
breaks up during the flow build up for Ca > Cacr in the case of the shock
method. The droplet elongation is characterised by the droplet length L(t),
which is defined as the longest axis of the elongated droplet and Lcr denotes
the droplet length in the critical case Ca ≥ Cacr. The time evolution of
L(t) is also shown for the two cases Ca < Cacr and Ca > Cacr in figure 5.1,
which shows that breakup occurs at around t = 17000 lbu with lbu denoting
Lattice Boltzmann Units. In all simulations in this article the viscous ratio
χ ≡ 1 and the density ratio ρd/ρs ≡ 1. If not explicitly stated otherwise,
the confinement ratio is set to α = 0.75.

5.3. Droplet breakup in an oscillatory shear flow

Similarly to [74] we consider a droplet in a confined oscillatory shear flow,
see figure 5.2, for the flow pattern. The set up is shown in figure 5.1 with
a confinement ratio α = 0.75 and a time-dependent shear rate G(t) =
2u0/Lz cos(2πωf t), where ωf is the frequency of the outer oscillatory flow [70–
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5. Droplet breakup in a confined time-dependent flow

Figure 5.2.: Planar cut of a droplet in a shear flow, where the flow is visualised by
streamlines coloured according to the magnitude of the velocity field.

74]. Our main focus is the dependency of Cacr on the normalised shear
frequency ωf td of the oscillatory outer flow. Droplet dynamics in oscillating
shear flows feature a so called transparency effect [74], which states that the
droplet is hardly deformed, if ωf td ∼ 0.1, i.e. the time scale of the oscillating
shear flow 1/ωf is of a similar order as the droplet relaxation time scale
td. The droplet dynamics are hardly influenced by the shear frequency for
ωf td ∼ 10−4 and the transparency effect is noticeable for ωf td ∼ 10−2 and
higher frequencies, which leads to a sudden increase in the critical capillary
number. To be able to compare the LBM simulations with experimental
results [26, 28, 35, 36], we limit the range of the critical capillary number
close to Cacr ∼ 1.0. In figure 5.3 we can see that the droplet breakup
behaviour is significantly different for our two LBM simulation protocols,
the shock and relaxation method. The shock method implies that droplet
breakup is independent of the oscillatory shear frequency ωf td, significant
changes in Cacr only occur close to the transparency effect region at high
frequencies (ωf td ∼ 10−2). The relaxation method is of a different nature:
first of all Cacr in the low frequency region (ωf td ∼ 10−4) is larger than
the values obtained with the shock method, see also section 5.5. Moreover,
for intermediate frequencies ωf td ∼ 5 × 10−3 we observe that breakup
occurs at a significantly smaller Cacr than in the low frequency range and
is now of a comparable value to Cacr obtained via the shock method. The
mismatch between the two protocols in the low frequency regime in figure 5.3
is in disagreement with previous studies of start up conditions of droplet
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breakup in confined simple shear flows [28,69]. However, the shock method
produces results in accordance with the literature [28], as the dashed line
in figure 5.3 indicates. It should also be noted, that the destabilization of
the “relaxation branch” is rather sudden and takes place at very small ωf td.
This suggests that the protocol mismatch is due to a metastable solution
(relaxation method) existing next to a stable solution (shock method) in
the low frequency range ωf td ≤ 0.02. The protocol mismatch seems rather
puzzling: according to Renardy [69] the solution should be unique. However,
our set up differs in a few points from the one in Renardy [69]. First of all,
the droplet is strongly confined (α = 0.75) in our set up (see figure 5.1),
which could have a strong effect on the values Cacr for varying start up
conditions. Moreover, inertia might stabilise the droplet in the case of the
relaxation method. Therefore, the protocol mismatch might disappear in
the Stokes limit. In addition, one may also wonder, if the flow topology
plays a role, as an inherently different flow field might lead to a similar
protocol mismatch. Given these considerations, we investigate the cause of
the mismatch by considering both inertial effects, as is the case in [69], see
section 5.4, and the importance of confinement in stationary shear flows,
see section 5.5, in the following sections. Regarding the importance of flow
topology, we investigate time-dependent breakup in an elongational flow in
section 5.6.

5.4. Inertial effects

In [69] it is shown that the solution of the Stokes equation in confined
simple shear flows is unique and does not depend on neither the initial
conditions of the droplet nor the solvent flow configuration. Thus, one might
think that the protcol mismatch might be due to inertial effects and would
disappear, if we were close the Stokes limit of Re ≡ 0. Interestingly, the
LBM formalism allows us to directly set Re = 0, as we can eliminate the non-
linear terms in the equilibrium distribution functions in the LBM algorithm,
equation (3.6), which leads us to a modified equation( 5.4), accounting
only for the linear terms in the flow field u(x, t). Inertial effects tend to
stabilise the droplet [67,68] for low Re < 1, whereas Cacr ∼ 1/Re for large
Re > 10 [46]. This suggests, that the stabilisation effect of low Re are
responsible for the protocol mismatch, which consequently should disappear
in the Stokes limit Re = 0. We investigate the dependency of Cacr on Re,
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Figure 5.3.: Critical capillary number Cacr at varying frequencies ωf td. There is a
mismatch between the predictions of the two breakup protocols. Whereas droplet breakup
is largely independent in the case of the shock method, except for the asymptotic behaviour
in the high frequency region, the relaxation method in the low frequency limit predicts
a higher Cacr than the ones of the shock method. This mismatch is investigated in the
article. The error bars are estimated via steps in the critical capillary number ∆Ca, which
indicate the steps taken during the flow start up in the relaxation method. Both curves
are interpolated via bezier curves.
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as shown in figure 5.4. For the case Re = 0 we use only the linear terms of
the equilibrium distribution functions given by

geq,lin
i (x, t) = ρb(x, t)wi (1 + 3 ci · u) (5.4)

The simulations are carried out for a stationary shear flow, with the set up
described in figure 5.1. We can see that the mismatch between the breakup
protocols does not depend on inertia and is even present in the Stokes
limit of Re = 0. We conclude that the mismatch between the two breakup
protocols is not influenced by any stabilisation effects of inertia [67, 68] for
the given range of Reynolds numbers Re ∼ 0.0, . . . , 1.5.
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Figure 5.4.: Cacr vs Reynolds number Re. The mismatch between the shock and relax-
ation breakup protocols does not depend on inertia. This is especially clear in the case
of the Stokes solution, for which Re = 0. The error bars are estimated via steps in the
critical capillary ∆Ca and Reynolds number ∆Re.

5.5. Confinement effects

Now we focus on both confinement and start up conditions in the shear rate
amplitude G for droplet breakup in a stationary shear flow. The set up is
once again the one in figure 5.1, a confined droplet in a stationary (ωf td = 0)
shear flow, but now we vary the confinement ratio α and, in the case of the
relaxation method, the rate of change of the shear amplitude G, resulting
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in increments of the capillary number ∆Ca. Our results are summarised
in figure 5.5. We can see, as was shown in [69], that the critical capillary
number Cacr is independent of the start up conditions for low confinement
ratios (α ≤ 0.5), as both the shock method and the relaxation method
yield the same results with respect to the simulation errors. However, if the
droplet is strongly confined (α ≥ 0.6), the two methods yield very different
results, with the Cacr predicted by the relaxation method being substantially
larger than the one predicted by the shock method. Figure 5.6 shows the
length of the elongated droplet as a function of the LBM simulation time for
the different shear start up methods: we can see that for the shock method
droplet breakup occurs soon after the maximal elongation, whereas for the
relaxation method the droplet experiences a sequence of maximal extensions
and subsequent retractions after breaking up, for a given Cacr at its critical
length Lcr(t). We conclude that both a slow start up of the outer flow
(relaxation method) and a strong confinement of the droplet (α ≥ 0.6) are
necessary for the mismatch reported in figure 5.3 in the low frequency limit.
The eventual collapse of the relaxation method solution on to the one found
by the shock method suggests, that the relaxation method branch in the
low frequency limit in figure 5.3 is a metastable state, explaining the high
susceptibility to small perturbations and the collapse to the configuration
obtained by the shock method for intermediate oscillatory frequencies ωf td.
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Figure 5.5.: Critical capillary number Cacr for different confinement ratios α = 2R/Lz.
We compare the values obtained by the LBM simulations with the shock method and the
ones obtained by the relaxation method. Since the relaxation method is dependent on
the start up conditions of the outer flow and the droplet, we provide a range of different
increments ∆Ca, where smaller ∆Ca denote a slower and flow build up and vice versa.
The error bars are estimated via steps in the critical capillary number ∆Ca.
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Figure 5.6.: Normalised droplet major axis L(t)/R against the LBM simulation time
t given in units of the droplet relaxation time td. The droplet breaks up shortly after
its maximum elongation for the shock method. breakup in the relaxation method is
dependent on the shear rate and thus capillary number increase: a) for a rate with
increment ∆Ca = 0.30 the droplet relaxes after reaching its maximum elongation for the
first time to breakup at a longer length at a higher Cacr later on. b) for a smaller capillary
number increase ∆Ca = 0.24 the droplet length at Cacr increases even further and the
L(t) contains more full extensions and subsequent retractions.
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5.6. Flow topology

After having dealt with confinement effects, we investigate the protocol
mismatch in terms of the flow topology. Instead of an oscillatory shear flow,
we consider breakup in an elongational (or uniaxial extesnional) flow, see
figure 5.7. This flow is by its very nature unconfined, so we would expect
not to see a mismatch, as is the case for α = 0 in the case of the confined
shear flow, see section 5.5. The results are shown in figure 5.8. Interestingly,
a mismatch between the two droplet protocols is absent and the predictions
agree well with each other in terms of their respective errors. This shows
that strong confinement (α ≥ 0.75) is necessary for the existence of the
protocol mismatch shown in figure 5.3. Moreover, figure 5.8, shows that
droplet breakup in an oscillatory elongational flow is frequency dependent,
with an exponential dependence between the oscillation frequency ωf td and
the critical capillary number Cacr. The low frequency limit matches the
stationary flow predictions of [51].

Figure 5.7.: The flow layout of a droplet in an elongational (uniaxial extensional) flow.
The image is a planar cut, with the flow being rotationally symmetric around the elongated
droplet axis in the image. The streamlines are coloured according to the magnitude of
the velocity field of the solvent.
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Figure 5.8.: Critical capillary number Cacr against different frequencies ωf td for a droplet
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the shear rate frequency ωf td, a protocol mismatch does not occur, contrary to the case
of the confined shear flow topology. The error bars are estimated via steps in the critical
capillary number ∆Ca.
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5.7. Conclusion

We have shown that the interplay of varying start up conditions and strong
confinement ratios can lead to qualitatively and quantitatively different
droplet breakup conditions in stationary shear flows, unlike the stable equi-
libria found for varying start up conditions [69] or the ones found for varying
degrees of confinement [28]. Having investigated the effects of inertia, con-
finement and flow topology, we conclude that the prtocol mismatch between
the shock and the relaxation method are due to a high degree of confine-
ment for a droplet in a shear flow (α = 0.75). However, the breakup solution
found via the relaxation method is only metastable, since it becomes un-
stable in the case of a time-dependent, oscillatory shear flow. The protocol
mismatch is thus solely due to an extra metastable solution in a strongly
confined shear flow and it disappears in the presence of small perturbations,
e.g. amplitude variations in an oscillatory shear flow, in accordance with
the uniqueness of the Stokes solution [28, 69]. We have also shown the de-
pendency of the critical capillary number Cacr on the normalised oscillation
frequency ωf td in both oscillatory shear and elongational flows. In the case
of the elongational flow, Cacr increases with increasing ωf td, whereas no
simple functional dependence can be found for the oscillatory shear flow,
since Cacr also depends on the flow start up and degree of confinement. It
would be interesting to see whether the metastable solution can be found
in an experimental set up or whether it is too prone to perturbations to
manifests itself.
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6. LBM scheme for a
sub-Kolmogorov droplet in HIT

In this chapter 1 we elaborate on the ghost node boundary flow introduced
in chapter 3 and show that it can be used to model droplet dynamics on
the sub-Kolmogorov scale. Instead of using an analytical flow field, as was
the case in chapters 4 and 5, we use a fully developed turbulent flow field,
which we retrieve from pseudo-spectral simulation data of trajectories of
passive tracers in homogeneous isotropic turbulence. We will outline the
conditions for the local Reynolds number and the velocity profile on the
sub-Kolmogorov scale and will test the algorithm in the case of a single
phase turbulent flow.

6.1. Introduction

Exact flow boundary conditions for LBM are a very useful tool for multiscale
physics simulations, as it is enabling scale separation in its very own nature.
For example, we may model the dynamics of a droplet in a turbulent flow
field on the sub-Kolmogorov scale, without having to simulate the scale of the
largest turbulent eddies of size l0 (see chapter 2). Exact flow boundaries for
LBM were first developed by [100] for 2D lattices and then extended to 3D
flows by [101,122,123] for perpendicular inlet and outlet flows. In [102] it is
shown that exact boundary flow conditions can be implemented in 3D LBM
simulations for the D3Q19 lattice. The method presented in [102] is useful for
no-slip LBM boundary flow conditions [124–126], as it is able to eliminate
numerical artefacts. Moreover, the D3Q19 exact boundary flow method
in [102] seems to be most adapt for LBM hybrid simulations [127–129], for
example coupling the results of a DNS solver for the incompressible NSE
with a multicomponent LBM simulation. Even though the scheme presented

1In preparation as: Milan, F., Sbragaglia, M., Biferale, L., Toschi, F., Sub-Kolmogorov
droplet dynamics in isotropic turbulence using a multiscale Lattice Boltzmann scheme
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in [102] seems rather suitable in modelling a sub-Kolmogorov droplet in
homogeneous isotropic turbulence, we use the ghost node boundary flow
method outlined in section 3.5. The main reason for this is that the method
in [102] cannot determine both the density ρb(x, t) and the velocity field
v(x, t) at the lattice domain boundary. Since we require a constant density
ratio of ρd/ρs for our hybrid simulations, we use the ghost node boundary
scheme, which does not set constraints to either the density nor the velocity
field at the boundary.

6.2. Structure of the algorithm

We have introduced the ghost node boundary flow method in section 3.5
as an exact flow boundary method: the boundary scheme enables us to
enforce a density field ρ(x, t) and u(x, t) at the boundaries at any LBM
simulation time step t. A concrete set up for the sub-Kolmogorov droplet
in homogeneous isotropic turbulence is given in figure 6.2. A droplet with
radius R in the undeformed stage is at the centre of a simulation box of
length Ls. The blue dots at the faces of the simulation box denote the
ghost nodes, which according to equation (3.24) contain the macroscopic
boundary values, the density ρb(x, t) and the velocity u(x, t). As in previous
chapters we deal with a density ratio of 1 and thus choose ρb(x, t) accordingly,
whereby ρb = constant. However, the velocity field u(x, t) is now updated
via pseudo-spectral (PS) data of passive trajectories in turbulent flows 2, see
figure 6.1. All the turbulent trajectories have a Taylor Reynolds number of
Reλ = 420. We consider droplets below the Kolmogorov scale, i.e. R� ηK ,
as we can limit ourselves to a linear velocity profile in this case [14], where
we use the notation Gij(t) ≡ ∂jvi(x, t) for the velocity gradient tensor. The
typical velocity increments [6] of separation l of size |l| = l are

δvi(x, l) = vi(x + l)− vi(x) (6.1)

which can be approximated by

δvi(x, l) = vi(x)− vi(x)︸ ︷︷ ︸
=0

+Gijlj +O(l2) (6.2)

2https://data.4tu.nl/repository/uuid:a64319d5-1735-4bf1-944b-8e9187e4b9d6
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Figure 6.1.: The DNS turbulent signal for the component Gxx of the velocity gradient
tensor Gij . The data is taken from passive tracer trajectories in a homogeneous isotropic
turbulent flow obtained via PS simulations.

for l ∼ R. Since the droplet’s centre of mass remains fixed, i.e. we are
in the frame of reference of the droplet, we obtain the following velocity
relation in the case of a single phase flow:

v(0)

i (x, t) = Gij(t)xj (6.3)

which is a linear velocity profile in the distance x from the droplet’s centre
of mass. With v(0)

i (x, t) we denote the turbulent velocity profile imposed by
the boundary, whereas vi(x, t) is the LBM obtained velocity profile given
by equation (3.8). Now we test whether our LBM scheme can relax to the
imposed velocity field given in equation (6.3).

6.3. Validation results

Now that we have established the approximations we make to the velocity
profile on the sub-Kolmogorv scale, see equation (6.3), we would like to create
a pseudo-spectral LBM hybrid method, which takes the turbulent velocity
gradients Gij(t) as an input. In order for the LBM model to yield accurate
predictions, we need to simulate a fully developed turbulent flow at the
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s

Figure 6.2.: LBM simulation set up: the droplet of scale R in the simulation domain
with dimensions Ls×Ls×Ls. The turbulent flow is initialised at the boundary nodes and
visualised via streamlines coloured according to the velocity magnitude ‖v‖. The blue
dots indicate the ghost nodes, which are crucial in coupling the pseudo-spectral turbulent
flow data to the LBM simulation.
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domain boundaries, which then evolves into the centre of the domain. This
is achieved by using both the ghost node boundary flow scheme described
in section 3.5, which stores suitable equilibrium distribution functions on
ghost nodes, and the pseudo-spectral values for Gij(t). The simulation set
up is shown in figure 6.2 with the length of the simulation box Ls and the
diameter of the undeformed droplet 2R highlighted.
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Figure 6.3.: Comparison between the velocity gradient of the pseudo-spectral code and
the LBM code after rescaling. Since, both curves, the DNS turbulent input data and
the LBM reproduced Gxx, overlap, LBM is able to qualitatively reproduce the turbulent
velocity gradient.

with the time evolution of the flow completely determined via the tur-
bulent velocity gradient tensor Gij(t). Now we test the convergence of the
LBM algorithm for the single phase, where we need to recover the linear
profile of the turbulent flow field, see equation (6.3), to a given accuracy.
Thus, recovering the velocity field in equation (6.3) effectively means re-
covering the turbulent velocity gradient Gij(t) of the pseudo-spectral DNS
simulations, as the velocity profile is linear. We choose an LBM sampling
time ∆t measured in lbu, which allows the LBM algorithm to relax to the
velocity value required by equation (6.3). In figure 6.3, we see that our LBM
scheme reproduces indeed the turbulent signal Gij(t) we provided it with,
since the original rescaled DNS signal for the Gxx(t) component converges,
with the value for Gxx(t) obtained with LBM. The rescaling for Gij(t) is
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6. LBM scheme for a sub-Kolmogorov droplet in HIT

Gij(t) 7→
uLBM

Ls‖Gij(t)‖∞
Gij(t) (6.4)

where ‖. . .‖∞ denotes the maximum norm and uLBM is a typical LBM
velocity scale for which the Mach number Ma ≤ 0.1. In order to choose the
parameter ∆t we need to check the global convergence of the LBM velocity
field v(x, t) with the one imposed at the boundary, see equation (6.3). The
corresponding L2-error is provided in figure 6.4 and is defined via:
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Figure 6.4.: Convergence of the time dependent LBM boundary scheme for a single
phase homogeneous and isotropic turbulent flow (domain size: 48× 48× 48). The time
averaged global error can be estimated to be about 〈E(0)(t)〉t ∼ 0.05 for a chosen range
of ∆t in terms of LBM time steps t (in lbu).

E(0)(t) =
1

u(0)
rms(t)

[
1

L3
s

∫ Ls

0
dx

∫ Ls

0
dy

∫ Ls

0
dz (v(x, y, z, t)− v(0)(x, y, z, t))2

] 1
2

(6.5)

where v(x, y, z, t) and v(0)(x, y, z, t)) are the velocity fields of the LBM
simulation and the imposed turbulent linear velocity profile respectively.
u(0)

rms(t) is the rms value of v(0)(x, y, z, t). Since we would like to choose
a minimal ∆t, as to optimise run time, we choose ∆t = 200 (lbu), since
this value yields a time averaged global error of 〈E(0)(t)〉t < 0.1. This is a
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reasonable error threshold, since LBM simulations for droplet dynamics in
oscillatory shear flows in chapter 4 yield a similar maximal error [74].

6.4. Conclusion

We have shown that similar to previous LBM flow boundary conditions [101,
102] the LBM ghost node boundary flow method, see section 3.5, in conjunc-
tion with pseudo-spectral turbulent flow data is able to reproduce temporal
turbulent velocity profiles. The algorithm is only suited for droplets on the
sub-Kolmogorov scale, where the linear profile of equation (6.3) is valid. The
turbulent gradient data is rescaled in order to adapt to varying domain sizes
and to respect the Mach number limit of LBM simulations of incompressible
flows, i.e. Ma ≤ 0.1. Consequently, droplet dynamics and breakup can be
modelled fully resolved on the sub-Kolmogorov scale, which we will explore
in chapter 7.
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7. Dynamics and breakup of a
sub-Kolmogorov droplet in HIT

This chapter 1 deals with the dynamics and breakup of the sub-Kolmogorov
droplet in homogeneous and isotropic turbulence. We employ the ghost
node boundary flow method of chapter 3 and use pseudo-spectral data of
turbulent passive tracer trajectories to simulate a fully developed turbulent
flow field, as outlined in chapter 6. Now we deal with a multicomponent flow
once again, where we place ourselves in the frame of reference of the droplet,
i.e. the droplet remains fixed at the centre of the simulation domain and the
solvent flow is simulated around it. We investigate breakup predictions for
several pseudo-spectral turbulent flow fields via the MM-model and compare
the results to the DNS-LBM hybrid method.

7.1. Introduction

The dynamics and breakup behaviour of immiscible droplets in laminar flows
have been studied extensively in the literature [25,26,29,37,46,103,105]. Less
is known about the dynamics of droplets in homogeneous isotropic turbulent
flows, which pose the challenge of solving a multi-physics problem, since
the flow properties of the turbulent scales have to be accurately transferred
to the scale of the droplet [12,13]. Furthermore, the dynamics and breakup
statistics of sub-Kolmogorov droplets have also been studied extensively [15,
17,18], which is of particular interest, since the viscous stresses dominate over
the inertial stresses, if the droplet size is smaller than the Kolmogorov scale
of the outer flow [14]. Both [17] and [18] make use of the MM-model [16] to
describe droplet dynamics in homogeneous and isotropic turbulence, which
only accounts for ellipsoidal deformations and thus can model breakup only
via a cut off criteria. Our studies differ in such a way that we not only use the

1In preparation as: Milan, F., Sbragaglia, M., Biferale, L., Toschi, F., Sub-Kolmogorov
droplet dynamics in isotropic turbulence using a multiscale Lattice Boltzmann scheme
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MM-model to measure the deformation of the droplet, but compare it with
fully resolved LBM simulations using the SCMC diffuse interface method [77,
78]. LBM in conjunction with SCMC has been extensively used in the
field of microfluidics and droplet breakup [12, 55, 83–90] making it a well
suited tool to predict breakup behaviour with high accuracy. Our numerical
method can be seen as a new hybrid approach to the sub-Kolmogorov
droplet dynamics: The simulation domain is of the order of the size of the
droplet and the surrounding turbulent flow is used as an input via an open
boundary condition method [74], similar to [101, 102]. This enables us to
study the deformation and breakup behaviour of a sub-Kolmogorov droplet
in fully developed isotropic turbulence, which we can compare to the results
obtained via the widely used MM-model.

7.2. Flow behaviour of the sub-Kolmogorov droplet

Chapter 6 described the outline of a hybrid DNS-LBM algorithm to simulate
a turbulent solvent flow for droplets on the sub-Kolmogorov scale. Moreover,
we have explained in section 2.4, that the local Reynolds number Re < 1 on
the sub-Kolmogorov scale, even though the Taylor Reynolds number Reλ
may be several magnitudes larger, see equation (2.34). Consequently, we
are very close to the Stokes limit of Re→ 0 and may neglect inertial effects.
Thus, we can make use of a relation of Stokesian suspension dynamics [130]:
the velocity field v(0)(x, t) of the undisturbed flow is combined with the
velocity field of the suspended particle vd(x, t), in our case a deformable
droplet, to yield the actual velocity of the flow 2:

va(x, t) = v(0)(x, t) + vd(x, t) (7.1)

In case of a weakly deformed, almost spherical droplet, the only possible
motion of the suspended particle would be rotation, as translation is ruled
out in our simulations, see chapter 6. A spherical droplet rotating with
angular velocity ωd(t) would then modify the flow field by [130]

vd(x, t) = ωd(t)× x

(
R

|x|

)3

(7.2)

2The equations are modified to include an explicit time dependency for the flow.
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where |x| =
√
x · x, with x being the distance vector from the droplet’s

centre of mass. The actual velocity field is then given by

va(x, t) = v(0)(x, t) + ωd(t)× x

(
R

|x|

)3

(7.3)

Although equation (7.3) seems like it is of great use to the study of sub-
Kolmogorov droplets in homogeneous and isotropic turbulence [131], it
should be stressed, that it is only valid for weakly deformed droplets, whose
motion is purely restricted to rotation. Therefore, we do not use equa-
tion (7.3) in our droplet simulations in the next chapter, where we deal with
large amplitude deformations and breakup.

7.3. Breakup predictions: LBM vs MM

Since we have established the validity of the hybrid PS-LBM algorithm in
chapter 6, we can investigate droplet dynamics and breakup for a single
droplet on the sub-Kolmogorov scale. Analogously to equation (2.8) we can
define a measure for the deformation DLBM for our LBM simulations:

DLBM(t) =

√
1− Ω0(t)

Ω(t)
(7.4)

where Ω(t) is the time-dependent surface area of the deformed droplet
and Ω0(t) is the surface area of an undeformed spherical droplet of the same
volume as the deformed droplet. DLBM(t) represents a bounded measure
for droplet deformation, because DLBM(t) = 0, in case of minimal deforma-
tion, for which Ω(t) = Ω0(t), and DLBM(t) → 1 for Ω(t) → ∞ in case of
a hypothetically arbitrary large surface area Ω(t). It should be noted that
DLBM(t) scales with the droplet length L(t), see chapter Chapter 5, for elon-
gated droplets and thus DLBM(t) ∼ D, where D is the droplet deformation
according to major and minor ellipsoidal axes, see equation (2.8). We start
our simulations by small amplitude deformations, so that the droplet is only
ellipsoidally deformed, for which we expect the LBM and MM-model results
to match, see figure 7.2. As we can see from figure 7.1, this is indeed the case,
because both predictions for the deformation D, LBM and the MM-model,
coincide for a maximum capillary number Camax � Cacr. Figure 7.1 shows
the deformation curves for five separate turbulent flows predicted by the
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Figure 7.1.: MM-model predictions for the ellipsoidal droplet deformation D as a function
of Camax for various turbulent flows. The critical capillary number Cacr is estimated via
a cut off for D in the MM-model. The Taylor deformation law, see equation (2.9), is
shown for comparison in the low Camax limit. We can see that the LBM results coincide
with the one of the MM-model, up until a maximum capillary number Camax ≈ 0.291,
where the droplet is no longer ellipsoidally deformed, which causes the deviations from
the MM-model predictions, see figures 7.3 and 7.4. The critical capillary number obtained
via LBM is Cacr = 0.286± 0.006, which is lower than the one predicted in the MM-model,
which is lies in the range CaMM

cr = 0.58±0.05. Therefore, it appears that the MM-model is
not able to predict the correct critical capillary number Cacr for sub-Kolmogorov droplet
breakup.
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MM-model and one produced via the hybrid DNS-LBM simulations. We
have chosen five different turbulent flows for the MM-model predictions
to account for the irregularity of turbulence. The MM-model deformation
curves and the LBM curve collapse for the intermediate range of Camax until
breakup occurs for the LBM curve at around Camax ≈ 0.291, see figures 7.3
and 7.4. Figure 7.3 shows the elongated droplet for a maximal capillary
number Camax ≈ Cacr, just before and after breakup. Interestingly, the
droplet is now elongated in a similar way to the one in figure 5.1. Figure 7.4
shows the same droplet breakup as figure 7.4 with the velocity field shown
via streamlines. We can see that the turbulent flow possesses a significant
rotational part in the instance of the breakup. Let us consider the deforma-
tion diagram of figure 7.1 again: LBM and the MM-model predict two very
different ranges for the critical capillary number Cacr. Firstly, this is due to
the fact, that breakup in the MM-model is determined via a cut off in the
deformation D, as the model does not account for a breakup mechanism per
se. Secondly, the MM-model can only model ellipsoidally deformed droplets,
even in the case of large amplitude flows. Therefore, the MM-model is un-
able to model the elongated droplet of the DNS-LBM hybrid simulations,
shown in figure 7.3, and thus cannot give a very accurate prediction for the
critical capillary number Cacr. The MM-model prediction for the critical
capillary number is CaMM

cr = 0.58±0.05, where the error has been estimated
via the spread of the MM deformation curves in figure 7.1. LBM predicts
a lower range of Cacr = 0.286 ± 0.006, which is more accurate due to the
fully resolved LBM SCMC model, even though the error might be larger,
if more turbulent flow trajectories were considered, as has been the case
for the MM-model in figure 7.1. The LBM error in Cacr is estimated via
a step in the maximal critical capillary number ∆Camax ≈ 0.011. ∆Camax

represents the change in capillary number between individual data points
in figure 7.1.

7.4. Conclusion

The DNS-LBM hybrid scheme for sub-Kolmogorov droplets in fully devel-
oped homogeneous and isotropic turbulence has been used to model droplet
deformation and breakup. The LBM results were also compared to MM-
model predictions of droplet deformation and breakup. We have found that
LBM predicts a significantly lower critical capillary number Cacr than the
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MM-model, see figure 7.1. The reason for this is probably two-fold: firstly
breakup is chosen via a cut off procedure for the deformation parameterD in
the MM-model and secondly the droplet is far from an ellipsoidal shape in the
region of maximum capillary numbers Camax ≤ Cacr, see figures 7.3 and 7.4.
This suggests, that even though the MM-model and DNS-LBM predictions
agree very well in the capillary number region Camax � Cacr, accurate
predictions of sub-Kolmogorov droplet breakup can only be carried out via
fully resolved simulations, such as the DNS-LBM hybrid algorithm, instead
of phenomenological models such as the MM-model [17, 18]. It would be
interesting to investigate droplet deformation statistics of Sub-Kolmogorov
droplets with the DNS-LBM hybrid algorithm and once again use the MM-
model for comparison [17, 18]. In addition, it would be interesting to see
the range of critical capillary numbers Cacr predicted by the DNS-LBM
hybrid model by extending the LBM results of droplet breakup in figure 7.1
for various turbulent flow fields. Finally, a further extension would be the
addition of the velocity field modification outlined in equation (7.3) for
weakly deformed rotating sub-Kolmogorov droplets.
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Figure 7.2.: Sub-Kolmogorov droplet for a capillary number Camax � Cacr with and
without the velocity field shown via streamlines. The droplet is ellipsoidally deformed,
which is the regime where LBM and MM predictions coincide.
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Figure 7.3.: Sub-Kolmogorov droplet for a capillary number Camax ≈ Cacr before and
after breakup. The elongated droplet shape indicates that substantial deviations from the
MM-model predictions might be possible.
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Figure 7.4.: Sub-Kolmogorov droplet with the velocity field indicated via streamlines
for a capillary number Camax ≈ Cacr before and after breakup. We see that the elongated
shape of the droplet is due to both a strong strain and rotational part in the turbulent
flow field at this time instance.
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8. Conclusion and outlook

The main two goals of this thesis were droplet dynamics and breakup in
confined time-dependent laminar flows and the development of a DNS-LBM
hybrid algorithm to study sub-Kolmogorov droplet deformation and breakup
in homogeneous isotropic turbulent flows. We will summarise and explain
the results of those two goals in the following sections.

8.1. Droplets in laminar time-dependent flows

As was mentioned in the introduction, first attempts to model droplet de-
formation, both in unconfined [19–21] and confined systems [39, 40], are
based on the Stokes flow equations, see equation (2.4). Thus, we tested the
ghost boundary flow algorithm of section 3.5 for flows close to the Stokes
limit, with a simple time-dependence added to the flow in the form of an
oscillatory shear rate, see chapter 4. We have tested the validity of the ghost
boundary flow algorithm for a simple single phase time-dependent flow
problem, a flow created by an oscillating moving wall in an infinitely long
channel [91]. After reproducing the exact solution given in [91] with LBM,
we analysed the deformation of a single droplet in the channel flow, with
two oscillating walls, now producing a time-dependent shear rate. The LBM
results were tested with predictions of the MM-model [16,41,42] and that
of a linearised MM-model [73]. Moreover, we investigated the “transparency
effect”, which occurs for a specific choice of the oscillation shear frequency
in relation to the droplet’s relaxation time. In chapter 5 we investigated
large scale droplet deformation and breakup of a confined droplet in an
oscillatory shear flow. A striking question which arose, was the reason for a
mismatch between two different flow start up protocols, the “shock method”
and the “relaxation method”. This led us to investigate the dependency
of this mismatch on inertia [46, 69], degree of confinement [28] and flow
topology [67,68]. We concluded, that the reason for the mismatch was due
to a high degree of confinement, α ≥ 0.75 and would disappear under the
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influence of small scale flow perturbations, such as the time-dependency of
an oscillatory shear flow. After having investigated rather interesting cases
of time-dependency effects in laminar multicomponent flows, we moved to
the turbulent regime to analyse the dynamics of sub-Kolmogorov droplets.

8.2. Sub-Kolmogorov droplets in turbulent flows

Before starting our investigation of sub-Kolmogorov droplets in homoge-
neous isotropic turbulent flows, we outlined the structure of the ghost node
boundary flow algorithm of section 3.5 for the use in HIT on the sub-
Kolmogorov scale in chapter 6 and compared it briefly to other exact bound-
ary flow algorithms [100–102] and hybrid methods [127–129]. We explained
the way the pseudo-spectral data of passive tracer trajectories in HIT was
used to mimic an exact flow at the LBM simulation domain boundary and
showed that we can reproduce the turbulent flow in single phase LBM sim-
ulations with the newly developed DNS-LBM hybrid scheme. Eventually,
chapter 7 saw the DNS-LBM hybrid method of chapter 6 be put to use.
Firstly, we mentioned that sub-Kolmogorov droplet dynamics are challeng-
ing to analyse in a variety of settings [14, 15] and that the MM-model is
the method of choice to model droplets in HIT [17,18]. However, we have
demonstrated that the fully resolved DNS-LBM hybrid method and the MM-
model yield different results for large amplitude sub-Kolmogorov droplet
deformation and break up. Therefore, we may conclude that, one should
prefer the DNS-LBM hybrid simulations over the MM-model, if accurate
predictions about breakup on the sub-Kolmogorov scale are essential.

8.3. Outlook

This work on droplet dynamics in time-dependent and turbulent flows has
led to many interesting questions to be answered along the way. Firstly, the
protocol mismatch in chapter 5 has never been observed in the literature
before. It would be interesting to see, if an experimental setup with a suffi-
ciently isolated and stable shear flow and smooth flow startup conditions
was able to reproduce the protocol mismatch. Furthermore, a detailed com-
parison of sub-Kolmogorov droplet dynamics statistics using the DNS-LBM
hybrid scheme vs the MM-model would be of interest as well, in addition
with further DNS-LBM breakup statistics for the results shown in figure 7.1.
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A further extension of the work could be to modify the velocity field in
the DNS-LBM hybrid setup according to equation 7.3 for weakly deformed
sub-Kolmogorov droplets.
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A. Numerical solution of the
MM-model

The droplet deformation equation of the MM-model [16], given in equa-
tion (2.13), is a non-linear equation in the droplet deformation tensor Mij

and was thus solved numerically. We will briefly outline the numerical solver
used for the MM-model in this chapter and discuss its validation tests for
different solvent flows, for which analytical solutions of the MM-model of [16]
are used. Before we start to discretising the MM-model equation (2.13), we
perform a non-dimensionalisation

dMij

dt′
=
[
f2(S′ikMkj +MikS

′
kj) + Ω′ikMkj −MikΩ

′
kj

]
− f1

Ca

(
Mij − 3

IIIM
IIM

δij

)
(A.1)

where we have rescaled the shear tensor with the shear rate G, so that
S′ij = Sij/G, Ω′ij = Ωij/G and t′ = t/G. The constants f1 and f2 of the
rescaled MM equation (A.1) are given by

f1(χ) =
40(χ+ 1)

(2χ+ 3)(19χ+ 16)
(A.2)

f2(χ) =
5

2χ+ 3
(A.3)

where f1 and f2 are soley dependent on the viscous ratio χ 1. The rescaled
Maffetone-Minale equation (A.1) is tested for three specific shear flows
in [16]. We would like to validate those cases numerically with a Runge-
Kutta 4 (RK4) integration scheme. In order to solve equation (A.1) with the

1The corresponding values for MM-unbounded in equation (2.16) differ from the values
given in equation (A.2) via corrective terms in the capillary number Ca. Even though
the parameters of equation (2.16) increase the accuracy of the model, the analytical
solutions of the MM-model in this chapter use the non-corrective parameters given in
equation (A.2)
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parameters given in equation (A.2), we consider an RK4 scheme for a first
order dynamical differential equation ẋ = f(x, t), where the n-th timestep
is given by [132]

k1 = f(xn, tn) (A.4)

k2 = f
(
tn +

∆t

2
, xn +

k1

2

)
(A.5)

k3 = f
(
tn +

∆t

2
, xn +

k2

2

)
(A.6)

k4 = f
(
tn + ∆t, xn + k3

)
(A.7)

xn+1 = xn +
∆t

6

(
k1 + 2k2 + 2k3 + k4

)
+O(∆t5) (A.8)

with ∆t being the discrete time step for the RK4 numerical integrator.
With the help of this solver we can obtain a numerical value of the droplet
deformation parameter D via the time evolution of the morphology tensor
given in equation (A.1). We will apply three different types of solvent flows
to the MM-model equation (A.1) in the following sections and compare the
solution of the RK4 numerical solver to the analytical solutions provided
by [16].

A.1. Simple shear flow

At first let us consider a simple shear flow with strain rate

S′ij =
1

2

0 1 0
1 0 0
0 0 0

 (A.9)

and rotation

Ω′ij =
1

2

 0 1 0
−1 0 0
0 0 0

 (A.10)

According to [16] the steady-state values for the semi-axes of the ellipsoid
are given by
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A.2. Uniaxial extensional flow

L2 =
f2

1 + Ca2 + f2Ca
√
f2

1 + Ca2

(f2
1 + Ca2)

1
3 (f2

1 + Ca2 − f2
2Ca

2)
2
3

(A.11)

B2 =
f2

1 + Ca2 − f2Ca
√
f2

1 + Ca2

(f2
1 + Ca2)

1
3 (f2

1 + Ca2 − f2
2Ca

2)
2
3

(A.12)

W 2 =
f2

1 + Ca2 − f2
2Ca

2

(f2
1 + Ca2)

1
3 (f2

1 + Ca2 − f2
2Ca

2)
2
3

(A.13)

yielding a deformation parameter of

Dshear =

√
f2

1 + Ca2 −
√
f2

1 + Ca2 − f2
2Ca

2

f2Ca
(A.14)

A.2. Uniaxial extensional flow

Secondly we check the model against a uniaxial extensional flow [16] with
strain

S′ij =
1

2

2 0 0
0 −1 0
0 0 −1

 (A.15)

and an identically vanishing rotation

Ω′ij = 0 (A.16)

with semi-axes

L2 =

(
f1 + f2Ca

f1 − 2f2Ca

) 2
3

(A.17)

B2 = W 2 =

(
f1 − 2f2Ca

f1 + f2Ca

) 1
3

(A.18)

giving a deformation parameter

Duniaxial =
2f1 − f2Ca− 2

√
(f1 + f2Ca) (f1 − 2f2Ca)

3f2Ca
(A.19)
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A.3. Planar hyperbolic flow

At last we test the MM-model for a planar hyperbolic flow

S′ij =

1 0 0
0 −1 0
0 0 0

 (A.20)

and an identically vanishing rotation

Ω′ij = 0 (A.21)

with semi-axes

L2 =
(f2

1 + 2f1f2Ca)
1
3

(f1 − 2f2Ca)
2
3

(A.22)

B2 =
(f2

1 − 2f1f2Ca)
1
3

(f1 + 2f2Ca)
2
3

(A.23)

W 2 =
(f2

1 − 4f2
2Ca

2)
1
3

f
2
3

1

(A.24)

and a deformation parameter

Dplanar =
f1 −

√
f2

1 − 4f2
2Ca

2

2f2Ca
(A.25)

The corresponding numerical validation tests are given in figure A.1, from
which we can see that the numerical solver is able to accurately reproduce
the analytical solutions to the three different types of flow fields for various
viscosity ratios χ.
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Figure A.1.: Numerical validation of the numerical RK4 solver for the MM deformation
equation (A.1), for simple shear, uniaxial extensional and planar hyperbolic flows.
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B. A linearised MM-model solution
for an oscillatory shear flow

In chapter 4 we investigated the deformation of a single confined droplet
in an oscillatory shear flow. We performed LBM simulations and compared
their results to both a numerical and a perturbative solution of the MM-
model. This chapter gives a brief outline of the ideas behind the linearised
perturbative MM-model used during the discussion in chapter 4. The mor-
phology tensor Mij in the MM-model equation (4.11) may be expressed in
a perturbation series in the time-dependent capillary number Ca(t) [73]:

Mij(t) = δij + Ca(t)M
(1)
ij (t) +O(Ca2(t)) (B.1)

where M
(1)
ij (t) denotes a first order correction to the morphology tensor

of an undeformed droplet δij and the time t is given in units of the droplet
relaxation time td. The time evolution of the capillary number is determined
via the oscillatory shear rate, which we can express in complex form as

Ca(t) = iCamaxe
iωtdt (B.2)

Using the relations in equations (B.1) and (B.2) and the initial condition

M
(1)
ij (0) = 0, we obtain an evolution equation for the first order off-diagonal

elements of M
(1)
ij (t):

dM
(1)
xz (t)

dt
= f2 − (f1 + iωtd)M

(1)
xz (t) +O(Ca2(t)) (B.3)

where M
(1)
xz (t) ∼ Ca(t) is the off-diagonal element of Mij in accordance

with the applied shear in the x-z-plane, see figure 4.3. The solution to
equation (B.3) is then given by

M (1)
xz (t) =

f2

(
1− e−f1t−iωtdt

)
f1 + iωtd

+O(Ca2(t)) (B.4)
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from which we can diagonalise the linearised morphology tensor Mij(t) to
obtain up to first order in the maximal capillary number Camax the complex
eigenvalues L̂2

c , Ŵ
2
c and B̂2

c of Mij(t):

L̂2
c = 1 + Camaxf2

(
eiωtdt − e−f1t

ωtd − if1

)
+O(Ca2

max)

Ŵ 2
c = 1− Camaxf2

(
eiωtdt − e−f1t

ωtd − if1

)
+O(Ca2

max)

B̂2
c = 1 +O(Ca2

max) (B.5)

The transient part e−f1t can be ignored for sufficiently large t. After
taking the real part of the complex eigenvalues of Mij we obtain the values
given in equation (4.12).
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Summary

This thesis deals with the numerical study of the dynamics and instability
of a single droplet in complex flows, such as laminar time-dependent and
turbulent flows. The numerical model to be used is the Lattice Boltzmann
Method (LBM), which is able to accurately simulate fully resolved multicom-
ponent flows with the help of a diffuse interface method. We have developed
a novel LBM boundary scheme, which enables us to study droplets in tur-
bulent flows on the sub-Kolmogorov scale. Turbulent droplet dynamics is
a multiscale problem, because information from both the droplet and the
largest turbulent scales are needed. Therefore the LBM boundary scheme
must simulate arbitrary velocity fields at the domain boundary, which in
case of this thesis are velocity fields of laminar oscillatory flows and ho-
mogenous and isotropic turbulent flows. Moreover, the LBM results are
compared with the solutions to a phenomenological droplet deformation
model, the Maffettone-Minale model (MM-model). In order to test the new
LBM boundary scheme, we considered the case of droplet dynamics in a
confined and oscillatory shear flow. We find that the LBM results and the
results of a confined version of the MM-model match well. Furthermore,
we considered the case of high frequency oscillatory shear flows in relation
to the droplet relaxation time and analysed the “transparency effect”, for
which the droplet is only marginally deformed, even in the case of large
flow amplitudes. Additionally, we investigated LBM breakup predictions
of a droplet in an oscillatory confined flow, in relation to the oscillatory
frequency, the degree of confinement, inertial effects, flow start up conditions
and flow topology. The LBM breakup simulations suggest that breakup in
confined stationary shear flows may lead to different breakup conditions
for different flow start up conditions in the presence of strong confinement.
This mismatch between the LBM breakup results vanishes in the presence
of small perturbations, such as small flow amplitude variations in an oscilla-
tory shear flow. The newly developed LBM boundary scheme would allow
for the introduction of an external turbulent flow field. This is achieved
by using data of passive tracer trajectories in homogenous and isotropic
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turbulent flows obtained via pseudo-spectral simulations. After rescaling
and finding a suitable sampling algorithm of the turbulent flow data, we
can recover the correct single phase linear turbulent velocity profile. This
multiscale hybrid LBM algorithm is now suitable to predict sub-Kolmogorov
droplet dynamics and breakup. We find, that the results of both LBM and
the MM-model for the deformation dynamics agree well with each other for
small capillary numbers. However, LBM yields different deformation and
breakup predictions than the one of the MM-model in the large capillary
number regime. This is due to the fact that the LBM hybrid scheme is able
to model a fully resolved turbulent multicomponent flow, contrary to the
MM-model simulations. This work investigates the effect of explicit flow
time-dependencies for droplet deformation in confined shear flows, with the
help of new LBM boundary method. Furthermore, this boundary method
is extended to a novel multiscale hybrid LBM algorithm used to model a
fully resolved sub-Kolmogorov droplet in homogeneous and isotropic tur-
bulence. The work in this thesis also demonstrates the versatility of LBM
and DNS-LBM hybrid algorithms for both multiphase and multicomponent
flows in particular.
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Cover Illustration

Snapshot of a deformed sub-Kolmogorov droplet in a homogenous and
isotropic turbulent flow. The contour of the droplet is shown in light grey,
whereas the flow is visualised via streamlines, which are colour coded in
terms of the velocity magnitude, increasing from blue to red. The simulation
parameters (in lbu) are: radius of the initially undeformed droplet R = 40,
the domain length Ls = 288 and Reλ = 420.
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